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Abstract

Given a hypergraph and a set of embedded functional dependencies, we investigate the
problem of determining the conditions under which we can efficiently generate redundancy-free
XML storage structures with as few scheme trees as possible. Redundancy-free XML structures
guarantee both economy in storage space and the absence of update anomalies, and having
the least number of scheme trees requires the fewest number of joins to navigate among the
data elements. We know that the general problem is intractable. The problem may still be
intractable even when the hypergraph is acyclic and each hyperedge is in Boyce-Codd Normal
Form (BCNF). As we show here, however, given an acyclic hypergraph with each hyperedge
in BCNF, a polynomial-time algorithm exists that generates a largest possible redundancy-
free XML storage structure. Successively generating largest possible scheme trees from among
hyperedges not already included in generated scheme trees constitutes a reasonable heuristic for
finding the fewest possible scheme trees. For many practical cases, this heuristic finds the set of
redundancy-free XML storage structures with the fewest number of scheme trees. In addition to
a correctness proof and a complexity analysis showing that the algorithm is polynomial, we also
give experimental results over randomly generated but appropriately constrained hypergraphs
showing empirically that the algorithm is indeed polynomial.

Keywords: XML data redundancy, large XML storage structures, XML-Schema generation,
acyclic hypergraphs

1 Introduction

XML databases are emerging [5]. Two types of XML databases are native XML databases, whose
backend storage structures are internal representations of XML documents, and XML-enabled
databases, whose backend storage structures are internal representations of relational tables. The
fundamental unit of (logical) storage in native XML databases is an XML document [4]. Thus,
designing XML documents for efficient retrieval and update has been a topic of recent research
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[9, 11, 12]. The fundamental unit of (logical) storage in XML-enabled databases is a relational table.
This table-storage method requires various mapping rules to translate between XML document
schemas and database schemas and employs middleware to transfer data between XML documents
and databases [4, 20, 23]. A recent study shows that designing XML documents for efficient
retrieval and update can also guarantee well-designed relational storage structures for XML-enabled
databases [13]. Thus, for both native XML databases and XML-enabled databases, designing XML
documents for efficient retrieval and update is an appropriate focus for study.

Similar to design of relational tables by normalizing relational schemas, designing XML docu-
ments for efficient retrieval and update is about normalizing XML storage schemas. Normalized
XML storage schemas remove the possibility of redundancy with respect to constraints and typi-
cally make both retrieval and update more efficient. Thus, there has been a flurry of research work
on normalization of XML documents [2, 6, 7, 15, 18, 22, 25, 26, 27].

This paper, which follows up on our previous work [7, 18], is another step in this direction.
In [18] we showed that generating a minimum number of redundancy-free XML storage structures
from a conceptual-model hypergraph is NP-hard. Here we consider special-case conditions1 that
commonly hold in practice in an effort to find an efficient algorithm. Since it is known that
checking whether relational schemas are in Boyce-Code Normal Form (BCNF) is intractable, our
first condition limits conceptual-model hypergraphs to those in which each hypergraph edge is in
BCNF with respect to the given functional dependencies (FDs). Next, since cycles in hypergraphs
introduce ambiguity and typically cause difficulties, we assume that conceptual-model hypergraphs
are acyclic. Finally, we assume that the only multivalued dependencies (MVDs) are hypergraph-
generated MVDs. Even with these assumptions, however, it is an open problem to find an algorithm
that generates a minimum number of redundancy-free XML storage structures in polynomial time.
We therefore settle on a heuristic that resolves the issue for many practical cases and likely gives
good results for all cases.

As the basis of our heuristic, we provide in this paper a polynomial-time algorithm that gener-
ates a largest scheme tree from an acyclic hypergraph and a set of FDs where each FD is embedded
in some hyperedge and each hyperedge is in BCNF. As an approximation to generating a mini-
mum number of redundancy-free XML storage structures, we use this heuristic repeatedly on the
remaining hypergraph edges not already included in generated scheme-tree storage structures. This
heuristic always yields redundancy-free XML storage structures and often, especially in practical
cases, yields the fewest.

