
A Tool to Support Ontology Creation Based on Incremental
Mini-ontology Merging

A Thesis Proposal

Presented to the

Department of Computer Science

Brigham Young University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Zonghui Lian

July 2006



1

Abstract. This thesis will address the problem of tool support for semi-automatic

ontology mapping and merging. Solving this problem can contribute to ontology

creation and evolution by relieving users from tedious and time-consuming work. As

proposed in the NSF-supported TANGO project [16], this work will show that a

tool can be built that will take a light weight ontology and a growing ontology as

input and make it possible to produce manually, semi-automatically, or automatically

an extended growing ontology as output. Characteristics of this tool include: (1) a

graphical, interactive user interface with features that will allow users to map and

merge ontologies, and (2) a framework supporting pluggable, semi-automatic and

automatic mapping and merging algorithms.

1 Introduction

Ontologies provide a powerful explanatory mechanism for concepts and their re-

lationships. The creation of ontologies however, is expensive and complex. In most

cases, information collection and analysis, concept and relationship design, and iter-

ative construction are tedious and time-consuming work.

Much effort has been expended to alleviate these difficulties. Currently over 90

ontology editor tools are available [9]. Although focused on different purposes and

based on different ontology languages, generally, we can classify these ontology de-

velopment tools into three categories according to their dominant creation processes:

manual, semi-automatic, and automatic.

Manual ontology generation tools, such as [1], [3], [4], [6], [10], and [13], provide

a way for users to create ontologies without using ontology languages directly. These

tools are relatively simple. They provide no information extraction and analysis

functions, and most of them provide no support for ontology merging. Although these

tools provide some conveniences they still leave most of the information collection and

analysis work to be done manually.

Some tools are semi-automatic and provide automatic support for some parts

of ontology creation [14]. For example, based on machine learning and linguistic

processing, Text2Onto [8] can extract concepts and relations from textual data. A



2

limitation of this tool is the creation of a good corpus for machine learning and natured

language processing techniques. If users want to use this tool to create an ontology

in a certain domain, they have to have enough data in the corpus first, which in most

cases, is hard to obtain. Also, the resulting ontologies are often not reliable, and in

some case, the accuracies of the relationships among extracted data items are quite

low. Another example of a semi-automatic ontology creation method is presented

in [11]. It allows semi-automatic knowledge extraction from underlying classification

schemas such as folder structures or web directories. The performance of this method

depends highly on the previously generated ontologies. In addition the accuracy of

distinguishing concept and data instances is an issue for this method.

There are also some available tools that provide for automatic ontology genera-

tion. However, they are all highly constrained. TOPKAT [5] just supplies a simple

natural language parser that only provides partial natural language analysis to iden-

tify possible concepts and property values. The tool presented in [15] is able to extract

ontologies only if the scope of the domain is very narrow. Although the authors claim

that this tool is automatic, an ontology evolution session is highly user-interactive.

Researchers at BYU have proposed TANGO (Table ANalysis for Generating On-

tologies) that can generate ontologies fully automatically, but can also be run semi-

automatically, or manually. TANGO [16] is an ontology creation tool that assembles

information provided in ordinary tables into ontologies. The aim of TANGO is to

create ontologies while involving the user as little as possible. TANGO’s working

process includes four steps: (1) recognize and normalize table information; (2) con-

struct mini-ontologies1 from normalized tables; (3) discover inter-ontology mapping;

and (4) merge mini-ontologies into a growing application ontology2.

My research is part of the TANGO project. It mainly focuses on Step 3 and Step

4. Specifically, my project is to construct a tool to do the ontology mapping and

merging. The input for a session using this tool is a mini-ontology and a growing

ontology, the output is the growing ontology augmented by the mini-ontology. The

1A mini-ontology is a light weight ontology generated from a table by our table interpretation
techniques.

2A growing ontology is a domain ontology that is being constructed as a result of merging mini-
ontologies into the growing ontolog



3

tool should allow the ontology mapping and merging processes to be automated. It

should also guide users by notifying them when interventions may be necessary and

by suggesting possible resolutions to issues that may arise.

2 Thesis Statement

A tool can be built that will take a mini-onotology and a growing ontology as input

and make it possible to produce manually, semi-automatically, and automatically an

extended growing ontology as output. Characteristics of this tool include: (1) a

graphical, interactive user interface with features that will allow users to map and

merge ontologies, and (2) a framework supporting pluggable, semi-automatic and

automatic mapping and merging algorithms.

