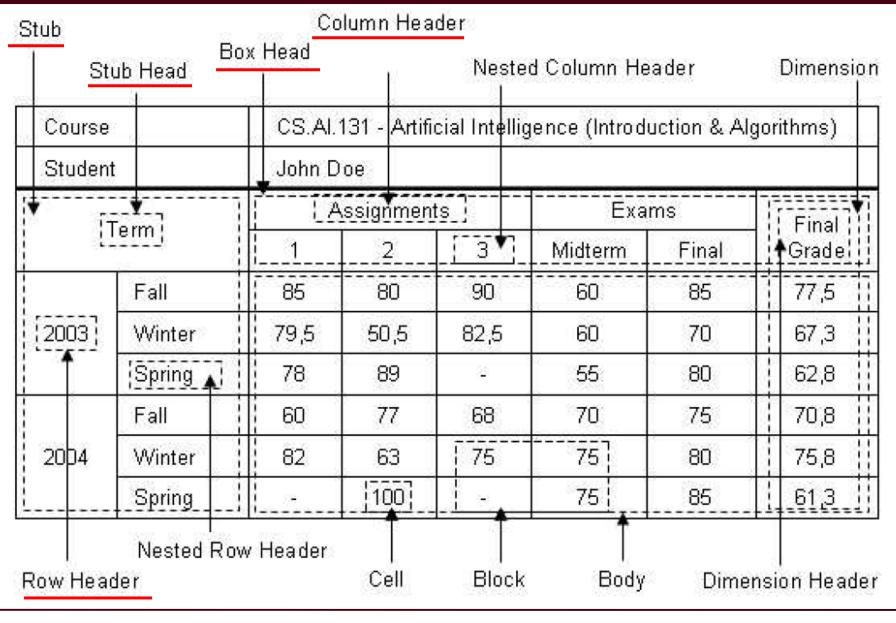
Notes on Contemporary Table Recognition

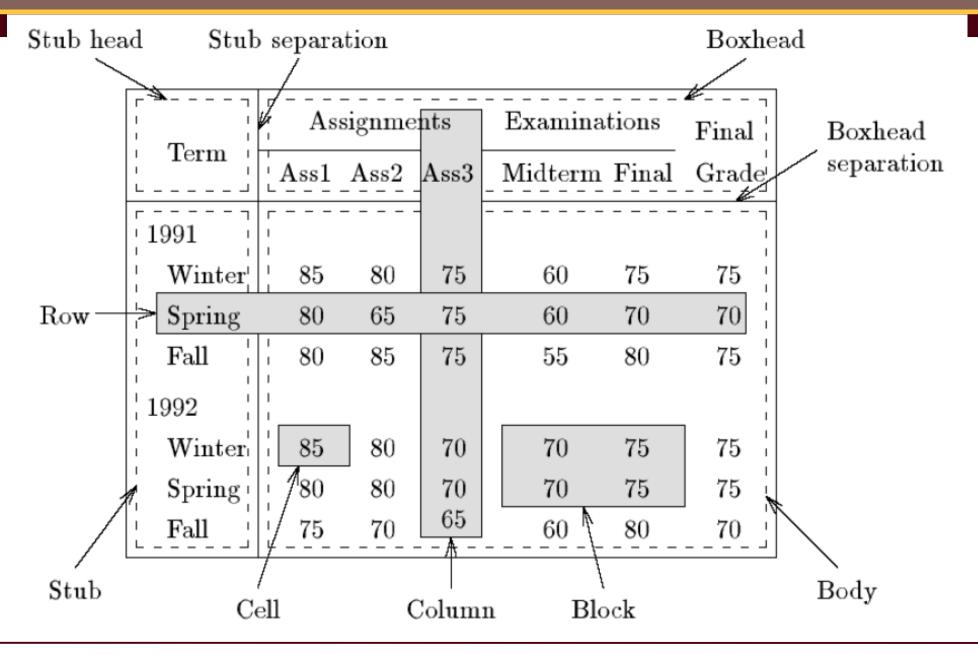
George Nagy

DocLab


Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180

and David W. Embley (BYU), and Daniel Lopresti (Lehigh University) and NSF # 0414854

and my past and current students, and all the folks on whose work I have freely.


Traditional Terminology

[Pivk et al]

Traditional Terminology (2)

Notes on Contemporary Table Recognition [Yha from Wang from Chicago Manual of Style] Nagy • June 2008 • Slide 3

Levels of Table Recognition

Start: Print, ASCII, HTML, PDF, EXCEL, ...

- Detection, isolation, extraction
- Structural analysis (recover 2-D array structure)
- Canonicalization (distribute headers)
- Transcription (recover text)
- Interpretation (Wang Notation: layout-independent representation)
- Understanding (?)

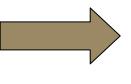
End: editable/reconfigurable/reusable table, DB, IR, DM, SWeb

Detection, isolation, extraction

5. Evaluation of WNT

Every attempt by every subject was recorded in detail during evaluation. An example of the complete log for one attempt appears in Appendix E. The log recorded times and button clicks made by the user, specifying whether the button click was to undo a mistake or not. A subject's interaction with WNT can be re-created with the logs. Appendix G shows summaries of times for every table.

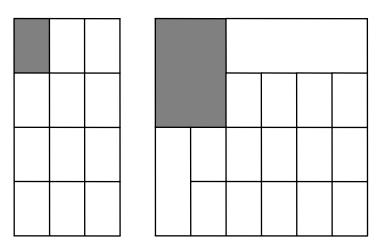
An example summary table for TO9 is shown in Table 5. All values (time in seconds) are averages over subjects. # of autompts is the average number of attempts made by all subjects on a table. Time for Pre-Processing (computer time) is the time taken to display the original HTML table, convert the ASCII file to a Matlab array, and display a corresponding GUI to the subject. Time to Construct Categories (subject time) is the time taken by subjects to think about and click the cells designating categories. This time indicates the confusion factor (Section 0) of a table; subjects spend more time constructing categories when a table is confusing.

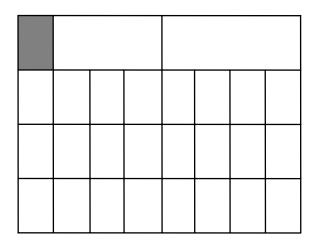

Time for Category Correction (subject time) is the time subjects took to correct all categories in the table using the error-correction GUI. This time is higher for confusing and badly-formed tables and lower when subjects have seen similar tables before. Time for Final Processing (computer time) is the time taken to perform final category processing, generate category notation, generate deka notation, and generate the XML representation. Total Time is the addition of all time and % Subject Time is the percent of total time that is subject time.

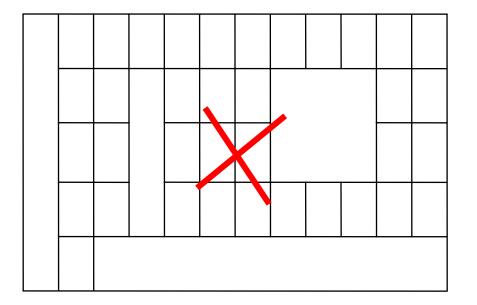
DE 2. DEPUDUION OF PROCESSING .		
	AVERAGE	STD. DEVIATION
# of attempts	1,67	0.65
Time for Pre-Processing	0.52	0.10
Time to Construct Categories	80,68	67,63
Time for Calegory Correction	103.21	12645
Time for Final Processing	0.42	0.19
Total Time	184.81	192.11
Percent Table is Completed	77,78	35.06
% Subject Time	0.99	0.01

Table 5. Divisibution of Descention Time for TOD, American Court All Orbitals

W ang notation was generated in 82.75% of all attempts and was generated carrecely in 57,25% of all attempts (Table 6). Figure 45 shows the results of the evaluation by


50




97 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197		V 8
	AVERAGE	STD, DEVIATION
# of attempts	1.67	9.65
Time for Pre-Processing	0.52	0.10
Time to Construct Categories	80,68	67, 63
Time for Category Correction	103.21	126.45
Time for Final Processing	0,42	9.19
Total Time	184,81	192,11
Percent Table is Completed	77,78	35.06
% Subject Time	0.99	9,01

Array Models for Structural Analysis

Cells are larger left and top

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 6

"Canonicalization"

			Mark						
Year	Term	As	Assignments				Examin	ations	Grade
		Ass1	Ass2	A	ss3	Μ	lidterm	Final	Orade
	Winter	85	80	7	'5		60	75	75
1991	Spring	80	65	7	'5		60	70	70
	Fall	80	85	7	'5		55	80	75
	Winter	85	80	7	0		70	75	75
1992	Spring	80	80	7	0		70	75	75
	Fall	75	70	6	55		60	80	70
?	?	Mark	M	lark	Mar	·k	Mark	Mark	Mark
?	?	Ass't	Α	.ss't	Ass	't	Exams	Exams	Grade
?	?	Ass 1	A	ss 2	Ass	3	Midtern	i Final	Grade
1991	Wint	er 85		80	75		60	75	75
1991	Sprin	ng 80		65	75		60	70	70
1991	Fall	80		85	75		55	80	75
1992	Wint	er 85		80	70		70	75	75
1992	Sprin	ig 80		80	70		70	75	75
1992	Fall	75	,	70	65		60	80	70

Asymmetry

	MA	LE	FEMALE		
	WEIGHT	HEIGHT	WEIGHT	HEIGHT	
AGE					
5					
10					
15					

		MA	LE	FEMALE		
		WEIGHT	HEIGHT	WEIGHT	HEIGHT	
AGE	5					
	10					
	15					

Example of low-level analysis

Table I

fleck	gonsity (ld/gg)	hepth (gd)
burlam	1.2	120
falder	2.3	230
multon	2.5	350

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 9

Structural Analysis

XXXXX	XXXXXXX XXXX	XXXXX XXX
XXXXX	XXX	XXX
XXXXX	XXX	XXX
XXXXX	XXX	XXX

Table Transcription

fleck	gonsity (ld/gg)	hepth (gd)
burlam	1.2	120
falder	2.3	230
multon	2.5	350

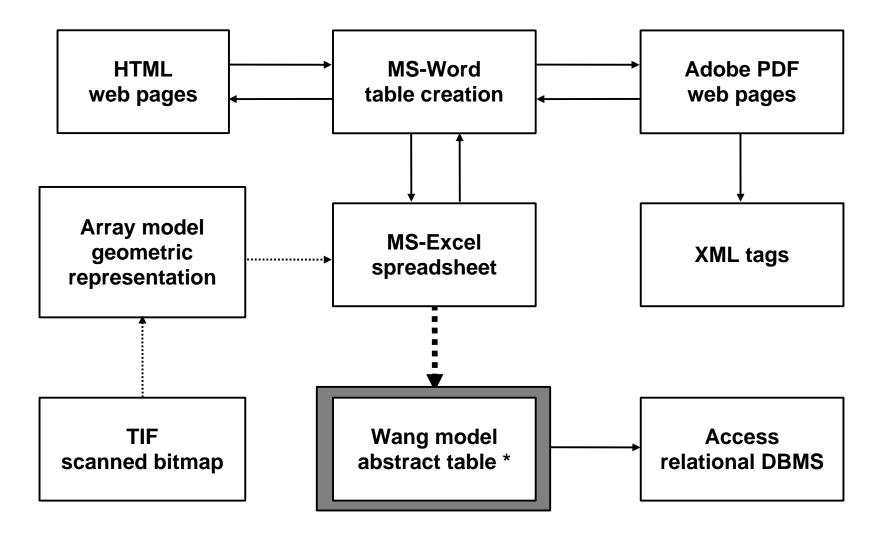

Another relevant table

Table II

goldam	1.2 ld/gg	120 gd
falder	2.3 ld/gg	230 gd
elmer	2.5 ld/gg	350 gd

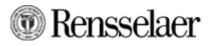
Table transcription is not sufficient for combining information from Table I and Table II. But it can <u>often</u> be accomplished with current commercial software.