To illustrate or our approach and to show some of the pitfalls involved, we present a motivating
example. In this example, we rely on intuition for some undefined terms. Later in Section 2, we

1In making these special-case assumptions, we point out that many conceptual-model hypergraphs found in prac-
tice satisfy these assumptions without any need for modification. For those that do require some modification to
satisfy these conditions, the modifications are often minimal and straightforward. (1) In practice, conceptual-model
hypergraph edges rarely violate BCNF. Further, since the size of a edge is typically small, checking exhaustively for
keys of the edge and for applicable non-trivial FDs is not inordinately expensive. (2) In practice, we can always
introduce role attributes, as needed, to break cycles. (3) In practice, we almost never care about any MVDs except
hypergraph-generated MVDs.
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Figure 1: The Acyclic Hypergraph and Relationships of Example 1.

formally define these terms.

Example 1 Figure 1(a) shows an acyclic hypergraph and an FD, Retailer Item → Price, embedded
in one of the hypergraph edges. Figure 1(b) shows some possible relationships among instance values
for the hyperedges in Figure 1(a). For example, two of the relationships are “retailer r1 sells item
i1 for $3” and “manufacturer m1 has factory f1.” Figures 2(a), 2(b), and 2(c) show three possible
sets of scheme trees and their associated instances taken from the relationships in Figure 1(b). In
Figure 2(a), because there is only one scheme-tree instance, the data values are compactly stored.
However, the instance data is redundant. Since manufacturer m1 is necessarily stored twice, the
dependent factories, which must be the same, are therefore redundantly stored more than once. In
Figure 2(b), even though no data redundancy is present in any of the scheme-tree instances, there
are more trees than necessary. The largest redundancy-free scheme tree for this example is the one
on the left in Figure 2(c), which balances the requirements of data redundancy and compactness
of data. Creating this scheme tree first followed by creating a scheme tree from the remaining
hyperedge {Manufacturer, Factory} yields the fewest possible redundancy-free scheme trees. �

By way of comparison with the XML normalization work of others [2, 6, 15, 22, 25, 26, 27],
we point out that our approach differs significantly. Not only have these other researchers defined
their FDs, and thus their normal forms, differently, the basis of our approach is also different from
theirs. As opposed to the complicated FDs defined in these papers, we rely on standard FD and
hypergraph-generated MVD definitions, which can be straightforwardly derived from conceptual-
model hypergraphs. Furthermore, the basis of our approach is conceptual models, which have not
been considered at all in other XML normalization work. We believe our approach is more common
in practice and in line with the tradition followed by information-system developers, who first create
conceptual-model instances and then generate database storage structures.

We give the details of our contribution of generating a largest possible scheme tree from a
conceptual-model hypergraph in polynomial time as follows. We first lay the ground work by
providing basic definitions in Section 2. Based on this foundation, we present the polynomial-time,
scheme-tree generation algorithm in Section 3. Throughout Sections 2 and 3 we provide examples
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Figure 2: The Scheme Trees and Scheme-Tree Instances of Example 1.

to motivate and illustrate definitions and algorithmic procedures. We present experimental data to
verify our algorithm in Section 4 and formally prove our claims in Section 5. We make concluding
remarks in Section 6.

2 Basic Definitions

2.1 Acyclic Hypergraphs

To make this paper self-contained, we borrow some definitions from previous work. The first three
definitions are from [3].

Definition 1 Let U be a set of attributes. A hypergraph H = {E1, . . . , En} over U is a set of
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subsets of U where each subset Ei is called a hyperedge of H, or simply an edge of H if the context
is clear. �

Definition 2 Graham Reduction, also known as GYO Reduction [10], applies two operations to a
hypergraph H = {E1, . . . , En} (n ≥ 1) until neither can be applied. These two operations are:
(Attribute Removal) If A is an attribute that appears in exactly one edge Ei, then delete A from
Ei. (Edge Removal) Delete an edge Ei if there is an edge Ej such that i �= j and Ei ⊆ Ej . �

Definition 3 A hypergraph is acyclic if Graham Reduction reduces it to the empty set. �

Definition 4 A hypergraph is reduced if none of its hyperedges is a proper subset of another
hyperedge.