3 Project Description

To achieve the goals mentioned in the thesis statement, we plan to conduct the

research as follows: (1) provide users with a tool to do ontology mapping and merging;

(2) construct a framework that provides APIs that will allow automated mapping

and merging algorithms to access information necessary for their use; and (3) test the

success of the tool for both manual mode and semi-automatic mode of operations.

The proposal elaborates on these three aspects of the research in the three subsections

that follow.

3.1 A Tool for Ontology Mapping and Merging

Currently the data extraction research group at BYU already has a ontology tool,

called the OntologyEditor [17], which provides an environment for ontology design

and ontology maintenance. The OntologyEditor, however does not provide ontology

mapping and merging functions. Our mapping and merging tool for TANGO will be

built on top of the OntologyEditor.

The tool’s basic functions must allow users to (1) specify mappings between re-

lated object sets, related relationship sets, and related taxonomies, and (2) merge

the matched components, include the components with no match, and clean up the



4

resulting growing ontology if necessary. Along the way issues may arise in the ontol-

ogy integration process. We use Issue/Default/Suggestion (IDS) triples [7] to resolve

these issues.

Figure 1: A Table

Figure 2: A Mini-ontology.

To make our ideas clear, we give an example. Figure 1 presents a table from

countryreport.org [2]. Based on this table, the mini-ontology in Figure 2 can be

generated. Assume a user already has the growing ontology in Figure 3. The mini-

ontology consists of three object sets: Country, Capital, and Country Name; and two

relationship sets: Country Name identifies Country and Country has Capital. For

the example, we assume that the user already has the growing ontology in Figure 3.

The growing ontology consists of four object sets: Country, Name, City and Capital ;



5

Figure 3: A Growing Ontology.

two relationship sets: Name identifies Country and City is in Country ; and one

generalization/specialization specification: Capital isa City.

Analyzing these two ontologies in Figures 2 and 3, the user can easily find several

matches. The user specifies these matches by selecting the mapping component from

the tool bar and dragging the mouse cursor from one to the other. A dash-dot line

then appears (and may be bent to improve the appearance by adding anchor points).

Figure 4 shows the result.

Figure 4: Mappings between the Mini-ontology and the Growing ontology.

The next step is to merge the mini-ontology into the growing ontology. If there

are no conflicts, the system simply coalesces the matching components and copies

the non-matching mini-ontology components into the growing ontology. If there are

conflicts, the system interacts with the users to resolve them.

To make the resolution process consistent, the interaction works based on IDS



6

statements. An IDS statement raises an issue (I), specifies a default action (D) that

it will carry out if the user does not intervene, and suggests (S) one or more alternative

resolutions the user may take. In our example, when the user activates the merge,

the system detects a conflict and displays the IDS statement in Figure 5. Radio

buttons allow users to choose a resolution, and the text box allows a user to provide

information to the system—the new name in this example. For the example, assume

the user chooses the default. Figure 6 presents the merged diagram.

Figure 5: An IDS Statement Dialog Window.

Figure 6: A Merged Growing Ontology.

We note here that as part of the mapping process the user has full control to



7

edit either the mini-ontology or the growing ontology at any time. Typically mini-

ontologies would not match perfectly, and the user would need to alter the mini-

ontology before declaring the correspondence.

After doing the basic merge, the user may wish to clean up the resulting diagram.

The user may remove unwanted relationship sets and object sets, alter constraints,

or adjust the layout. Sometimes users have different opinions according their under-

standing. In our example, based on the relationship sets City is in Country and the

generalization/specialization Capital isa City, it is possible to deduce the relation-

ship set Country has Capital. Thus the relationship set Country has Capital may be

not necessary. The user, however, may want to keep this relationship set, because it

retains the one-to-one constraint between a country and its capital.

Figure 7: An IDS Statement Dialog Window.

Assuming the existence of a plug-in module that checks for redundancy [12]. Our

tool will offer a way for the plug-in module to issue and respond to IDS statements.

For our example the IDS statement in Figure 7 would be presented to the user. We

assume the user chooses the suggestion and does the deletion, the resulting growing

ontology is in Figure 9.

In addition, as part of the tool, users may prefer to work with the textual version

of OSM rather than the graphical version. OSM-L is a textual language, which is

fully equivalent to the graphical version [12]. As an example, Figure 8 shows the

textual equivalent of Figure 4.