* Tabular abstraction, editing, and formatting, Xinxin Wang, PhD thesis, University of Waterloo, 1996.

Table as rendered by Microsoft Internet Explorer 6.0:

a c	IA - 1	The Wo	orld Fact	book	- Арре	endix	D - Mie	crosoft I 📃 🗖	\mathbf{X}	
∦ A <u>d</u> e	Address 🕘 http://www.cia.gov/cia/publications/factbook/appendix/appendix-d.ht 🔽 🔁 Go 🛛 🦧									
Eil	le <u>E</u> dit	: <u>V</u> iew	F <u>a</u> vorites <u>T</u> o	ools <u>H</u>	elp					
	(Back	• For	Nard S	× top	⊘ Refresh	Horr	ne S	pearch [®]	» (S	
								and used by the Internet -level domains (ccTLDs).	^	
		Entity	FIPS 10-4		ISO 316	6	Internet	Comment		
	Af	ghanistan	AF	AF	AFG	004	.af			
	AI	bania	AL	AL	ALB	008	.al		=	
	Al	geria	AG	DZ	DZA	012	.dz			
		nerican Imoa	AQ	AS	ASM	016	.as			

Table copied into Microsoft Word 10.2:


Entity	FIPS 10- 4		ISO 3166		Internet	Comment
Afghanistan	AF	AF	AFG	004	.af	
Albania	AL	AL	ALB	008	.al	
Algeria	AG	DZ	DZA	012	.dz	
American Samoa	AQ	AS	ASM	016	.as	

Not as an image or graphics!

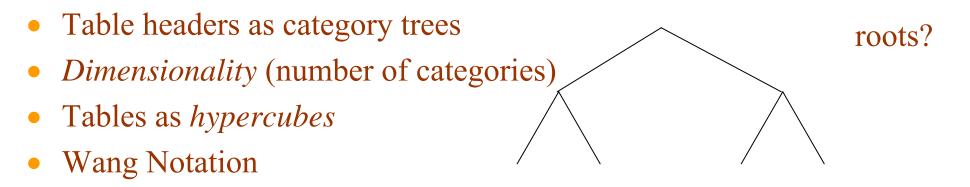
Table copied from Microsoft Word into Excel 10.2:

🛚 Mic	rosoft Exce	l - Book1						X
🖳 Eile	e <u>E</u> dit ⊻iew <u>I</u> n	isert F <u>o</u> rmat <u>T</u> o	ols <u>D</u> ata <u>W</u> indo	w <u>H</u> elp Ado <u>b</u> e I	PDF	screen dump	· –	₽×
		Ari					(루 (루 🗐 • 🕭 • 🖉	<u>A</u> - ,
0 🗳		* 🖻 🛍 • 🛷 🗠	- Ci + 🍓 E - 🛓	Z↓ 10 200%	- Q 🚬 🛵 🕍	12 Ca Ca 12 9	k (2	» •
E1	▼ fx	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	A	В	С	D	E	F	G	_
1								
2	Entity	FIPS 10-4		ISO 3166		Internet	Comment	
3	Afghanist an	AF	AF	AFG	4	.af		
4	Albania	AL	AL	ALB	8	.al		
5	Algeria	AG	DZ	DZA	12	.dz		
6	American Samoa	AQ	AS	ASM	16	.as		
7								
8								
9	▶ Sheet1 She	eet2 / Sheet3 /			•			► ►
	AutoShapes -		4 🗘 🖪 🔜 🔌 -	∡ · ▲ · ≡ ≡ Ξ	• • •			
Ready								1

ASCII version of the table (as rendered by MS Word):

團 (CIA table	e from tab del	limited t	ext - M	icrosoft	Word								
÷ Ei	le <u>E</u> dit	<u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools	T <u>a</u> ble	<u>W</u> indow	<u>H</u> elp					Type a c	question for help	• ×
: 🗅	📔 🔒	🔒 🔒 🛃	🛕 💞	il X	h 🔓	ا- (" ا	😫 🔲	125%	- 🕜 🕮	<u>R</u> ead	Courier New	- 10 - <i>1</i>	r <u>u</u> ∣≣	•• ₹
	· · · 2	{··· · · · ·	• • 1		1 · ·	· 2 · ·		• 3		· · 4	••••••		• • 6 • •	• • •
· · · ·		Entity Afghanis Albania Algeria American		a	FIPS AF AL AG AQ	10-4	ISO AF AL DZ AS	316	6 AFG ALB DZA ASM	4 8 12 16	Internet .af .al .dz .as	Coi	mment	
-														
														± o
·		-												Ŧ
	3 🗉 🗇 🛛													>
Pag	je 1	Sec 1	1/1 /	٨t	Ln	Col	REC TI	RK EXT	OVR 🛄	K				

Table rendered from a PDF file:


			Standards of comparison	
Age	BLS	Actual popu	ulation and—	Census population estimate and—
	projection	BLS participation rate	1988 participation rate	1988 participation rate
Gender, age Ien, age Vomen, age	1.83 1.63 1.91	2.02 .91 2.86	2.24 .62 2.4	2.32 1.37 1.32

Can be saved at .rtf

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 18

Table Interpretation (row/col header $\leftarrow \rightarrow$ content cell relations)

		INCO	OME	EXPENSE		
This is a 2-D		SERVICES	PRODUCTS	SALARIES	TAXES	
table	2008	8,000,000	12,500,000	4,000,000	1,700,000	
	2009	8,800,000	14,000,000	4,500,000	1,800,000	

Any combination of paths through the category trees must lead to a delta cell; Each delta cell can be reached through a combination of catergory paths.

Table Interpretation

(st	ub)	virtual column heade ("characteristic")		
		gonsity (ld/gg)	hepth (gd)	
	burlam	1.2	120	
fleck	falder	2.3	230	
	multon	2.5	350	

"Layout-invariant" Wang Notation

 $C = (fleck, \{(bulram, \phi), (falder, \phi), (multon, \phi)\}),$ Categories (characteristic, $\{(gonsity, \phi), (hepth, \phi)\}$).

Header cell mappings

• • •

 $(\{\text{fleck.burlam, characteristic.gonsity}\}) \rightarrow 1.2$ $(\{\text{fleck.falder, characteristic.gonsity}\}) \rightarrow 2.3$

 $(\{\text{fleck.multon, characteristic.hepth}\}) \rightarrow 350$

Essentially a set of category trees with common leaf cells – requires modification for table interpretation.

Table III

			fleck				
		burlam	falder	n	nulton		
virtual	gonsity (ld/cg)	1.2	2.3		2.5		
row header	hepth (ld/cg)	120	230		350	Table I	
Same Wa	ang Notatio	on as Table	e I.		fleck	gonsity (ld/cg)	hepth (cd)
					burlam	1.2	120
					falder	2.3	230
tes on Contemporary gy • June 2008 • S					multon	2.5	350

Well-Formed Tables (WFT)

							<u> </u>
D1	C1	B1	A1	delta	C1	B1	A1
D1	C1	B1	A2	delta	C1	B1	A1
D1	C1	B 2	A1	delta	C1	B1	A1
D1	C1	B 2	A2	delta	C1	B1	A1
D1	C1	B3	A1	delta	C1	B1	A1
D1	C1	B3	A2	delta	C1	B1	A1
D1	C2	B1	A1	delta	C2	B1	A1
D1	C2	B1	A2	delta	C2	B1	A1
D1	C2	B 2	A1	delta	C2	B 2	A1
D1	C2	B 2	A2	delta	C2	B 2	A1
D1	C2	B3	A1	delta	C2	B 2	A1
D1	C2	B3	A2	delta	C2	B 2	A1
D1	C3	B1	A1	delta	C3	B 2	A2
D1	C3	B1	A2	delta	C3	B 2	A2
D1	C3	B 2	A1	delta	C3	B 2	A2
D1	C3	B 2	A2	delta	C3	B 2	A2
D1	C3	B3	A1	delta	C3	B3	A2
D1	C3	B3	A2	delta	C3	B3	A2
D1	C4	B1	A1	delta	C4	B3	A2
D1	C4	B1	A2	delta	C4	B3	A2
D1	C4	B 2	A1	delta	C4	B3	A2
D1	C4	B 2	A2	delta	C4	B3	A2
D1	C4	B3	A1	delta	C4	B3	A2
D1	C4	B3	A2	delta	C4	B3	A2
				#items	4	3	2
every	row	unique	e	# repetitions	6	8	12
e ver y	1011	anyu	~	# list rows	24	24	24

D1	C1	B1	A1
D1	C1	B1	A2
D1	C1	B2	A1
D1	C1	B2	A2
D1	C1	B3	A1
D1	C1	B4	A2
D1	C2	B1	A1
D1	C2	B1	A2
D1	C2	B2	A1
D1	C2	B2	A2
D1	C2	B3	A1
D1	C2	B3	A2
D1	C3	B1	A1
D1	C3	B1	A2
D1	C3	B2	A1
D1	C3	B2	A2
D1	C3	B3	A1
D1	C3	B3	A2
D1	C4	B1	A1
D1	C4	B1	A2
D1	C4	B2	A1
D1	C4	B2	A2
D1	C4	B3	A1
D1	C4	B3	A2

every row unique

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 23 row headers and column analyzed separately