By repeatedly applying the edge-removal step of Graham Reduction, it is easy to observe that
a hypergraph is acyclic if and only if its reduced form is acyclic. All hypergraphs considered in this
paper are assumed to be reduced.

We now introduce a procedure that makes use of Graham Reduction to create a data structure
from a reduced acyclic hypergraph called a join tree.

Procedure CreateJoinTree

Input: a reduced acyclic hypergraph H.
Output: a join tree T for H, and a set of labels for H.
1. Initially, let T be a graph with no edges whose nodes are the unique hyperedges in
H.
2. Apply Graham Reduction: while applying Graham Reduction, when a remaining
hyperedge E′

i, which is the result of applying one or more attribute removals to an
original hyperedge Ei, is removed because it is a subset of an original hyperedge Ej,
create an edge {Ei, Ej} for T and label the edge E′

i. In the process, E′
i becomes a label

of H. (Since E′
i may be a subset of more than one hyperedge, more than one join tree

is possible for a given reduced acyclic hypergraph.)
3. When the Graham Reduction is complete, the graph T will have become a join tree;
thus return T . �

Example 2 Figure 3 shows a possible join tree created by Procedure CreateJoinTree for the
acyclic hypergraph in Figure 1(a). In another join tree for the hypergraph in Figure 1(a), instead
of the Retailer edge between {Retailer, Location} and {Retailer, Item, Price}, the join tree can
have a Retailer edge between {Retailer, Location} and {Retailer, Item, Manufacturer}. �

2.2 Constraints

In this paper, FDs and hypergraph-generated MVDs are the only constraints we consider. These are
typically the most common constraints encountered in practice. FDs have their standard definition.
The definition of hypergraph-generated MVDs is from [3] and [8].
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Figure 3: A Join Tree of the Acyclic Hypergraph in Figure 1(a).

Definition 5 Two hyperedges are connected if they have a nonempty intersection. A set S of
hyperedges is disconnected if S can be partitioned into two nonempty subsets S1 and S2 such that
no hyperedge in S1 is connected to any hyperedge in S2. A set of hyperedges is connected if it is not
disconnected. A connected component is a maximal connected set of hyperedges. A hypergraph
H generates a number of MVDs of the form X →→ Y1|Y2| · · · |Yn where X and Y1, . . ., Yn are
disjoint sets of attributes and each Yi is a maximal connected set of hyperedges constructed from
the hyperedges of H after they have been reduced by the removal of the attributes in X, i.e., the
maximal connected components of {E − X : E is a hyperedge of H} − {∅}. �

Example 3 Removing the attributes Retailer and Item from Figure 1(a) results in the hypergraph-
generated MVDs Retailer Item →→ Manufacturer Factory | Price | Location. Removing Manufac-
turer and Factory results in the trivial MVD Manufacturer Factory →→ Retailer Item Price Location.
�

2.3 Nested Normal Form (NNF)

To help achieve our goal, we make use of NNF [19] in this paper. We have proved in [19] that a
scheme tree does not permit redundancy with respect to a set of MVDs and FDs if and only if it
is in NNF. Thus, our goal in this paper is to extract a largest NNF scheme tree.

Definition 6 A scheme tree T over a set U of attributes is a rooted tree in which every node is a
nonempty subset of U . Further, the intersection of every pair of nodes in T is empty. �

Definition 7 Let T be a scheme tree over a set U of attributes. Let dom(A) be the set of domain
values of an attribute A in U . A scheme-tree instance over T is recursively defined as follows:

1. If T has only the root node A1 · · ·An (n ≥ 1), a scheme-tree instance over T is a (possibly
empty) set of functions {t1, . . . , tm} such that each ti (1 ≤ i ≤ m) maps each Aj (1 ≤ j ≤ n)
to a value in dom(Aj ).

