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Abstract

My research field is highly diverse. It interweaves many different areas in information
technology and bioinformatics. The system I propose to implement can automatically
locate, understand, and extract online biological data independent of the source and
also make it available for Semantic web agents. This research field requires background
knowledge from (1) Information Extraction, (2) Schema Matching, (3) the Semantic
web, (4) Data Integration, and (5) Bioinformatics.

1 Information Extraction

Currently, with the fast development of the internet, both the amount of useful data and

the number of web sites are growing rapidly. The web is becoming an increasingly useful

information tool for computer users. However, there are so many web pages that no human

being can traverse all of them to obtain the information needed. Even in the narrow

domain of molecular biological data, no human can traverse all the pages that may be

of interest for finding needed information. A system that can allow users to query web

pages like a database is becoming increasingly desirable. One possible strategy is to extract

useful information from different web pages to populate databases for further handling. I

survey information extraction techniques in the following three categories: (1) traditional

information extraction; (2) hidden web crawling; and (3) biological data extraction.

• Traditional information extraction.

For traditional information extraction, I present five major data extraction tools.

Each tool represents a different major way of doing information extraction.

Lixto [BFG01] is a tool for supervised wrapper generation and automated web in-

formation extraction. It generates wrappers semi-automatically and interactively by

creating patterns in a hierarchical order. The user can define extraction patterns
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through the interface and further refine them until satisfied with the elements identi-

fied by the system. Then Lixto uses the wrapper to extract the relevant information

from an HTML document and translate it into XML which can be easily queried and

further processed. Lixto has a friendly interface and does not require users to know

any specific language. However, it is not robust to changes in web pages and does not

work well with unstructured data.

ROADRUNNER [CMM01] does fully automatic wrapper generation. It does not need

any interaction with the user during the wrapper generation process. ROADRUN-

NER compares two HTML pages from one web site and analyzes the similarities and

dissimilarities between them in order to discover the pattern of how this web site

presents data. The system discovers data fields by string mismatches and discovers

iterators and optionals by tag mismatches. For more complex cases, the system may

need more than two pages to capture more accurate structural variations. Although

this approach is fully automatic, it does not generate robust wrappers and thus has

to generate one wrapper for each web site. Another problem is it only works for web

pages that are highly regular, usually only those that are generated automatically.

SRV [Fre98] and RAPIER [CM99] both combine NLP techniques with machine learn-

ing algorithms. SRV is a general-purpose top-down learner for information extraction.

SRV learns extraction rules and extracts useful information from text documents

based on a set of token-oriented features. There are two basic varieties of token-

oriented features: simple and relational. A simple feature is a function mapping a

token to some discrete value, such as length, character type, orthography, part of

speech, or lexical meaning. A relational feature considers relationships between to-

kens, such as adjacency or linguistic syntax. SRV is not robust to changes; its training

documents need to be labelled; and it does not work well as a ”multiple slot” filler. 1

RAPIER is a bottom-up relational learner of pattern-matching rules for information

extraction. The pattern-matching rules are indexed by template name and slot name.

Each rule consists of three parts: pre-filler pattern, slot filler pattern, and post-filler

pattern. A slot filler pattern matches the information that needs to be extracted,

and a pre-filler and post-filler match the context of the information of interest. An

extraction pattern considers features such as word lengths, symbols, part-of-speech

tags, and semantic classes. RAPIER induces the extraction pattern from a pre-tagged

training set. It is a “single-slot” approach and can only work with free text.

1For some information extraction tasks, an attribute may have zero (missing) or multiple instantiations
in a record. A wrapper that can extract one tuple of interest is called a single slot filler and a wrapper that
can extract a list of tuples is called a multiple slot filler.
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BYU Ontos [ECJ+99] is an ontology-based data extraction system. A domain spe-

cific extraction ontology describes the data of interest by using objects, relationships,

and data frames which contain data-value recognizers. The ontology guides the ex-

traction process by providing conceptual expectations which can be matched using

pre-specified heuristics. This approach is robust to changes in source pages and can

extract and integrate information from different web sites in the same application

domain. It works for unstructured, semi-structured, or structured source documents

that require ”multiple slot” filling. The drawback of this system is that it requires

human experts to build extraction ontologies manually.

• Hidden web crawling.