6-D table

Table 5. Average temperatures, 1900/2000, degrees centigrade

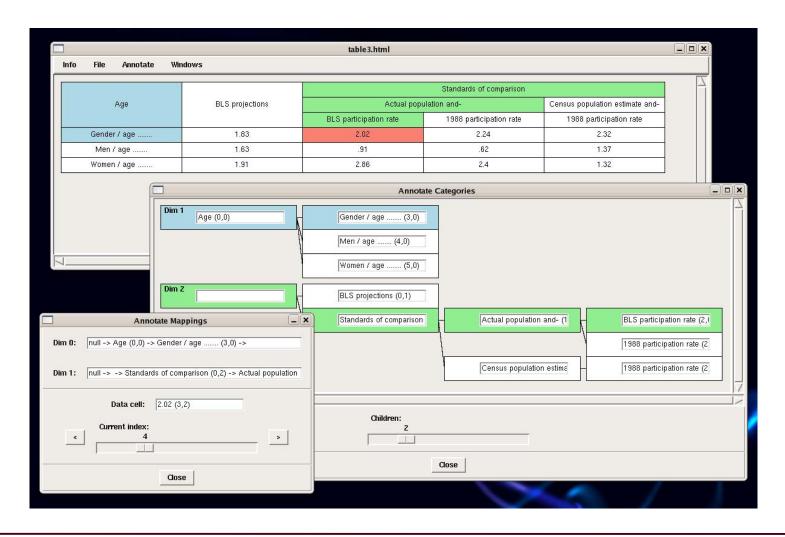
						-				
	HEMISPHE	RE	S	s	S	S	Ν	Ν	Ν	Ν
	LATITUDE		10°	10°	20°	20°	10°	10°	20°	20°
	WATER/LAI	ND	water	land	water	land	water	land	water	land
YEAR	SEASON	TIME								
1900	summer	noon	32	35	37	39	30	33	35	38
1900	summer	midnight	28	32	33	35	26	29	30	35
1900	winter	noon	21	25	28	28	21	24	25	26
1900	winter	midnight	18	22	24	26	17	20	17	22
2000	summer	noon	33	37	37	40	30	33	36	39
2000	summer	midnight	29	32	34	35	26	29	30	35
2000	winter	noon	21	25	27	28	22	23	24	26
2000	winter	midnight	20	22	25	26	18	21	18	22
	YEAR 1900 1900 1900 1900 2000 2000 2000	LATITUDE WATER/LAI YEAR SEASON 1900 summer 1900 summer 1900 winter 1900 winter 2000 summer 2000 summer 2000 summer	WATER/LAND YEAR SEASON TIME 1900 summer midnight 1900 winter moon 1900 winter midnight 2000 summer moon 2000 summer midnight 2000 winter noon	LATITUDE10°WATER/LANDwaterYEARSEASONTIME1900summernoon321900summermidnight281900winternoon211900wintermidnight182000summernoon332000summermidnight292000winternoon21	LATITUDE10°10°WATER/LANDwaterIandYEARSEASONTIME1900summernoon1900summermidnight1900winternoon1900winternoon1900winternoon2000summermidnight2000summernoon330372000summernoon2100252000winternoon2100252000winter	LATITUDE 10° 10° 20° WATER/LAND water Iand water YEAR SEASON TIME 32 35 37 1900 summer noon 32 35 37 1900 summer midnight 28 32 33 1900 winter noon 21 25 28 1900 winter midnight 18 22 24 2000 summer noon 33 37 37 2000 summer noon 33 37 37 2000 summer noon 33 37 37 2000 summer noon 23 34 34 2000 winter noon 21 25 27	LATITUDE 10° 10° 20° 20° WATER/LAND water Iand water Iand YEAR SEASON TIME 32 35 37 39 1900 summer noon 32 35 37 39 1900 summer midnight 28 32 33 35 1900 winter noon 21 25 28 28 1900 winter midnight 18 22 24 26 2000 summer noon 33 37 37 40 2000 summer noon 23 34 35 2000 summer midnight 29 32 34 35 2000 winter noon 21 25 27 28	LATITUDE 10° 10° 20° 20° 10	LATITUDE 10° 10° 20° 20° 10° 10° 10° WATER/LAND water Iand YEAR SEASON TIME 10° 10° 30 33 33 33 33 33 33 33 33 33 33 35 26 29 24 26 17 20 200 30 33<	LATITUDE 10° 10° 20° 20° 10° 10° 20° WATER/LAND water Iand water 1900 summer noon 32 35 37 39 30 33 35 1900 winter noon 21 25 28 28 21 24 25 1900 winter midnight 18 22 24 26 17 20 17 2000 summer noon 33 37 37 40<

6-D table (cont'd)

		LATITUDE		10°	10°	20°	20°
		WATER/LA	ND	water	land	water	land
HEMI-							
SPHERE	YEAR	SEASON	TIME				
s	1900	summer	noon	32	35	37	39
s	1900	summer	midnight	28	32	33	35
S	1900	winter	noon	21	25	28	28
s	1900	winter	midnight	18	22	24	26
S	2000	summer	noon	33	37	37	40
S	2000	summer	midnight	29	32	34	35
s	2000	winter	noon	21	25	27	28
S	2000	winter	midnight	20	22	25	26
N	1900	summer	noon	30	33	35	38
N	1900	summer	midnight	26	29	30	35
Ν	1900	winter	noon	21	24	25	26
Ν	1900	winter	midnight	17	20	17	22
Ν	2000	summer	noon	30	33	36	39
Ν	2000	summer	midnight	26	29	30	35
Ν	2000	winter	noon	22	23	24	26
Ν	2000	winter	midnight	18	21	18	22

Table 5. Average temperatures, North and South himisphere, degrees centigrade

(same data, different emphasis)



On Human Interaction

- Complete automation is still out of reach.
- Some HCI is unavoidable, sooner or later.
- Sooner is better than later.
- Discovering errors later increases negative consequences (and potential for embarrassment).
- Partial automation + interaction is more accurate than machine alone and faster than unaided human.
- *TabbyCat* (for "table categorizer") and *WNT* (Wang Notation Tool) are prototype interactive tools for supporting Wang-style markup.

Snapshot of *TabbyCat* for creating Wang-style table mark-up:

[Lopresti]

TabbyCat:

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 28

WNT:

				M	ark		
			Assignments	l	Exami	intions	
Year	Term	Ass1	Ass2	Ass3	Midterm	Final	Grade
	Winter	85	80	75	60	75	75
	Spring	80	65	75	60	70	70
1991	Fail	80	85	75	55	- 30	75
	Winter	85	80	70	70	75	75
	Spring	20	80	70	70	75	75
1992	Fall	75	70	- 65	60	80	70

WNT (verification):

	ert Tools Desktop V	Window Help					
Year	Term	Mark	Mark	Mark	Mark	Mark	Mark
Year	Term	Assignments	Assignments	Assignments	Examinations	Examinations	Grade
Year	Term	Ass1	Ass2	Ass3	Midterm	Final	Grade
1991	Winter	85	80	75	60	75	75
1991	Spring	80	65	75	60	70	70
1991	Fall	80	85	75	55	80	75
1992	Winter	85	80	70	70	75	75
1992	Spring	80	80	70	70	75	75
1992	Fall	75	70	65	60	80	70

Figure 39: Verifying Delta Cell (1)

WNT (verification):

							Figure 2
							File Edit View Insert
					2 🛛 📰 💷 🖸	Q Q (?) @ 4	
Mark	Mark	Mark	Mark	Mark	Mark	Term	Year
Grade	Examinations	Examinations	Assignments	Assignments	Assignments	Term	Year
Grade	Final	Midterm	Ass3	Ass2	Ass1	Term	Year
75	75	60	75	80	85	Winter	1991
70	70	60	75	65	80	Spring	1991
75	80	55	75	85	80	Fail	1991
75	75	70	70	80	85	Winter	1992
75	75	70	70	80	80	Spring	1992
70	80	60	65	70	75	Fall	1992

Figure 41: Verifying Category Cell (1)

Table Understanding

With domain knowledge? Ontology??

- Currently multon is the best value for rapitting velters. It is about 25% better than burlam or falder, which are nearly the same.
- Check Table II to see whether elmer is even better.

A Table Ontology

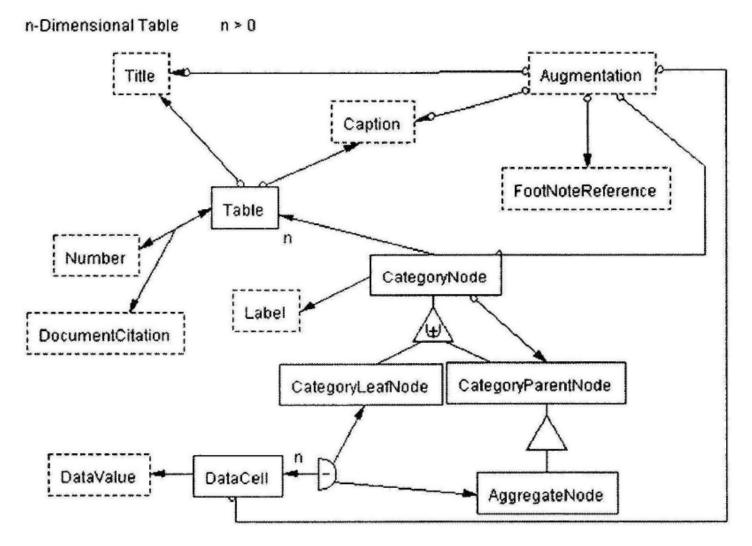


Figure 36: Ontology of a General Table

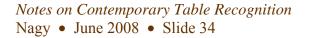
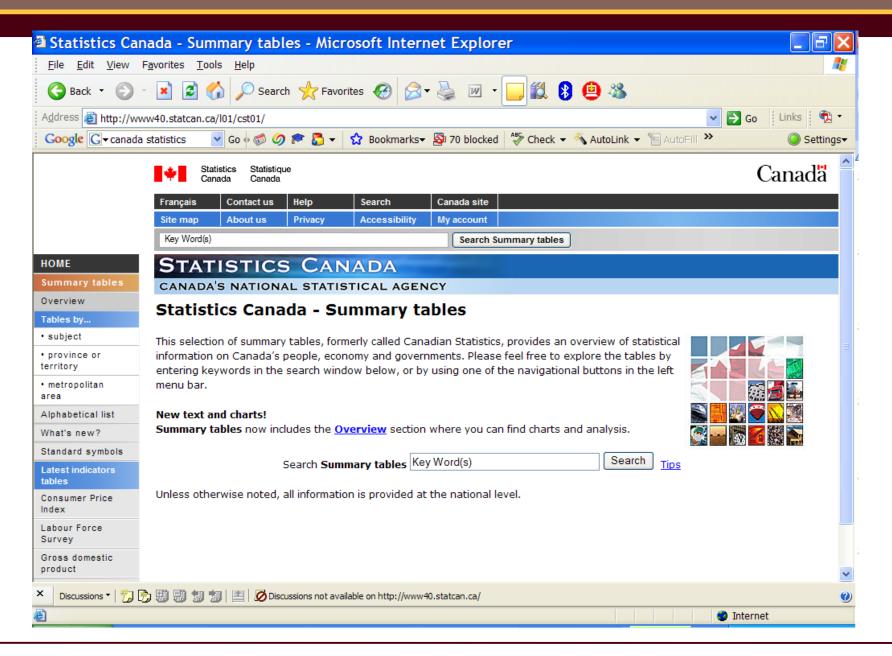

TANGO

Table Analysis for Generating Ontologies (with D.W. Embley and D. Lonsdale at BYU) http://tango.byu.edu/

- Interpret raw tables
- Converts each table into a mini-ontology
- Integrate mini-ontologies into growing ontologies that represent domain concepts, relationships, and constraints in the already processed tables.