2. If T has more than one node, then let T1, . . ., Tk (k ≥ 1) be the k subtrees of T such that the
root node of each Ti is a child node of T ’s root node. Let {t1, . . . , tm} (m ≥ 0) be the set of
functions associated with T ’s root node and let tj ⊕ sji mean that the function tj associates
with the scheme-tree instance sji over Ti for tj . Then, ∪m

j=1(∪n
i=1tj ⊕ sji) is a scheme-tree

instance over T . �
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Although formally defined in Definition 7, scheme-tree instances are most easily understood when
visualized and written as are the scheme-tree instances in Figure 2. In Figure 2, we nest attribute
names in parentheses in a linear fashion according to their structure and place instance values in
buckets (with the outermost bucket omitted).

Let T be a scheme tree. We denote the set of attributes in T by Aset(T ). Let N be a node in
T . Notationally, Ancestor(N ) denotes the union of attributes in all ancestors of N , including N .
Similarly, Descendent(N ) denotes the union of attributes in all descendants of N , including N . In
a scheme tree T , each edge (V,W ), where V is the parent of W , denotes an MVD Ancestor(V )
→→ Descendent(W ). Notationally, we use MVD(T ) to denote the set of all MVDs represented by
the edges in T . By construction, each MVD in MVD(T ) is satisfied in the total unnesting of any
scheme-tree instance for T . Since FDs are also of interest, we use FD(T ) to denote the set of FDs
that hold in T .

Example 4 Figures 2(a), 2(b), and 2(c) show three possible sets of scheme trees and their instances
derived from the data in Figure 1(b). As in [19] we use a repeating-group (. . .)* to denote a nested
scheme tree and a bucket to denote a nested scheme-tree instance. Let T be the left scheme
tree in Figure 2(c). Each edge in T implies an MVD. Therefore, MVD(T ) is equal to {Retailer
→→ Location, Retailer →→ Item Price Manufacturer, Retailer Item Price →→ Manufacturer}. In
addition, FD(T ) is equal to {Retailer Item → Price} as declared in Figure 1(a). �

Definition 8 Let U be a set of attributes. Let M be a set of MVDs over U and F be a set of FDs
over U . Let T be a scheme tree such that Aset(T ) ⊆ U . T is in NNF with respect to M ∪F if the
following conditions are satisfied.

1. Let D be the set of MVDs and FDs that hold for T with respect to M ∪ F . The set D is
equivalent to MVD(T ) ∪ FD(T ) on Aset(T ).

2. For each nontrivial FD X → A that holds for T with respect to M ∪ F , X → Ancestor(NA)
also holds with respect to M ∪ F , where NA is the node in T that contains A. �

Example 5 All scheme trees in Figures 2(b) and 2(c) are in NNF. The scheme tree in Figure 2(a),
however, is not in NNF. To see this, let T be the scheme tree in Figure 2(a). Then, MVD(T )
= {Retailer →→ Location, Retailer →→ Item Price Manufacturer Factory, Retailer Item Price →→
Manufacturer Factory, Retailer Item Price Manufacturer →→ Factory}, and FD(T ) = {Retailer
Item → Price}. Now, observe that Manufacturer →→ Factory is a hypergraph-generated MVD that
holds in T (obtained by removing Manufacturer from the hypergraph in Figure 1(a)). Using the
chase [16], it is easy to show that MVD(T ) ∪ FD(T ) does not imply Manufacturer →→ Factory
and therefore that T violates NNF’s Condition 1. �

2.4 Syntactic Covers

Syntactic covers guarantee that every value and every relationship in an associated instance of
a hypergraph can appear in a scheme-tree instance (e.g., that the values and relationships in the

7



instance in Figure 1(b) can appear in the scheme tree instances in Figure 2.) Since we are generating
storage structures, syntactic coverage is a necessary condition for any set of scheme trees generated
for a hypergraph.