Traditional information extraction tools only work on the publicly indexable web

(web pages reachable purely by following hypertext links). However, large numbers

of web pages are hidden behind search forms. These pages are dynamically generated

through searchable online databases according to users’ queries submitted through

the search forms. HiWE (Hidden web Exposer) [RGM01] is a hidden web crawler

that can crawl the hidden web according to a user’s query. When it encounters a

form page, the crawler first builds an internal representation of the form. It then

tries to match the internal form representation with the concepts in a task-specific

database. Once concepts are matched, HiWE can assign values to each internal form

field according to the database. HiWE uses value assignments to fill out and submit

the search form. It then can retrieve the information hidden behind the form.

• Biological data extraction.

Current biological information extraction approaches mainly extract data from plain

text such as online abstracts and articles. Systems such as [KRMF00] recognize bi-

ological terms such as protein and gene names. Other systems such as [GDAW03]

focuses on relationships between biological terms/elements, such as interactions be-

tween proteins and amino acid residues in protein molecules.

Recognizing biological terms from a plain text document is a non-trivial problem. It

is, however, one of the first steps toward achieving the goal of biological information

extraction. The approaches to named-entity extraction can be divided into two cat-

egories: rule-based and dictionary-based. Rule-based approaches generate heuristic

rules based on text features such as morphologic characteristics, part-of-speech tag-

ging, or keywords. Dictionary-based approaches consist of first constructing named-

entity dictionaries and then detecting dictionary terms in documents. Rule-based

approaches are particularly useful in identifying new names. However, if a biological
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object has multiple synonyms, rule-based approaches are not able to unify them. This

problem can be solved by the dictionary-based approaches. Here I introduce a system

for protein and gene name recognition which is mainly a dictionary-based, but also

considers spelling variations in names to recognize biological terms [KRMF00]. The

system works based on BLAST (Basic Local Alignment Search Tool) which provides a

method for rapid DNA and protein sequence comparison and a database for gene and

protein names. First an exhaustive list of gene and protein names is translated into

an alphabet of DNA sequences by substituting each character in the name with a pre-

determined unique nucleotide combination and then the encoded names are imported

into BLAST. Once the system has a source article, the system encodes it using the

same nucleotide combination. The system then matches the translated article against

the nucleotide representation of gene and protein names. BLAST finds any exact

match; it also considers similar sequences. Therefore, this tool can find both exact

names and names that are closely similar to the names in the dictionary.

In addition to extracting biological element names, it is also important to extract

relationships among these biological elements. PASTA (Protein Active Site Template

Acquisition) [GDAW03], for example, is one of the tools to automatically extract

amino acid residues in protein molecules from online articles and abstracts. A PASTA

template stores information about an entity, a relation, and an event. The system fills

out the slots in a template using the following four steps. (1) In a text preprocess-

ing step, the system analyzes each section in a source document and discards those

sections that are not related to the domain of interest. It also splits those sections

that are related to the domain of interest into sentences and character sequence units.

(2) In a terminological processing step, the system identifies and classifies instances

of the term classes by analyzing the morphological features of each term and looking

them up in biological databases. It also combines related adjacent terms into phrases.

(3) In a syntactic and semantic processing step, the system builds a “semantic” rep-

resentation of the text on a sentence-by-sentence basis by using NLP syntactical and

grammatical analysis. (4) In a discourse processing and template extraction step,

the system fills out the templates, links information from sentences, and merges the

related information together.

2 Schema Matching

Automatic schema matching is an important problem for many database applications such

as data integration, interoperability resolution, and ontology alignment. For data integra-
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tion, data extraction, and data source understanding over heterogenous biological data,

schema matching plays a central role. It is also useful for ontology evolution. Previous

schema matching methods can be classified as individual matchers vs. combined matchers,

schema-based matchers vs. instance-based matchers, learning-based matchers vs. rule-

based matchers, and element-level matchers vs. structure-level matchers [RB01]. Many

schema matching approaches combine several methods together. Here I introduce four

approaches that cover most of these methods.