Domains:

obituaries, census records, automobile ads, genetics, geo-politics

Our current source of tables

Perhaps next?

indiastat.com: I	Revealing india Statistically! - Information and Facts About India - Microsoft Internet 🔳	- X
<u>F</u> ile <u>E</u> dit <u>V</u> iew F <u>a</u> vo	orites <u>T</u> ools <u>H</u> elp	1
🕒 Back 🝷 🕥 🐇 🚦	🔺 😰 🏠 🔎 Search 🤸 Favorites 🤣 🔗 - 嫨 🕅 - 🕞 🎉 🚯 😐 🖏	
Address 🚳 http://www.indiastat.com/		
🖸 Google 💽 🗸 Statistics India 💿 Go 🖗 🚳 🥟 🎓 💁 🗸 🟠 Bookmarks 🛪 👰 70 blocked 🖓 Check 🗸 🗞 AutoLink 🗸 🔚 AutoFill 🌺 🔘 Settings		
indi	A COM INDIA STATISTICALLY	^
Home Membership In		
Data Search Go	पड़ी हिटर्नेन्ट This week, 161 tables have been added	
Statistical Information 🕇	User Name Password Login 1,133,493,426	
Administrative Setup	Use of this web site constitutes acceptance of the 'Terms of Use and Disclaimer' WORLD	
Agriculture Banks and Financial Institutions Civil Supplies and	Indiastat.com is the authentic source for Indian statistics collected from the best sources for information and statistics on India. Within huge database of www.indiastat.com you can easily suff through half-a-million pages that contain socio-economic statistical data and useful information on India.	
Consumer Affairs Companies Cooperatives Crime and Law	At the site, you will have an easy access to statistics on health in India, figures on higher education in India, agricultural and industrial production information, economic statistics on India and tourism related data et al. Not only this, you will also get information on sectors like bank and financial institutions, companies, co-operatives, crime and law, population, foreign trade, labour and workforce, housing, media, power, transport, urban-rural settlements and economy in India and many more.	
Demographics Economy Education	Data and statistics about India available on www.indiastat.com can easily be downloaded in MS- Excel/ HTML formats by institutional and corporate users.	
Electoral Data Environment and Pollution Foreign Trade Forest and Wildlife	The available data and statistics on India cater to academicians, researchers and professionals in marketing, finance, socio-economic studies e.g. social sciences, economic research, political sciences, law and host of other disciplines as they will find www.indiastat.com an extremely useful online resource for their India centric information needs. It is a paid site accessible only to registered members.	
Geographical Data	Ads by Google GDP India India Girl India Energy India Cement	~
X Discussions * 100 minute 100 minute		0
🔊 Error on page. 🌑 👻 🧶 Internet		

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 36 This week, **161** tables have been added...

Current Status

- Most previous work (>100 papers) on table layout analysis and transcription.
- Easier for tables in symbolic form (.doc, .xls, .pdf, html) than for scanned bitmaps.
- Most methods process only one table at a time.
- Commercial software already does it fairly well.
- Interaction required in many cases.
- The next step, in our view, is table interpretation.
- Table understanding is waiting in the wings.

Why is table processing so difficult?

- Tables are intended for human consumption
- Often the *content* of the table must be inferred from external knowledge
- The roots of category trees are often missing
- Tables are intrinsically asymmetrical
- Tables are often combined or split to suit layout constraints
- Understanding tables requires domain knowledge
- Some authors consider understanding tables harder understanding natural language
- Tables are not forms they are meant to disseminate information, whereas forms are designed to collect them,
- Web tables are often nested
- Web tables can be dynamic

Next: some examples of tables from

D. Lopresti and G. Nagy, "<u>Automated table processing: an (opinionated) survey</u>," *Proceedings of IAPR Workshop on Graphics Recognition (GREC99)*, pp. 109-134, Jaipur, India, September 1999.

D. Lopresti and G. Nagy, "<u>A Tabular Survey of Table Processing</u>," *Graphics Recognition -- Recent Advances*, A. K. Chhabra and D. Dori, Eds., Springer Lecture Notes in Computer Science #1941, pp. 93-120, 2000.

J. Hu, R. Kashi, D. Lopresti, G. Wilfong, and G. Nagy, <u>"Why table ground-truthing is hard,"</u> *Proceedings of International Conference on Document Analysis and Recognition*, pp. 129-133, Seattle, WA, IEEE Computer Society Press, September 2001.

G. Nagy and D. Lopresti, "<u>Issues in ground-truthing graphic documents</u>," *Lecture Notes in Computer Science*, pp. 46-66, Springer, 2002 (selected papers from the Fourth International Workshop on Graphics Recognition).

S. Veeramachaneni and G. Nagy, "<u>Style context with second order statistics</u>," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 27, #1, pp. 14-22, January 2005.

D. Lopresti, D.W. Embley, M. Hurst, and G. Nagy, "<u>Table Processing Paradigms: A Research Survey</u>," *International Journal of Document Analysis and Recogniti*on, vol 8, no. 2-3, pp. 66-86, Springer, June 2006.

Table of tabular Q & A

Why tables?	Prevalent means of communicating structured data Content may include words, numbers, formulas, even graphics Metadata represented by alignment and rulings Adapted to computerized composition Underlying paradigm for spreadsheets and relational databases Bridge between textual and graphic representations
What is a table?	2-D cell assembly for presenting information Regular, repetitive structure along at least one axis [41] Datatype determined by either horizontal or vertical index
What is a form?	Isothetic layout for collecting information One-to-one mapping between indices and data No implication of regularity [41]
What is table analysis?	Information extraction follows table detection and localization Geometric analysis to isolate cell contents Table structure determined simultaneously If needed, OCR translates cells and headers into symbolic form Interpretation requires understanding context
Rationale for this study	Importance of converting tables from one medium to another Rapid growth of tables in various digital formats Desirability of medium-independent query algorithms Interdependence of table composition and interpretation Advent of new applications that require table interpretation Need for research to address neglected table topics

Table of table analysis methods

	A BRIEF	TABLE 1 SURVEY OF GEOMETRIC PAGE-LAYO	OUT ANALYSIS METHODS
Author	Year	Approach	Features
Wahl et al. [11]	1982	Run length smoothing	Time consuming and skew sensitive
Nagy et al. [12]	1984	X-Y tree cut	Skew sensitive; Assumes rectangular blocks
Wang et al. [13]	1989	Run length smoothing and recursive X-Y cut	Newspaper analysis; Sensitive to skew
Fujisawa et al. [14]	1990	Top-down	Japanese patent documents
Fisher et al. [15]	1990	Run length smoothing and connected component extraction	Identifies text and nontext zones; Skew sensitive
Pavlidis et al. [16]	1991	Column oriented projection	Identifies text and nontext regions; Accommodates mod- erate skew
Baird [17]	1992	Global-to-local strategy	Accommodates different languages; Skew correction;
Jain et al. [18]	1992	Gabor filtering	Multichannel texture features from gray-scale images; Time consuming
Lebourgeois et al. [19]	1992	8×3 window filtering	Unconstrained documents; Skew not considered
Pavlidis et al. [20]	1992	Horizontal smearing and bottom-up	Accommodates small skew; Fixed parameters
Akindele et al. [21]	1993	White space tracing	Polygonal blocks; Only text zones considered
Amamoto et al. [22]	1993	Morphological operation on white space	Identifies horizontal and vertical writing; Skew not consid- ered
Ittner et al. [23]	1993	White space and minimum spanning tree	Language and orientation free; Large computation
O'Gorman [24]	1993	k-nearest neighbor clustering	Can handle arbitrary orientation with high accuracy; Large computation
Antonacopoulos et al. [25], [26]	1994	Contours from white tiles	Finds nonrectangular and skewed regions; Error in clas- sifying large fonts
Zlatopolsky [27]	1994	Connected component extraction	Multiple skewed document; Sensitive parameters

No.

1 2 3

4 5

6

7

8

13

14

15

16

17

18

19

20 21

22

23

24

25

Doermann [28]

Drivas et al. [29]

Sylwester et al. [31]

Jain et al. [33], [34]

Yamashita et al. [37]

Tang et al. [32]

Kise et al. [35]

Liu et al. [36]

Ha et al. [30]

1995

1995

1995

1995

1995

1996

1996

1996

1996

Wavelet multiscale analysis

tion profile

trainable X-Y cut

Modified fractal signature

Masks and neural network

Adaptive top-down and bottom-up

Run length smearing and adaptive

Background thinning

thresholding

Connected component grouping

Connected component-based projec-

Segments nonblock-nested pages; Gray-scale image

Faster than pixel-based projection profile; Skew sensitive

Handles documents with high geometrical complexity; Gray-scale image processing; Time consuming

Handles documents with multiple languages; Gray-scale

Skewed nonrectangular layout; Bounding box is not very

Less sensitive to font size and spacing; Skew free

Skew correction with a time consuming algorithm

processing; High computational complexity

Relatively robust; Skew and noise free

image processing; Time consuming

Nonrectangular regions; Skew free

tight

NAME	ADDRESS	TELNO				
First Last	# Street City State Zip	Area-Code # Extension				

Small table

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 43

A tria 1 Jum	1	2 1 Aug	table 26 2 1 Sep 1917	26 2 1	42 26 2 1 Hov	2	2 6 2 1	,	2 6 2 1							80 30 33 6 27	29 37 90 92 83 83 83 83 83 83 83 83 83 83 83 83 83	36 91 79 87 92 87 92 85 85	40 39 88 81 78 36 91 79 76 92 92 87 80 80 80 30	34 86 84 39 86 81 75 85 91 79 29 37	8 38 31 46 88 87 88 81 75 61 97 89 79 99 88 88 80 85 87 85 87 99 88 88 80 85 87 85 87 99 89 88 80 85 80 85 80 85 80 80 80 80 80 80 80 80 80 80 80 80 80	
<i>n Contemp</i> June 2008			gnition		- <u>1</u> Jun	1 Jul		26 2 1 Sep	26 2 1 0 Oct	42 26 2 1 Nov	41 42 26 2 1 Dec	41 42 26 2 1 Jan	52 41 26 2 1 Feb	3 5 32 41 42 26 2 1 Mar	77 5 32 41 42 26 2 1 Apr	4 28 35 82 77 3 5 32 41 42 26 2 1 May	4 28 35 82 77 3 5 32 41 26 2 1	4 28 35 82 77 5 5 22 41 42 26 2 1	4 28 35 82 77 3 5 32 41 42 26 2 1	4 28 35 82 77 3 5 32 41 42 26 2 1	4 28 35 82 77 3 52 41 26 2 1	66