8

Figure 8: A OSM-L Language based Mapping.

Figure 9: A New Growing Ontology

Finally, our tool allows and supports instance data integration. Issues include data

canonicalization, object identity, value split and merge, and constraint resolution.

Our tool will provide users with a set of capabilities to resolve these issues. These

capabilities include the ability to manually integrate data, an API for facilitating

automatic data integration, and a constraint conflict detector.

3.2 APIs for Automated Mapping and Merging Algorithms

From the above examples we see that there are two major steps: (1) edit the

mini-ontology and growing ontology and provide mapping information between these

two ontologies and (2) merge the ontologies according to the mappings and clean up

the merged ontology. As explained in Section 3.1, the user can manually do these two

steps. We intend, however, for these two steps to be automated to the extent possible.

To provide for automation of these steps, our tool will allow various mapping and



9

merging algorithms to replace manual operations as Figure 10 shows.

Figure 10: A Work Flow for Ontology Mapping and Merging Process with a set of
Mapping and Merging Algorithms

To incorporate these algorithms into our tool, we need to provide an application

program interface (API). It provides access to various types of data as possible input

information for the algorithms, and they standardize outputs.

Basically, the API must provide three major types of data as input information for

the algorithms. First, it should offer all the information it has about the components

in both the mini-ontology and growing ontology. This includes information about the

object sets, relationship sets, generalization/specialization hierarchies, aggregation

hierarchies, and all constraints over and among these components. Second, it should

offer the instance values for all object and relationship sets in both the mini-ontology

and the growing ontology. Third, once obtained, it should offer the mapping infor-

mation that it receives either from mapping algorithms or user specifications. The

mapping information is an injective function from mini-ontology constructs to grow-

ing ontology constructs with the restriction that the type of constructs must be the

same.



10

The API must also provide three types of output. It must let algorithms (1)

update mini-ontologies; (2) update growing ontologies; and (3) specify mappings

between mini-ontologies and growing ontologies.

Finally, the API must also provide an interface to standardize IDS statements

that may arise from mapping or merging algorithms. An algorithm must provide an

I-statement string, a D-statement string, and a list of S-statement strings. Further,

for any input it expects the algorithm must provide a list of S-statement input pairs.

Each S-statement input pair (x, y) consists of an S-statement number x, so that it

can be associated with an S-statement in the list of S-statements, and a string y that

labels the input text box to be filled in with a value. In Figure 5, the I-statement is

“Country Name does not match Name.”; the D-statement is “The system will change

Country Name to Name.”; and the list of S-statement strings is “Change Name to

Country Name.” followed by “Change both to some other name”. There is only one

input text field; its (x, y) pair is “(2,‘New name’)”.

Based on the API, different plug-in algorithms can obtain and exchange enough

information to enable them to do their job. Thus once the user also can modify the

mapping and merging results through our tool, the tool can be run automatically,

semi-automatically, or manually.

3.3 Validation

The evaluation of this tool is consist of two parts. The first part is to test the

usability of the tool. The second part is to test whether the tool is extendable with

different mapping and merging algorithms.

For the validation of the first part, we mainly focus on whether this tool can

used for the experiments planned for the TANGO project. Although we cannot have

groups of users build ontologies from sets of input tables with and without the full

suite of TANGO tools, we can simulate part of the experiment.

Figure 11 presents our testing plan. We plan to have two groups of users (Group

A and Group B) who are familiar with both the ontology editor and our mapping and

merging tool. We will assign each group the 4 tasks shown in Figure 11. For each task



11

Figure 11: The Testing Plan

we will provide a certain number of mini-ontologies which are from the car domain

or from the geopolitical domain. We classify tasks as “simple” and “complicated”. A

simple task contains three mini-ontologies and a complicated task, relatively larger,

contains seven mini-ontologies. Our tool and the OntologyEditor will track all user in-

teractions and model changes, time-stamp them, and record them in log files. Finally,

we will evaluate the correctness of the resulting growing ontologies. To summarize the

results, we will compute a work efficiency measure, dividing the work accomplished

by the time to complete the work.

For the second part of the evaluation, we will implement a naive mapping algo-

rithm and a naive merging algorithm, and also sophisticated algorithms from among

those described in [7] and [18]. By doing this, we can gain confidence that the API

can support different mapping and merging algorithms. We will also ensure that the

API is well documented and complete. To ensure these desirable properties, we will

provide an API specification document, and we will provide methods to expose all

properties of every object set, every relationship set, every constraint, and all stored

data.