The LSD (Learning Source Description) system is a semi-automatic learning-based ap-

proach [DDH01]. After a small set of data sources have been manually mapped to the

mediated schema, LSD uses these mappings together with the sources to train a set of

learners. Then LSD finds semantic mappings for a new data source by applying the learn-

ers. This system learns from both schema-level and instance-level information. LSD consists

of four major components: a base learner, a meta-learner, a prediction converter, and a

constraint handler. It operates in two phases: training and matching. In the training

phase. the system trains base learners on manually created training examples. Different

base learners require different sets of training examples. In the matching phase, the system

uses the trained learners to match new source schemas. The meta-learner and the predic-

tion converter combine the results of each base learner, and then the constraint handler

takes the overall predictions and outputs 1-1 mappings (both element-level and structure-

level). The authors of LSD recently developed another learning-based approach called

GLUE [DMD+03]. GLUE tries to match concepts in different ontologies based on well-

founded notions of semantic similarity, expressed in terms of joint probability distributions

on the concepts involved. GLUE only supports 1-1 mappings by selecting the candidate

with the highest similarity for each concept. CGLUE is an extended version for GLUE that

can work on complicated mappings.The matching accuracy of CGLUE, however, is only

about 50%.

Cupid is a rule-based matcher that does both element-level and structure-level matching

[MBR01]. This system first models the interconnected elements of a schema as a tree.

Then it calculates similarity coefficients between attributes of the two schemas and deduces

a mapping from those coefficients. The coefficients are computed in two steps: linguistic

matching and structural matching. The linguistic matching step considers linguistic features

of the elements, such as name, data type, and domain, and computes a linguistic similarity

coefficient, lsim, between each pair of elements. The structural matching step matches

schema elements based on the similarity of their contexts and vicinities. This step depends

in part on the linguistic matching step. The result of this step is a structural similarity

coefficient, ssim, between each pair of elements. Finally, the system calculates a weighted
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similarity, wsim, by a weighted average of lsim and ssim and creates a mapping by choosing

pairs of schema elements whose wsim is maximal.

Different schema matchers cover different problems and situations and have their own

advantages and disadvantages. COMA (COmbiing MAtch) has an extensive library of

matching algorithms and supports different ways for combining the results [DR02]. New

matchers are easily added to the library. COMA is also an evaluation platform that can

compare the effectiveness of different matchers in the library. COMA has three phases: an

optional user feedback phase, a phase for execution of different individual matchers, and a

phase for the combining the different match results. In the user feedback phase, the user

can interact with the system to specify the match strategy, define match or mismatch, and

accept or reject the proposed matching candidates. In the individual match phase, COMA

executes different matchers chosen from the matcher library. For the combination phase,

COMA combines matched results from the individual matchers by aggregating matcher-

specific results and then selecting from among the match candidates depending on the

similarity values.

3 The Semantic web

The semantic web is a mesh of information linked in such a way as to be easily processable

by machines. It is an efficient way of representing data on the web, or as a globally

linked database [BLHL01]. The semantic web is an emerging concept. It is different from

the current web, which is only designed for humans to read, because the semantic web

is also for computer programs to manipulate meaningfully. The semantic web extends the

current web and will allow computers to “understand” the semantic meaning of web content,

thus better enabling computers and people to work in cooperation. If we can transfer the

biological online resources to the semantic web, it will be much easier for us to obtain more

valuable information across heterogenous sources. With the semantic web, we can obtain

intelligent information services, personalized web resources, and semantically empowered

search-engines over biological data.

Semantic web content is “data + metadata” [DK03]. Data can be structured data,

semi-structured data, or unstructured data. Metadata is data that describes data. The

semantic web enables interoperability at the semantic level. Semantic interoperability re-

quires standards not only for the syntactic form of documents, but also for the semantic

content. Proposals aiming at semantic interoperability are the results of recent W3C stan-

dardization efforts: XML, RDF, and most recent one, OWL. XML is designed to improve

the functionality of the web by providing more flexible and adaptable information identifi-
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cation. It allows user to define their own tags. XML is aiming at the structure of documents

and does not impose any common interpretation of the data contained in the documents.

RDF is a framework for describing and interchanging metadata, as well as describing data

about web resources. The basic construct in RDF is an object-attribute-value triple. All

objects are independent entities. Semantic units are given naturally through its object-

attribute structure. A domain model, defining objects and relationships for a domain of

interest, can be represented naturally in RDF. OWL extends RDF/XML exchange syntax

and an abstract frame-like syntax, and adds Description Logic style model theory to for-

malise the meaning of the language [HPSH03]. Thus, OWL can provide more expressive

descriptions and more precise semantics.