selaer

At the limit of tablehood

$= \frac{30^{\circ}}{100} + \frac{40^{\circ}}{100} + \frac{50^{\circ}}{100} + \frac{15}{45} + \frac{96}{40} + \frac{15}{45} + \frac{96}{40} + \frac{15}{50} + \frac{96}{40} + \frac{15}{50} + \frac{96}{40} + \frac{15}{50} + \frac{96}{40} + \frac{15}{50} + \frac{96}{40} + \frac{15}{253} + \frac{96}{253} + \frac{15}{20} + \frac{96}{20} + \frac{15}{253} + \frac{96}{252} + \frac{15}{20} + \frac{96}{22} + \frac{15}{20} + \frac{96}{20} + \frac{15}{20} + $				
$-30^{\circ} - \frac{30}{35} \frac{574}{31} \frac{35}{35} \frac{5100}{100} + 40 \frac{46}{31} \frac{45}{4111} \frac{4115}{50} \frac{50}{800} \frac{45}{50} \frac{55}{2007} \frac{20}{90} \frac{20}{50} \frac{20}{50$	30°	40°	50°	60°
$-20^{\circ} - \frac{30}{265} \frac{5271}{12} \frac{13}{12} \frac{4810}{13} - \frac{40}{17} \frac{70}{17} \frac{45}{12} \frac{27}{14} \frac{43}{12} \frac{3323}{12} - \frac{50}{12} \frac{50}{12} \frac{27}{14} \frac{27}{12} \frac{27}{13} \frac{13}{12} \frac{13}{14} \frac{177}{17} \frac{7004}{17} \frac{178}{1666} \frac{1666}{213} \frac{13}{13} \frac{1366}{13} \frac{25}{10} \frac{70}{10} \frac{25}{12} \frac{90}{11} \frac{25}{12} \frac{13}{11} \frac{13}{12} \frac{14}{17} \frac{25}{12} \frac{90}{16} \frac{25}{12} \frac{90}{17} \frac{25}{12} \frac{90}{10} \frac{25}{12} \frac{90}{12} \frac{25}{12} \frac{90}{10} \frac{25}{12} \frac{90}{12} $	30 55.74 35 0.58 0.90 0.6 23.16 06.90 19.32 31.17 3	51.00 40 46.13 5 0.85 0.72 0.79 1 10.81 16.19 12.99 6.43 41.72	45 41.15 50 36.04 0.78 0.73 0.84 0.67 13.54 15.54 11.24 18.62 47.06 52.47	55 30.79 60 25.33 0.89 0.59 0.94 0.52 9.19 22.50 7.29 27.65 58.00 63.71
$-30^{\circ} - \frac{30^{\circ} + 9^{\circ}}{32.58} + \frac{35^{\circ} + 45^{\circ}}{329} + \frac{30^{\circ} + 57^{\circ}}{99} + \frac{35^{\circ}}{99} + 35$	- 20° - 0.64 0.92 28.55 12.13 2	35 48.10 40 43.27 0.71 0.87 0.77 0.82 3.93 14.77 20.04 17.7	45 38.23 50 3 0.84 0.75 0.89 8 16.66 21.35 13.66	2.98 55 27.42 0.68 0.94 0.61 25.70 10.88 31.32
$-30^{\circ} - \frac{30}{92} + \frac{45}{10} - \frac{35}{10} + \frac{45}{10} - \frac{35}{10} + \frac{45}{100} - \frac{36}{100} + \frac{45}{100} - \frac{30}{100} + \frac{35}{100} $	30 49.11 0.72 0.96 32.58 15.62	35 44.57 40 0.79 0.90 0.8 27.34 19.06 22.7	39.71 45 34.53 35 0.85 0.91 0.78 9 23.03 18.72 27.80	50 28.97 0.97 0.71 14.96 33.76
$= \frac{30 - 40 \cdot 45}{0.93 + 100} = \frac{40 - 30 \cdot 52}{105 \cdot 0.94}$ $= \frac{40 \cdot 76}{30 \cdot 35 \cdot 47} = \frac{40 \cdot 76}{35 \cdot 30 \cdot 52}$ $= \frac{40 \cdot 76}{30 \cdot 35 \cdot 47} = \frac{40 \cdot 76}{35 \cdot 30 \cdot 52}$ $= \frac{40 \cdot 76}{30 \cdot 35 \cdot 47} = \frac{40 \cdot 76}{35 \cdot 30 \cdot 52}$ $= \frac{40 \cdot 76}{30 \cdot 35 \cdot 47} = \frac{40 \cdot 76}{35 \cdot 30 \cdot 52}$ $= \frac{40 \cdot 76}{30 \cdot 35 \cdot 47} = \frac{40 \cdot 76}{35 \cdot 30 \cdot 52}$ $= \frac{40 \cdot 76}{30 \cdot 35 \cdot 48 \cdot 48} = \frac{40 \cdot 75}{48 \cdot 48}$ $= \frac{40 \cdot 75}{48 \cdot 48} = \frac{40 \cdot 76}{48 \cdot 48}$ $= \frac{40 \cdot 75}{48 \cdot 48 \cdot 48} = \frac{45 \cdot 70}{30 \cdot 30}$ $= \frac{100 \cdot 113}{1.12 \cdot 107}$ $= \frac{100 \cdot 113}{36 \cdot 72 \cdot 228 \cdot 92} = \frac{29 \cdot 64 \cdot 35 \cdot 80}{48 \cdot 48 \cdot 48 \cdot 48 \cdot 48}$ $= \frac{45 \cdot 70}{30 \cdot 30}$ $= \frac{100 \cdot 113}{1.12 \cdot 107}$ $= \frac{100 \cdot 113}{36 \cdot 72 \cdot 228 \cdot 92} = \frac{100 \cdot 113}{48 \cdot 48 \cdot 48 \cdot 48 \cdot 48 \cdot 48}$ $= \frac{45 \cdot 70}{30 \cdot 30}$ $= \frac{100 \cdot 113}{1.12 \cdot 107}$ $= \frac{100 \cdot 113}{36 \cdot 72 \cdot 228 \cdot 92}$ $= \frac{100 \cdot 113}{1.12 \cdot 107}$ $= \frac{100 \cdot 113}{1.12 \cdot 100}$ $= \frac{100 \cdot 113}{1.12 \cdot 100}$ $= \frac{100 \cdot 100}{1.13 \cdot 1$	- 30° - 0.92 1 35.27 1	5 35 40.45 .00 0.88 0.95 9.47 29.49 23.85	40 35.48 45 0.94 0.88 i.00 29.30 28.98 19.47	30 0.82 35.26
$-40^{\circ} - 30^{\circ} 35.47 - 35.3052 \\ 1.06^{\circ} 1.35.47 - 36.3052 \\ 1.06^{\circ} 1.32 - 107 \\ 36.32 - 28.98 - 2964 - 35.98 \\ 40.75 - 48.48 \\ -50^{\circ} 36.70 \\ 1.22 - 1.22 \\ 35.26 - 35.26 \\ 45 \\ -50^{\circ}$	3	30 40.45 35 3 0.93 1.06 0.99 6.66 23.85 30.32	5.79 40 30.52 1.00 1.05 0.94 29.36 24.38 35.98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 40° -	30 35.47 1.06 1.13 36.72 28.98	35 30.52 1.12 1.07 29.64 35.98	
Top ellipse Foreshortening of vertical Left hand ellipse 25° .90 50° 28.97° Left foreshortening 0.97 0.71 — Right foreshortening 14.96° 33.76° 57.70° Left dihedral angle dihedral angle Angle of		30 1.2 35.26	30 2 1.22 35.26	
Left hand ellipse Left foreshortening Left dihedral angle Angle of	- 50° -	Top ellipse	Foreshortening	7
ellipse 25° .90 50° 28.97° Left foreshortening 14.96° 33.76° 57.70° Left Right dihedral angle Angle of	1	Top empse		5
Left foreshortening		pse	ellip	
dihedral angle dihedral angle Angle of	Left foreshor	tening 0.97 14.96°	0.71 Right 33.76°	foreshortening
Angle of	dihedr			l angle
		An	gle of	

ler

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 45

Many tables combined

How Different Groups Voted for President

Based on 12,782 interviews with voters at their polling places. Shown is how each group divided its vote for President and, in parentheses, the percentage of the electorate belonging to each group.

	CARTER	REAGAN	ANDERSON	CARTER-FORD in 1976
Democrats (43%)	66	26	6	77 - 22
Independents (23%)	30	54	12	43 - 54
Republicans (28%)	11	84	4	9 - 90
Liberals (17%)	57	27	11	70 - 26
Moderates (46%)	42	48	8	51 - 48
Conservatives (28%)	23	71	4	29 - 70
Liberal Democrats (9%)	70	14	13	86 - 12
Moderate Democrats (22%)	66	28	6	77 - 22
Conservative Democrats (8%)	53	41	4	64 - 35
Politically active Democrats (3%)	72	19	8	_

How Different Groups Voted for President

Based on 12.792 inteniews with votes at their poling places. Shown is how each group divided its vote for President and, in parentheses, the percentage of the electrose belonging to each group.

	CARTER	REAGAN	ANDERSON	in 1975
Democratis (43%)	95	28	6	77-22
Independents (22%) Republicans (29%)	30	54 84	12	43 - 54
			-	
Liberala (17%) Moderales (49%)	57	27	12	70-26
Conservatives (28%)	23	71	4	29-70
Liberal Democrats (8%)	20	14	13	85-12
Noderalle Democrats (22%)	66	28	4	77-22
Conservative Democrats (0%)	53	41	4	64-35
Politically active Democrats (3%)	72	19	4	-
Demonstry Exercise Kennedy	58	24		
in primaries (13%)				
Liberal Independents (4%)	50	29 53	15	64 - 29 45 - 53
Moderate Independents (12%) Conservative independents (2%)	22	69	6	26-72
Liberal Republicans (2%)	25	66	3	17:82
Moderate Republicans (215)	13	81	3	11-88
Conservative Republicans (12%)		91	2	6-93
Politically active Republicans (2%)	5	89	1	-
East (32%)	43	-47		61-47
South (27%)	44	51	3	54-45
Midwest (20%)	41	51	6 10	48 - 50 46 - 51
West (17%)	35	52		
Slacks (10%)	82	54	1	62 - 15 75 - 24
Hispanies (2%) Whites(86%)	64 36	38 55	í	47 - 52
Pervale (4915) Male (5115)	45	48. 54	7	50 - 49 50 - 48
Female, favors equal rights	20		r	201140
omendment (22%)	54	32	11	_
Pertele, opposes equal rights				
amendment (19%)	29	65	4	
Calholic (25%)	40	51	7	54 - 44
Jewish (5%)	45	39	14	64-34
Protestant (46%) Born-ugain white Protestant (17%)	37	56 61	:	44 - 55
				48-50
18 - 21 years old (8%) 22 - 29 years old (17%)	44	43 43	11	460 - 560 51 - 45
30 - 64 years old (31%)	37	54	';	49-49
45 - 59 years old (22%)	39	66	6	47-52
60 years or older (18%)	40	54	4	47 - 52
anity income				
Later Pair: \$10,000 (13%)	50	41	6	58 · 40
\$10,000 - \$14,999 (14%) \$15,000 - \$24,999 (30%)	47	42 53	5	55 - 43 48 - 50
\$25.000 - \$50.000 (24%)	- 52	10	ŝ	36-62
Over \$50,000 (5%)	25	65	ő	-
Professional or manager (40%)	33	56	9	41-52
Derical, sales or other				
white-collar (1976)	42	48	8	46-53
Blue-colliar worker (17%) Agriculture (3%)	45 29	47	5	57-41
Agricalization (2014) Lookang for work (2014)	33	36	7	95-34
ducation High school or less (39%)	45	48	*	57-43
Some college (28%)	35	*0 55	8	51 - 49
College graduate (27%)	35	51	11	45-55
Labor union household (26%)	47	44	7	59-38
No member of household in union (62%)	35	55	ó	43-55
inity finances				
Better of than a year apo (19%)	53	37	0	30-70
Same (40%)	-95	48	T	51-49
Worse of their a year opt (34%)	25	54	B	77 - 23
unity finances and political party				
Democrats, bottor of			-	200 B-1
ther a year sign (7%) Democrats, worse off	77	16	6	69-31
Then a year ago (13%)	47	39	10	94-6
independents, better off (3%)	45	36	12	-
independents, worse off (9%)	21	65	11	-
Republicans, belier off (4%) Republicans, access off (111%)	18	77	2	3 - 97 24 - 75
Republicana, worse off (11%)		-328		24-76
ore important problem Unemployment (39%)	51	40	7	75-25
Inflation (44%)	30	4D 6D		36-66
Feel that U.S. should be more forceful in sealing with Soviet Union even (1): would				
increase the risk of war (54%)	28	64	6	- 14
Disagree (31%)	56	32	10	_
Pover equal rights amendment (46%)	49	38		
Oppose equal rights amendment (35%)	26	ŝ		_
Aren decided about choice				
Norw all along (41%)	47	50	2	44-55
During the primaries (12%)	30	60	â	57-42
Curing conventions (8%)	36	55	T	61 - 48
Since Labor Day (#%)	30	54	13	49-45
Is week before election (23%)	38	46	13	49-47