4 Thesis Schedule

Literature Search and Reading: January 2006 – July 2006

Design and Coding: September 2006 – November 2006

Experiments: November 2006 – December 2006

Write Thesis: December 2006 – March 2007

Thesis Revision & Defense April 2007



12

References

[1] www.w3.org/2001/11/IsaViz/, 2004.

This tool provides Graph Stylesheets (GSS) used to define schemas

for rendering languages based on RDF. This is a reference for a man-

ual ontology generation tool.

[2] COUNTRYREPORTS: A table about the the countries and their capitals.

www.countryreports.org, 2006.

This is the source for the mini-onotology in Figure 2.

[3] ezOWL. iweb.etri.re.kr/ezowl/, 2006.

ezOWL is a visual ontology editor tool that can construct an OWL

ontology. It provides friendly diagram-based visualizing and author-

ing techniques. This is a reference for a manual ontology generation

tool.

[4] GKB Editor. www.ai.sri.com/ gkb/, 2006.

The GKB-Editor (Generic Knowledge Base Editor) is a tool for

graphically browsing and editing knowledge bases across multiple

Frame Representation Systems (FRSs) in a uniform manner. It offers

an intuitive user interface, in which objects and data items are rep-

resented as nodes in a graph, with the relationships between them

forming the edges. Users edit a KB through direct pictorial manipula-

tion, using a mouse or pen. This is a reference for a manual ontology

generation tool.

[5] TOPKAT - The Open Practical Knowledge Acquisition Toolkit.

www.aiai.ed.ac.uk/ jkk/topkat.html, 2006.



13

TOPKAT (The Open Practical Knowledge Acquisition Toolkit) is a

hypertext and diagram-based toolkit, developed at the Artificial In-

telligence Applications Institute (AIAI), which integrates knowledge

elicitation techniques with the CommonKADS approach to knowl-

edge modeling. This tool provides a simple natural language parser

that can identify possible concepts and property values in a protocol

transcript. It is an example of an automatic ontology generation tool.

[6] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reasonable ontol-

ogy editor for the semantic web. Lecture Notes in Computer Science, 2174:396–

405, 2001.

The authors present OilEd, a ontology editor that provides a frame-

based user interface. This tool can use reasoning to check class con-

sistency and infer subsumption relationships. This is a reference for

manual ontology generation tool.

[7] J. Biskup and D.W. Embley. Extracting information from heterogeneous infor-

mation sources using ontologically specified target views. Information Systems,

28(3):169–212(44), May 2003.

In this paper, the authors propose a framework that models both

the target and all the sources in the same modeling languanges. The

authors also presents an Issue/Default/Suggestion (IDS) triples to

solve the conflict raised in ontology integration process. They also

summarize the issues and provide default and suggested solutions for

model integration. This is a reference for our issue resolution proce-

dure using IDS statements.

[8] P. Cimiano and J. Völker. Text2Onto - a framework for ontology learning and

data-driven change discovery. In Proceedings of the 10th International Conference

on Applications of Natural Language to Information Systems (NLDB), pages

227–238, Alicante, Spain, June 2005.



14

In this paper, the authors presents Text2Onto, a framework for on-

tology learning from textual resources. Text2Onto combines machine

learning approaches with basic linguistic processing such as tokeniza-

tion or lemmatizing and shallow parsing. It can be used to detect

concepts, and various of relations such as subclass-of relations and

instance-of relations. This is an example of a semi-automatic ontology

generation tool.

[9] M. Denny. Ontology tools survey, revisited. www.xml.com/pub/a/2004/07/

14/onto.html, 2004.

This reference presents an ontology tool survey, which provides cat-

egorical descriptions of 94 ontology editors.

[10] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubzy,

H. Eriksson, N. F. Noy, and S. W. Tu. The evolution of Protege: An envi-

ronment for knowledge-based systems development. International Journal of

Human Computer Studies, 58(1):89–123, 2003.

This paper gives the history of the knowledge-based system called

Protege. The authors present the functions and features for each gen-

eration of Protege. This is a reference for manual ontology generation

tool.

[11] S. Lamparter, M. Ehrig, and C. Tempich. Knowledge extraction from classifica-

tion schemas. In Proceedings of CoopIS/DOA/ODBASE, pages 618–636, Agia

Napa, Cyprus, 2004.