When the idea of the semantic web has been realized, much of the “intelligence” that

can now only be done by humans can be provided automatically by computers. One way

to transfer a current web document to a semantic web document is through semantic

annotation. Many researchers are working on semantic annotation of documents with

respect of ontology and entity knowledge base. [KPT+04], for example, presents a tool called

KIM (Knowledge and Information Management) that automatically annotate unstructured

and semi-structured content, mostly name entities.

4 Data Integration

Data Integration is a broad topic. There are many approaches that focus on how to inte-

grate information from heterogonous sources. Here I only focus on several data integration

systems in the biological domain.

Catalyzed by world-wide research communities producing publicly available data, the

volume of biological data is increasing at a rapid pace. To do activities such as performing

background research for a research field, gaining insights into relationships and interactions

among different research discoveries, or building up research strategies inspired by other’s

hypotheses, biologists need a system that can integrate online bio-information. [HK04]

summarizes the challenges of integrating biological sources. Online biological repositories

are highly diverse in both granularity and variety. Different researchers focus on different

levels of biological problems. Thus online data sources focus on different granularities and

use different terminologies, different ID systems, or different units to describe the same

concepts. Most of these sources are unstable and unpredictable. Independent developers

modify their designs and schemas, remove or add data dynamically, or occasionally block

access to their sources for maintenance or other purposes. Some of the sources provide

interfaces through which a user can query a source. But each individual source provides
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different interfaces and only allows certain types of queries to be asked. An integration

system needs to resolve all these problems. Automatic integration of online biological

information is thus a challenging task. Here I provide an overview of several systems. These

systems are chosen to span from specialized solutions to increasingly general solutions.

The Sequence Retrieval System (SRS) [EA96] is a keyword based retrieval system. SRS

provides a graphical interface across a broad range of biology resources, including biological

sequences, metabolic pathways, and literature abstracts. When a biologist submits some

keywords and constraints, the system retrieves the relevant documents for the user. The

returned results are a simple aggregation of records that matched the query. Therefore, SRS

is closer to a keyword-based retrieval system than an integration system. In addition, SRS

has strict requirements for source documents, and it only works with relational databases.

BioKleisli [DOTW97] is one of the earliest information integration system over biolog-

ical data. The system queries and combines information from heterogeneous data sources

and application programs. It is a mediator system encompassing a nested relational data

model, a high-level query language, CPL (Collection Programming Language), and a query

optimizer. BioKleisli does not use any global schema or ontology over which a user can

formulate queries. A query attribute is bound to a matched attribute in a single source, so

there is no integration across different sources. Furthermore, the query optimization only

focuses on reordering the Boolean operations. No optimization based on source content is

performed.

DiscoveryLink [Haa01] is a system that provides users with virtual database access to

different sources. DiscoverLink has two key components: a wrapper architecture and a

query optimizer. The wrapper architecture maps the query fragments submitted to the

wrappers into source queries that can be processed by each data source and retrieves the

result returned by each source. The query optimizer examines a query bottom-up. It

considers the speed of various sources, their network connections, and the size of their

data to predict the costs of different plans. DiscoveryLink, however, cannot deal with

complex source data such as nested data. Most biological data, unfortunately, is highly

nested. Therefore, there is a significant amount of mismatch between most data sources

and DiscoveryLink. Furthermore, it is hard to add new data sources or analysis tools to

DiscoveryLink. In addition, DiscoveryLink requires SQL as its query language, which is not

easy for biologists to write. Another drawback of DiscoveryLink is that it uses only C++,

which is not an ideal language for a web wrapper.

TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) [SBB+00]

is a retrieval-based information integration system for biologists. TAMBIS works based on

TaO (the TAMBIS global domain Ontology), a domain ontology for molecular biology
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and bioinformatics represented by a description logic language. The system uses TaO to

describe a visual interface and a global schema against which a user can ask intersource

queries. TAMBIS has three layers: the conceptual model, the mapping model, and the

physical model. The global ontology is a unified conceptual-level representation of its reg-

istered component resources. It provides a global schema as well as an abstract framework

for relating, reconciling, and coordinating the concepts in the sources. Based on the con-

ceptual model, a source independent query can be formulated. In addition, some of the

queries can be answered intensionally based on the ontology alone. The mapping model

converts a query phrased in terms of the conceptual layer into executable plans in terms of

each source. Currently, this step is executed manually. In addition, TAMBIS only considers

five source repositories. The physical model submits executable plans to different sources

and retrieve the results. Unlike DiscoveryLink, TAMBIS offers a global schema and data

reconciliation. It also hides the sources from the users so that it is more “transparent.” Al-

though TAMBIS is more of an upper level solution than DiscoveryLink, its mapping model

is implemented manually. Therefore it is not robust to changes in a source. In addition, its

interface is complicated and requires a user to understand the query language.