TM/16 emotion day survey by MBIC News

Simple, but is it computer understandable?

	Monday	, September 20, 1999	
	Track A Convention Hall A	Track B Convention Hall B	Track C Chanakya Hall
08:30 10:00	01	PENING SESSION(Mo BanquetHall	-1)
10:00		COFFEE BREAK Pool Side	
10:30 12:30	MULTIMEDIA DOCUMENT PROCESSING Mo-2A	CHARACTER RECOGNITION Mo-2B	DOCUMENT IMAGE PROCESSING - I Mo-2C
12:30		L U N C H Pool Side	
13:30 14:30	POSTER PRESENTATION Mo-3A	POSTER PRESENTATION Mo-3B	POSTER PRESENTATION Mo-3C
13:30 15:30	PC) S T E R S E S S I O N - I (Mo Banque t Hall (Coffice served at 14:30)	⊦3)
15:30 17:30	INFORMATION RETRIEVAL Mo-4A	POSTAL AUTOMATION Mo-4B	FONT RECOGNITION Mo-4C
19:00 21:00	cor	NFERENCE RECEPTI Banquet Hall	ON

Bell Table

Time - Lible Mond: Wed Tues. Lat. Fris. Thurs. Boston 9\$12 Jegne Boston Boston George 12 \$ 3 Boston 365george Boston George ~ Mrs. Wed. + Fig. I go to The Boston Whool from 9 to 10 - -Class at Unimity 10 to 11 (Twice a week.). 11 to 12 Reception Hour. Schend the whole of Intenday in Boston for The purpose greeing pupils - leaving Taxad. & Thursd. free days. mins looke is of present in paged for lovery dry from 11.30