This paper presents a method which allows semi-automatic knowl-

edge extraction from underlying classification schemas such as folder

structures or web directories. The authors introduce the five main

steps and finally evaluated these processes by using a prototypical

implementation and a set of real world folder structures. This is an

example of a semi-automatic ontology generation tool.



15

[12] S. W. Liddle, D. W. Embley, and S. N. Woodfield. An active, object-oriented

model-equivalent programming language, pages 333–361. MIT Press, 2000.

The authors explain the difficulties encounted in making models and

languages equilvlentin databases, and they intruduce a particular lan-

guage and model, OSM, which can resolve these difficulties.

[13] T. Liebig and O. Noppens. OntoTrack: Fast browsing and easy editing of large

ontologies. In Proceedings of The Second International Workshop on Evaluation

of Ontology-based Tools (EON2003), Sanibel Island, Florida, October 2003.

The authors present an ontology authoring tool, OntoTrack, which

combines a sophisticated graphical layout with mouse enabled edit-

ing features optimized for efficient navigation and manipulation of

ontologies. It supports functions such as ontology graphical brows-

ing, editing, and searching. This is a reference for manual ontology

generation tool.

[14] A. Maedche and S. Staab. Ontology learning. In Handbook on Ontologies, pages

173–190. 2004.

In this paper, the authors present a notion of ontology learning. The

authors suggest that the ontology learning should proceed through

ontology import, extraction, pruning and refinement, giving ontology

engineer a wealth of coordinated tools for ontology modeling. The au-

thors also show some exemplary techniques in the ontology learning

cycle, and they present their ontology learning tool, called KAON

Text-To-Onto. This is an example of a semi-automatic ontology gen-

eration tool.

[15] G. A. Modica, A. Gal, and H. M. Jamil. The use of machine-generated ontologies

in dynamic information seeking. In Proceedings of the 9th International Confer-

ence on Cooperative Information Systems (CoopIS01), pages 433–448, London,

England, September 2001.



16

In this paper, the authors present a methodology for automating

the evolution of ontologies. This methodology contains two sessions:

a training session which is in charge of creating ontologies, and an

additional session which is in charge of ontology merging. Although

the merging is automatic, the tool only works on very narrow data

sources.

[16] Y. A. Tijerino, D. W. Embley, D. W. Lonsdale, Y. Ding, and G. Nagy. Toward

ontology generation from tables. World Wide Web: Internet and Web Informa-

tion Systems, 8(3):251–285, September 2004.

The authors introduce an approach to generating ontologies based on

table analysis. They thus call their approach TANGO (Table ANaly-

sis for Generating Ontologies). Based on conceptual modeling ex-

traction techniques, TANGO attempts to (i) understand a table’s

structure and conceptual content; (ii) discover the constraints that

hold between concepts extracted from the table; (iii) match the recog-

nized concepts with ones from a more general specification of related

concepts; and (iv) merge the resulting structure with other similar

knowledge representations. TANGO is thus a proposed, formalized

method of processing the format and content of tables that can serve

to incrementally build a relevant reusable conceptual ontology. This

is a reference for the TANGO project.

[17] A. Wessman, S.W. Liddle, and D.W. Embley. A generalized framework for an

ontology-based data-extraction system. In Proceedings of the 4th International

Conference on Information Systems Technology and its Applications (ISTA05)),

pages 239–253, Palmerston North, New Zealand, 2005.

In this paper, the authors report on the implementation of an

ontology-based data-extraction system. The framework allows new

algorithms and ideas to be incorporated into a data extraction system



17

without requiring wholesale rewrites of a large part of the system’s

source code. It allows researchers to focus their attention on parts of

the system relevant to their research without having to worry about

introducing incompatibilities with the remaining components. They

demonstrate the value of the framework by providing an implemen-

tation that exhibits appropriate characteristics. This is a reference

for the OntologyEditor.

[18] L. Xu and D.W. Embley. Automating schema mapping for data integration.

Information Systems. To appear.

In this paper, the authors present a framework for generating a

source-to-target mapping containing direct as well as many indirect

matches between a source schema and a target schema. They in-

troduce four basic techniques for schema mapping: (1) terminologi-

cal relationships, (2) data-value characteristics, (3) domain-specific,

regular-expression matches, and (4) stucture. This is a reference for

mapping algorithms.