5 Bioinformatics

Bioinformatics is a very broad field. Here I discuss only the topics that are related to

my research. The core of my research is a domain-specific extraction ontology. Therefore

I introduce several well known ontologies in the biology domain. I also discuss source

discovery: automatically locating a proper data source and discovering its capabilities and

the type of data it contains. Finally, I discuss the data trustworthiness and provenance.

The Gene Ontology (GO) [ABB+00] is a generally respected tool that provides a con-

trolled vocabulary for the description of cellular components, molecular functions, and bi-

ological processes. GO contains 1458 components, 7413 functions, and 8907 process terms

as of September 20, 2004. Many model organism databases and genome annotation groups

use the GO and contribute their annotation sets to the GO resource. The goal of GO is

to produce a controlled vocabulary that can be applied to all organisms even as knowl-

edge of gene and protein roles in cells is accumulating and changing. GO provides three

structured networks of defined terms to describe gene product attributes. Each node in

the network also provides a connection to many other annotated genes that have similar

biological function, cellular localization, or molecular process. GO is not an extraction

ontology. It does not provide value recognizers (although it can be considered as a lexicon),

nor does it provide general relationships among terms (although it does provide taxonomic

9



relationships).

LinKBase [VSD+03] is a proprietary biomedical ontology that has been developed for the

purpose of making computers understand medical natural language. It comprehends various

aspects of medicine, such as anatomy, diseases, and pharmaceuticals. The ontology contains

543 different relations (link types), divided into different groups, including spatial, temporal

and process-related link types. LinKBase currently contains over 2,000,000 medical concepts

organized in a graph with over 5,300,000 link-type instantiations. Both concepts and links

are language independent, but they are cross-referenced to about 3,000,000 terms in various

languages. LinKBase has been expanded by taking concepts from the Gene Ontology and

virtually expanded by including mappings from the protein database Swiss-Prot to the

biomedical ontology. The mapping procedure is semi-automatic. LinKBase only tries to

map the top-layer concepts and GO terms with the existing LinKBase concepts/terms.

Each of the three GO sub-domains, however, contains dozens of layers in its hierarchical

structured vocabulary list. Therefore, it is possible to miss many matches if LinKBase

only maps the top-layer concepts. Furthermore, LinKBase can only describe several binary

relationships, such as “is-a” and “has-function.” Biological information, however, contains

many complicated relationships that LinKBase cannot cover.

Finding appropriate web resources is the first step in integrating biological data or

answering users’ queries. [RC03] introduces a system for finding classes of bioinformatics

data sources automatically. This approach first pre-defines different classes of web sources

using class descriptions. A class description presents the relevant aspects of the class from

the perspective of an external application. The description considers the data type(s),

example queries, outputs, and a control flow representing how types can interact with a

web source. It then groups web sources into classes that share common feature. The class

descriptions in this approach, however, are not generated automatically. Therefore, it is

not easy to add new sources and this approach is not robust to change.

For scientific data, such as biological data, it is important to keep track of the quality

of the data: the trustworthiness and the provenance of the data. Trustworthiness depends

on the consistency, reliability, competence, and honesty of the data source. Provenance

tells where something originated or was nurtured in its early existence. In bioinformatics

research, since data has been collected from different sources, it is important to record

a history of the sources, transformations, annotations, and updates of each piece of data

[BCC+02].
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6 Summary

In this background research study, I introduced several research areas that are closely

related to my research. For each of the research areas, I surveyed different approaches that

represent major ways of solving the same or similar problems. Although these approaches

have made certain contributions, there are still more improvements that need to be made.

In my research, I plan to develop a system that overcomes some of the drawbacks of the

existing approaches and elaborate new algorithms to solve the problem of locating and

extracting data from heterogenous biological sources.
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