Notes on Contemporary ratie Recognition Nagy • June 2008 • Slide 48

Split table

													ce Calib		-			-
	Wgt	Wgt	A	A	A	A	B	B	B	B	C	C	c	C	D	D	D	D
DRT 0.35 Quiet	0.20	0.100	A(M) 90.8	A(F) 88.9	A(C) 89.9	A(SE) 0.55	B(M) 90.1	B(F) 90.8	B(C) 90.5	B(SE) 0.48	C(M) 93.8	C(F) 90.8	C(C) 92.3	C(SE) 0.70	D(M) 92.7	D(F) 90.1	D(C) 91.4	D(SE 0.7
Vinson Quiet		0.100	91.5	91.4	91.4	0.55	91.4	88.4	89.9	0.40	93.0 91.3	90.0	92.5	0.70	92.1	89.4	90.8	0.5
Office	0.60	0.067	91.8	91.2	91.5	0.42	88.6	88.2	88.4	0.55	91.5	91.0	91.2	0.75	92.4	89.8	91.1	0.5
Auto	0.00	0.067	87.9	77.6	82.7	0.93	86.3	79.2	82.7	0.91	86.8	79.9	83.4	0.73	87.5	81.3	84.4	0.8
Humvee		0.067	61.8	66.9	64.4	1.06	64.8	64.9	64.8	1.30	61.8	64.4	63.1	0.72	61.2	69.6	65.4	0.6
M2 Bradlev		0.067	67.4	67.1	67.3	1.36	66.3	68.8	67.6	0.88	61.4	67.2	64.3	1.17	66.0	67.1	66.6	0.7
Helicopter		0.067	61.5	68.5	65.0	1.15	68.6	68.9	68.7	1.07	63.5	69.9	66.7	0.61	66.2	71.2	68.7	1.0
F-15		0.067	74.9	78.1	76.5	0.85	71.1	71.1	71.1	0.52	77.5	76.7	76.7	0.91	73.4	75.2	74.3	0.5
E3A		0.067	87.6	83.0	85.3	0.75	86.9	84.8	85,9	0.81	89.5	85.5	87.5	0.85	89.1	83.8	86.5	0.6
P3C		0.067	89.2	82.2	85.7	0.71	87.4	81.5	84.4	0.75	84.5	85.4	85.4	0.59	87.3	81.9	84.6	0.8
MCE		0.067	88.5	88.4	88.5	0.72	86.7	87.5	87.1	0.77	89.0	90.6	89.8	1.08	86.6	88.9	87.8	0.8
BER	0.10	0.050	86.2	82.6	84.4	0.89	88.5	85.7	87.1	0.52	88.6	89.2	88.9	0.63	87.2	86.1	86.7	0.7
BLER		0.050	92.3	89.7	91.0	0.86	92.4	89.7	91.1	0.63	93.4	90.0	91.7	0.64		88.2	89.2	0.4
S Tandem	0.10	0.050	85.0	85.3	85.2	0.73	87.4	84.3	85.9	0.60	87.5	84.5	86.0	0.72	87.6	84.7	86.2	0.7
D Tandem		0.050	84.1	81.9	83.0	0.86	83.0	78.0	80.5	0.62	85.2	80.6	82.9	0.58	84.3	81.2	82.8	0.7
Intell. Perf			82.984	81.872	82.437	0.261	82.829	81.132	81.984	0.293	83.279	82.779	83.032	0.241	83.259	82.214	82.759	0.21
	1.00	1.000	A(M)	A(F)	A(C)	A(SE)	B(M)	B(F)	B(C)	B(SE)	C(M)	C(F)	C(C)	C(SE)	D(M)	D(F)	D(C)	D(SE
Rank			4	4	4		5	6	5	. ,	2	2	2		3	3	3	•
Mart	Mart	Mart			OVPC 24									1.00				
	Wgt	Wgt	CELP	CELP	CELP	CELP	CVSD	CVSD	CVSD	CVSD	LPC	LPC	LPC	LPC)			
DRT 0.35			CELP Celp(M)	CELP Celp(F)	CELP Celp(C)	CELP Celp(SE	CVSD KY(M)	CVSD KY(F)	CVSD KY(C)	CVSD KY(SE)	LPC LPC(M)	LPC LPC(F)	LPC LPC(C)	LPC (SE)			
DRT 0.35 Quiet	0.20	Wgt 0.100 0.100	CELP	CELP	CELP	CELP	CVSD	CVSD	CVSD	CVSD	LPC	LPC	LPC)			
DRT 0.35 Quiet Vinson Quiet	0.20	0.100	CELP Celp(M) 90.9	CELP Celp(F) 90.5	CELP Celp(C) 90.7	CELP Celp(SE 0.34	CVSD KY(M) 88.2	CVSD KY(F) 88.8	CVSD KY(C) 88.5	CVSD KY(SE) 0.85	LPC LPC(M) 87.3	LPC LPC(F) 85.1	LPC LPC(C) 86.2	0.60)			
DRT 0.35 Quiet Vinson Quiet	0.20 t	0.100	CELP Celp(M) 90.9 91.9	CELP Celp(F) 90.5 90.3	CELP Celp(C) 90.7 91.1	CELP Celp(SE 0.34 0.44	CVSD KY(M) 88.2 91.4	CVSD KY(F) 88.8 90.2	CVSD KY(C) 88.5 90.8	CVSD KY(SE) 0.85 0.66	LPC LPC(M) 87.3 81.9	LPC LPC(F) 85.1 82.7	LPC LPC(C) 86.2 82.3	LPC (SE 0.60 0.65)			
DRT 0.35 Quiet Vinson Quiet Office	0.20 t	0.100 0.100 0.067	CELP Celp(M) 90.9 91.9 89.8	CELP Celp(F) 90.5 90.3 88.3	CELP Celp(C) 90.7 91.1 89.0	CELP Celp(SE 0.34 0.44 0.88	CVSD KY(M) 88.2 91.4 89.6	CVSD KY(F) 88.8 90.2 88.1	CVSD KY(C) 88.5 90.8 88.8	CVSD KY(SE) 0.85 0.66 0.50	LPC LPC(M) 87.3 81.9 84.8	LPC LPC(F) 85.1 82.7 85.5	LPC LPC(C) 86.2 82.3 85.2	LPC (SE 0.60 0.65 0.81)			
DRT 0.35 Quiet Vinson Quiet Office Auto	0.20 t	0.100 0.100 0.067 0.067	CELP Celp(M) 90.9 91.9 89.8 88.9	CELP <u>Celp(F)</u> 90.5 90.3 88.3 83.3	CELP <u>Celp(C)</u> 90.7 91.1 89.0 86.1	CELP Celp(SE 0.34 0.44 0.88 0.85	CVSD KY(M) 88.2 91.4 89.6 89.0	CVSD KY(F) 88.8 90.2 88.1 84.8	CVSD KY(C) 88.5 90.8 88.8 86.9	CVSD KY(SE) 0.85 0.66 0.50 1.02	LPC LPC(M) 87.3 81.9 84.8 73.1	LPC LPC(F) 85.1 82.7 85.5 63.7	LPC LPC(C) 86.2 82.3 85.2 68.4	LPC (SE 0.60 0.65 0.81 0.73)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee	0.20 t	0.100 0.100 0.067 0.067 0.067	CELP Celp(M) 90.9 91.9 89.8 88.9 60.6	CELP 90.5 90.3 88.3 83.3 65.4	CELP Celp(C) 90.7 91.1 89.0 86.1 63.0	CELP Celp(SE 0.34 0.44 0.88 0.85 0.95	CVSD (KY(M) 88.2 91.4 89.6 89.0 65.2	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7	LPC LPC(F) 85.1 82.7 85.5 63.7 41.7	LPC LPC(C) 86.2 82.3 85.2 68.4 31.7	LPC (SE 0.60 0.65 0.81 0.73 2.26)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15	0.20 t	0.100 0.067 0.067 0.067 0.067 0.067 0.067	CELP Celp(M) 90.9 91.9 89.8 88.9 60.6 60.7	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3	CELP <u>Celp(SE</u> 0.34 0.44 0.88 0.85 0.95 1.14	CVSD 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11	LPC 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5	LPC LPC(F) 85.1 82.7 85.5 63.7 41.7 42.5 55.8 69.4	LPC LPC(C) 86.2 82.3 85.2 68.4 31.7 38.4 47.6 69.9	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A	0.20 t	0.100 0.100 0.067 0.067 0.067 0.067 0.067	CELP Celp(M) 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3 85.0	CELP 0.34 0.44 0.88 0.85 0.95 1.14 0.94 0.79 0.62	CVSD KY(M) 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11 0.94	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7	LPC EPC(F) 85.1 85.5 63.7 41.7 42.5 55.8 69.4 65.3	LPC LPC(C) 86.2 82.3 85.2 68.4 31.7 38.4 47.6 69.9 66.0	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C	0.20 t	0.100 0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067	CELP <u>Celp(M)</u> 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 82.7	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3 85.0 84.2	CELP Celp(SE 0.34 0.88 0.85 0.95 1.14 0.94 0.79 0.62 1.19	CVSD KY(M) 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2 89.5	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.0	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11 0.94 0.72	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.9	LPC LPC(F) 85.1 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.5	LPC LPC(C) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.0 79.7	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C MCE	0.20 t 0.60	0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067	CELP 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7 90.5	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 82.7 87.8	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3 85.0 84.2 89.1	CELP Celp(SE 0.34 0.44 0.88 0.85 0.95 1.14 0.94 0.79 0.62 1.19 0.96	CVSD 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2 89.5 90.8	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.0 90.0	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7 90.4	CVSD KY(SE) 0.85 0.66 1.02 1.33 0.94 0.78 1.11 0.94 0.72 0.75	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.9 77.5	LPC LPC(F) 85.1 82.7 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.5 78.7	LPC LPC(C)) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.0 79.7 78.1	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00 1.10)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C MCE BER	0.20 t	0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067	CELP <u>Celp(M)</u> 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7 90.5 90.3	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 82.7 87.8 86.0	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3 85.0 84.2 89.1 88.2	CELP Celp(SE 0.34 0.44 0.88 0.85 0.95 1.14 0.94 0.79 0.62 1.19 0.96 0.73	CVSD 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2 89.5 90.8 86.1	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.0 90.0 87.8	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7 90.4 86.9	CVSD KY(SE) 0.85 0.66 1.02 1.33 0.94 0.78 1.11 0.94 0.72 0.75 0.67	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.9 77.5 80.0	LPC LPC(F) 85.1 82.7 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.5 78.5 78.7 82.7	LPC LPC(C) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.0 79.7 78.1 81.4	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00 <u>1.10</u> 0.90				
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C P3C BER BLER	0.20 t 0.60	0.100 0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.050	CELP <u>Celp(M)</u> 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7 90.5 90.3 87.1	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 85.6 85.2 87.8 86.0 89.3	CELP 90.7 91.1 89.0 86.1 63.8 63.8 74.3 85.0 84.2 89.1 88.2 88.2	CELP Celp(SE 0.34 0.88 0.85 0.95 1.14 0.94 0.62 1.19 0.62 1.19 0.96 0.73 0.96	CVSD KY(M) 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.5 89.5 90.8 86.1 86.8	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.9 89.9 86.9 89.9 85.6	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7 90.4 86.9 86.9 86.9	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11 0.94 0.72 0.75 0.67 0.78	LPC LPC(M) 87.3 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.9 77.5 80.0 85.2	LPC LPC(F) 85.1 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.5 78.7 82.7 82.7	LPC LPC(C) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.9 9.9 66.9 79.7 78.1 81.4 81.4 84.0	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00 <u>1.10</u> 0.90 0.72				
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C P3C BER BLER S_Tandem	0.20 t 0.60	0.100 0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.050 0.050	CELP <u>Celp(M)</u> 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7 90.5 90.3 87.1 84.8	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 85.6 85.6 85.6 85.7 87.8 86.0 89.3 83.7	CELP 90.7 91.1 89.0 86.1 63.8 63.8 74.3 85.0 84.2 89.1 88.2 88.2 84.3	CELP Celp(SE 0.34 0.44 0.88 0.95 1.14 0.94 0.62 1.19 0.96 0.73 0.96 0.61	CVSD KY(M) 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2 89.2 89.0 86.1 86.8 89.0	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.0 90.0 90.0 87.8 85.6 87.3	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7 90.4 86.9 86.9 86.9 86.2 88.2	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11 0.94 0.78 1.11 0.94 0.75 0.67 0.75 0.67 0.78 1.03	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.0 85.2 75.8	LPC LPC(F) 85.1 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.5 78.7 82.7 82.9 75.5	LPC LPC(C) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.0 79.7 78.1 81.4 81.4 84.0 75.6	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00 1.10 0.90 0.72 1.10)			
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C MCE BER BLER S_Tandem D_Tandem	0.20 t 0.60	0.100 0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.050	CELP <u>Celp(M)</u> 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7 90.5 90.3 87.1 84.8 83.0	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 85.6 85.7 87.8 86.0 89.3 83.7 80.6	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3 85.0 84.2 89.1 88.2 88.2 88.2 84.3 81.8	CELP Celp(SE 0.34 0.44 0.88 0.85 0.95 1.14 0.94 0.79 0.62 1.19 0.96 0.73 0.96 0.61 0.96	CVSD KY(M) 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2 89.0 88.2 90.8 86.1 86.8 89.0 84.4	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.0 90.0 90.0 87.8 85.6 87.3 85.9	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7 90.4 86.9 86.9 86.9 86.2 88.2 88.2	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11 0.94 0.72 0.75 0.67 0.67 0.78 1.03 0.70	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.0 85.2 75.8 72.0	LPC LPC(F) 85.1 82.7 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.7 78.7 82.7 82.9 75.5 73.5	LPC LPC(C) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.0 79.7 78.1 81.4 84.0 75.6 72.7	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00 0.110 0.90 0.72 1.10 0.64				
DRT 0.35 Quiet Vinson Quiet Office Auto Humvee M2 Bradley Helicopter F-15 E3A P3C P3C BER BLER S_Tandem	0.20 t 0.60	0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.065 0.050 0.050	CELP <u>Celp(M)</u> 90.9 91.9 89.8 88.9 60.6 60.7 61.0 73.0 84.6 85.7 90.5 90.3 87.1 84.8 83.0	CELP 90.5 90.3 88.3 83.3 65.4 66.9 66.6 75.5 85.6 82.7 87.8 86.0 89.3 83.7 80.6 81.867	CELP 90.7 91.1 89.0 86.1 63.0 63.8 63.8 74.3 85.0 84.2 88.2 88.2 84.3 81.8 81.859	CELP Celp(SE 0.34 0.88 0.85 0.95 1.14 0.94 0.62 1.19 0.62 1.19 0.96 0.73 0.96 0.61 0.96	CVSD KY(M) 88.2 91.4 89.6 89.0 65.2 74.3 75.6 74.7 88.2 89.5 90.8 86.1 86.8 89.0 84.4 84.402	CVSD KY(F) 88.8 90.2 88.1 84.8 73.3 78.4 78.9 78.6 89.9 86.0 90.0 87.8 85.6 87.3 85.6 87.3 85.9 85.097	CVSD KY(C) 88.5 90.8 88.8 86.9 69.3 76.4 77.2 76.6 89.0 87.7 90.4 86.9 86.9 86.9 86.2 88.2 88.2 88.2 88.2 88.2	CVSD KY(SE) 0.85 0.66 0.50 1.02 1.33 0.94 0.78 1.11 0.94 0.72 0.75 0.67 0.78 1.03 0.70 0.297	LPC LPC(M) 87.3 81.9 84.8 73.1 21.7 34.2 39.4 70.5 66.7 80.9 77.5 80.0 85.2 75.8 72.0 69.157	LPC LPC(F) 85.1 85.5 63.7 41.7 42.5 55.8 69.4 65.3 78.7 78.7 82.7 82.9 75.5 73.5 71.250	LPC LPC(C) 86.2 85.2 68.4 31.7 38.4 47.6 69.9 66.0 79.7 78.1 81.4 84.0 75.6 72.7	LPC (SE 0.60 0.65 0.81 0.73 2.26 1.27 1.24 0.88 1.09 1.00 <u>1.10</u> 0.90 0.72 1.10 0.64 0.332	, , , ,			

www.kensselaer

Where does it begin and end?

********	* * * * * * * * * * * * *	* * * * * *	*****	* * * * * * * * * * * * * * * * *				
	LUCENT TECH							
For the People of Lucent Technologies								
Friday, February 12, 1999								
*********	* * * * * * * * * * * * *	* * * * * *	* * * * * * *	****				
	*** STOC	CK WAT	CH ***					
	TODAY'S Y	YESTER	DAVIG	YESTERDAY'S				
	OPEN	CLOS		CHANGE				
	OPEN	CTOP	Б	CHANGE				
Lucent	100 13/16	101 1	/16	+ 3 13/16				
Ascend		74 7/		+ 2 3/8				
AT&T	87 1/2	88 3/		+ 2 3/8				
Alcatel	21 7/8	22		+ 13/16				
Ericsson	26 1/4	26 3/	8	+ 1 5/16				
Motorola		67 1/		+ 1 13/16				
DJIA	,	9363.		+ 186.15				
NASDAO	2375.99			+ 96.05				
	2010100	21000						
*****	**********	* * * * * *	******	****				
*** NEWS IN A	NUTSHELL ***	*	*** LU	CENT HERITAGE ***				
* New software	e tool		On Feb	. 17, 1998, Lucent				
* America's mo	st admired		announ	ced that it would				
* Switch lands	s in winter g	games	acquir	e Hewlett-Packard's				
* Students vis	it Bell Labs	5	local	multipoint distribution				
* World of Sci	ence Seminar	rs	servic	e wireless business				
* Client feedb	ack survey		and la	unch a new Wireless				
	-		Broadb	and Networks Division.				
****	** 11000000		NEWC	* * * * * * * * * * * * * * * * *				
	** LUCENT]	TH THE	NEWS					
STUDENTS VISIT	BELL LABS -	Hos	ted by	Lucent Korea,				
				visited Bell Labs				
in New Jersey								
				six-day tour for				
				ion in science.				
[Naeway Econom								
-	_							

Notes on Contemporary Table Recogn Nagy • June 2008 • Slide 50

```
Rensselaer
```

How many tables?

NEW YORK STOCK **EXCHANGE**

NIVER INDEVES

	Close	Chg.
Comp		
indus		0.24
Transp	494.71	5.62
Utility		+0.75
Finance	549.34	0.34

1,185
1,829
568
3,582
58
90

DOW JONES AVERAGES

NEW YORK (AP) - Final Dow Jones averages yesterday:

STOCKS

310083								
	Open	High	Low	Last	Chg.			
Ind	9902.28	10005.95	9796.99	9890.51	-13.04			
Trn	3337.44	3376.11	3242.21	3275.68	-62.80			
Uti	303.91	306.48	300.13	303.22	0.72			
Stk	3030.50	3061.77	2985.30	3014.68	-16.16			
30 1	ndus			61,2	210,600			
Tra	n			8,5	544,700			
Util	\$			8,7	781,600			
65 1	5tk			78,	536,900			
		BC	NDS					
				6 1	C L -			
					Chg.			
DĴ	AIG Fu	utures .		80.34	+1.46			
10	ndustri	als		105.87	0.30			
10	Public I	Jtil		102.63	+0.70			
				104.25	0.16			

STOCK SALES

Approx final total	663,291,980
Previous day	922,200,000
Week ago	727,270,000
Month ago	718,530,000
Year ago	
Two years ago	
Year to date 43	,374,202,000
To date one year ago 33	
To date two years ago 28	

BOND SALES

Approx final total	\$13,626,000
Previous day	\$14,377,000
Week ago	\$12,090,000
Month ago	\$11,232,000
Year ago	\$10,034,000
Two years ago	\$22,323,000
Year to date	\$759,113,000
To date one year ago \$1	
To date two years ago \$1	,431,008,000

MOST ACTIVE NYSE STOCKS

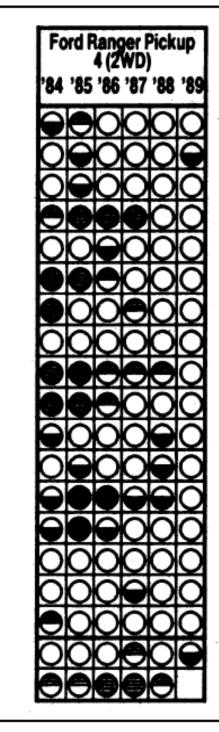
NEW YORK (AP) - Sales, closing							
price and net change of the 15 most							
active New York Stock Exchange							
issues trading							
Name							
AmOnine s	30 279 300	130	+ 1034				
US Filter	18 371 300	3036					
Compag			-%				
MediaOne		681/2					
AT&T	9,387,300	7734	-1%				
CHS EI		31/4					
WarnLm s		66 %	-334				
PhilMor		41%	+ 15/4				
IBM		167	-1%				
RiteAid		263/4	+1%				
MicrnT		53	+21/2				
		101%	+3%				
Lucent		385%	+1%				
CBS DataGn		12%	+21/8				
TycoInt	4,530,500	75%	+3%a				

STANDARD & POOR'S

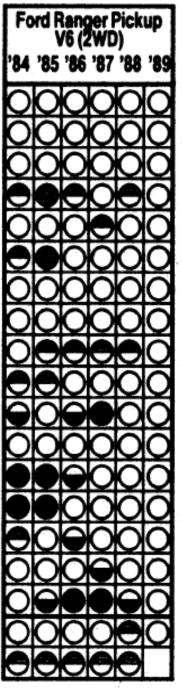
JI ANDARD & LOOK J					
NEW YORK (AP) — Standard and					
Poor's stock indexes yesterday:					
High Low Last Chg.					
S&P 100 653.19 648.44 649.55 -0.56					
S&P 500 . 1303.84 1294.26 1297.01 -2.28					
MidCap 363.76 359.82 360.80 -1.51					
Indust 1565.34 1552.88 1556.42 -2.67					
Transpt 716.73 707.36 708.28					
Utilities 245.12 243.81 243.99 -0.96					
Financial . 142.66 141.59 142.22 -0.15					

SmallCap . 160.66 158.57 158.70 -1.71

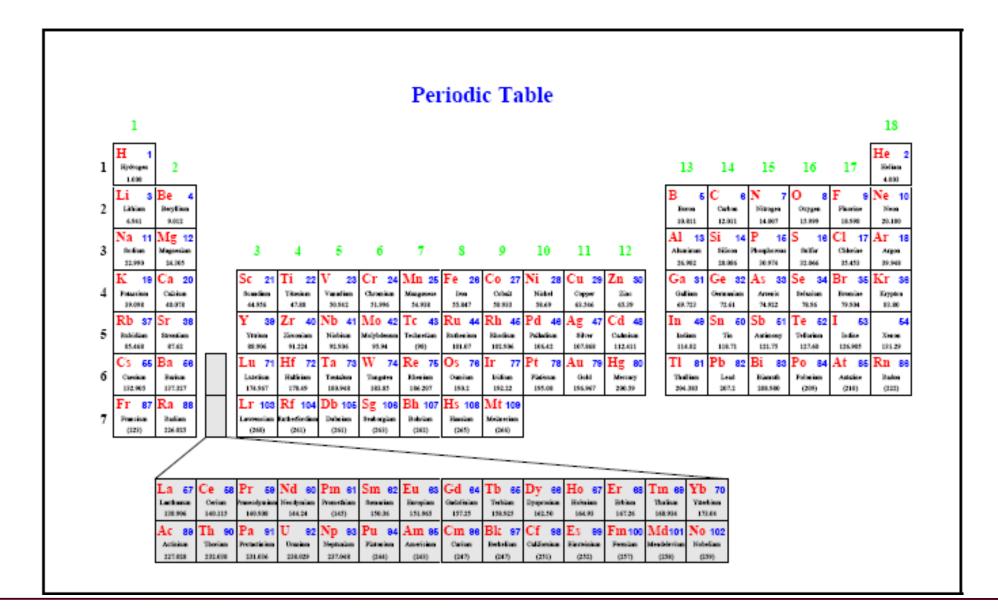
Notes on Contemporary Table Recognitic Nagy • June 2008 • Slide 51


What does this table show?

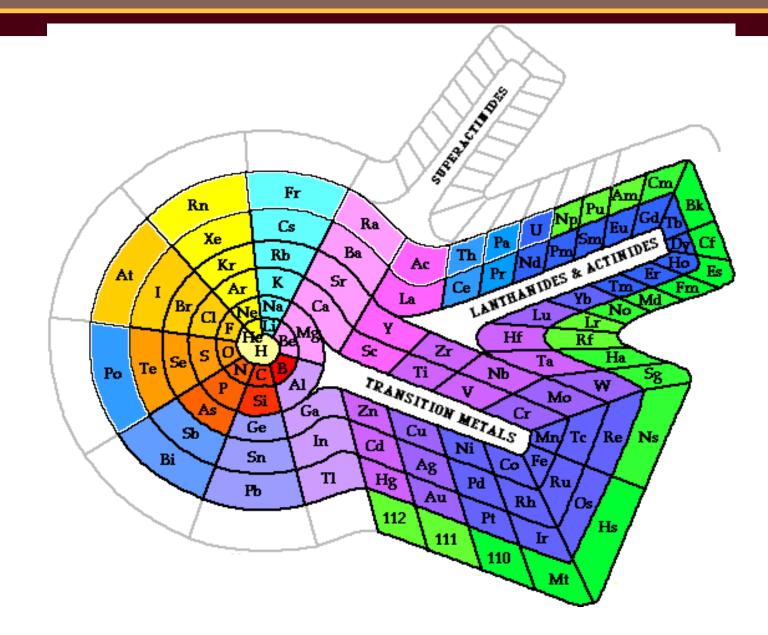
	feet							
		50	100	1 50	200	250	300	350
0 W 1		I.	1	1		1	1	1
California								
Missouri					-			-
Minnesota				-	-		-	
Alabama								
Arizona								-
Colorado								
Florida				-			_	
Georgia							_	
Kentucky						-	—	
Louisiana	-						_	
Maine		_						
Massachusetts			·					
Mississippi							-	-
Nebraska		_					_	_
Nevada							—	
New Hampshire		No.					-	
New Mexico								_
New York								
North Carolina		-						
Oregon		-	-					_
Pennsylvania		-						_
Washington							-	-
Delaware	all and a	-		-				
Iowa		-	-		-			_
Wyoming	-							
Connecticut			-					


Notes on ContemiConnecticutNagy • June 2008 • Slide 52

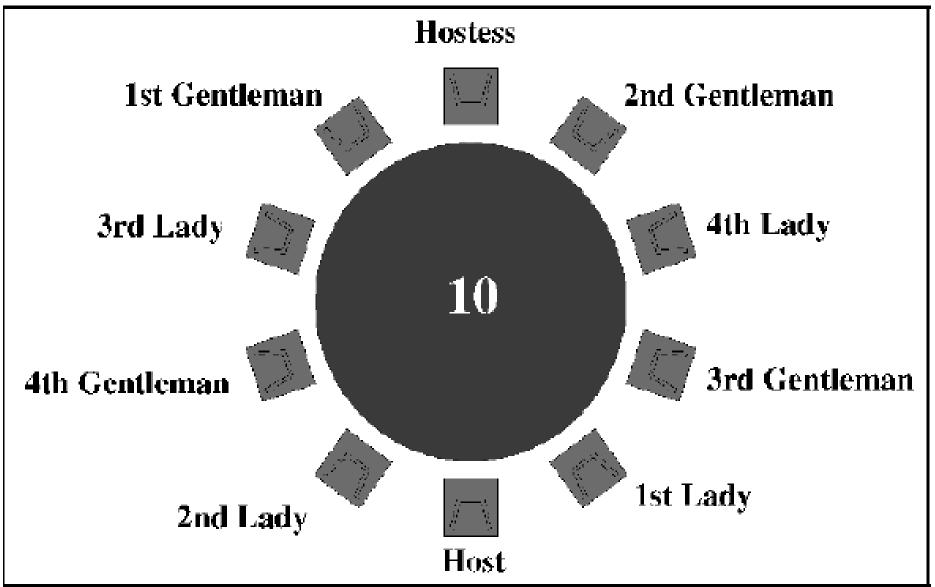
Is it a table?


TROUBLE SPOTS '85 Air-conditioning Body exterior (paint) Body exterior (rust) **Body hardware Body integrity Brakes** Clutch Driveline Electrical system (chassis) Engine cooling Engine mechanical Exhaust system Fuel system Ignition system Suspension Transmission (manual) Transmission (automatic) TROUBLE INDEX COST INDEX

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 53


🐷 I WI I SSC laer

A wonderful table!


Still being improved

Notes on Contemporary Table Recognition Nagy • June 2008 • Slide 55

A table table

Not

Thank	you	for
your	patience	
Any	questions?	