In the following, for any subset S of a hypergraph H, we use the notation S to denote the set
∪Ei∈SEi. S is simply the set of attributes in some set of hypergraph edges.

Definition 9 A path of a scheme tree T is a sequence of nodes from the root node of T to a leaf
node of T . Let H be a hypergraph. An attribute A ∈ H appears in a scheme tree T if A is in a
node of T . A hyperedge E ∈ H appears in a scheme tree T if there is a path in T whose nodes
collectively contain all of E’s attributes.2 �

Definition 10 A scheme tree T syntactically covers a set S of hyperedges if (1) Aset(T ) = S,
and (2) every hyperedge in S appears in a path of T . A scheme-tree forest F syntactically covers
a hypergraph H if there are subsets S1, . . . , Sn of hyperedges in H such that S1 ∪ · · · ∪ Sn = H

and there are scheme trees T1, . . . , Tn in F such that Ti syntactically covers Si (1 ≤ i ≤ n). �

Example 6 All three sets of scheme trees in Figures 2(a), 2(b) and 2(c) syntactically cover the
hypergraph in Figure 1(a). As an example of failure to syntactically cover, consider the first scheme
tree in the scheme-tree forest in Figure 2(c). If we remove Price, there is no place for Price values.
Clearly, every attribute must appear in the scheme-tree forest. If we remove Manufacturer, although
there is still a place for Manufacturer values in the second scheme tree in Figure 2(c), there is no
place for the triples that belong to the edge {Retailer, Item, Price}. Clearly, every edge must
appear in a path of some scheme tree. �

3 Extracting a Largest NNF Scheme Tree

The main algorithm of this paper extracts a largest NNF scheme tree from a reduced acyclic
hypergraph and a set F of embedded FDs such that each hyperedge is in BCNF. The algorithm
calls several procedures, which are explained in detail in the following sections. As a summary,
Step 1 reduces the number of input hyperedges. Step 2 creates a join tree and a set of labels for
the acyclic hypergraph. Step 3 constructs a Hasse diagram of a partial order defined on the acyclic
hypergraph’s labels. Step 4 refines the join tree created in Step 2. Step 5 extracts a largest NNF
skeleton from the Hasse diagram. Finally, Step 6 attaches the NNF skeleton’s hyperedges to the
skeleton to make it a largest NNF scheme tree.

2Note that the definition of syntactic coverage for this paper differs from the definition in [18]. In [18] the definition
requires a hyperedge to appear in contiguous nodes in a path of a scheme tree while the definition here does not.
Since we make the universal relation assumption in this paper and we did not for [18], we can relax the condition of
syntactic coverage in [18]. For example, consider a reduced, acyclic hypergraph H = {AV1, ABV2, ABCV3, ACV4}
and an embedded FD AC → B. A NNF scheme tree T for H has A as the root node, A’s child nodes are B and
V1, B’s child nodes are C and V2, and C’s child nodes are V3 and V4. The hyperedge ACV4 does not appear in
contiguous nodes in any path in T . Nevertheless, T is in NNF and T syntactically covers the entire hypergraph under
the definition of syntactic coverage of this paper.
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3.1 The Main Algorithm

Procedure Main

Input: a reduced acyclic hypergraph H and a set F of embedded FDs such that each
hyperedge in H is in BCNF.
Output: a largest NNF scheme tree.
1. Call Procedure MergeHyperedges.
2. Call Procedure CreateJoinTree.
3. Call Procedure ConstructHasseDiagramOf�.
4. Call Procedure MoveLabelsToCenterNodes.
5. Call Procedure ExtractLargestNNFSkeleton.
6. Call Procedure AttachHyperedges. �

3.2 Procedure MergeHyperedges

Two distinct hyperedges Ei and Ej are functionally equivalent if Ei → Ej and Ej → Ei. Theorem 1
of Section 5.1 states that there is no loss of generality to assume that no two distinct functionally
equivalent hyperedges exist. Hence, Procedure MergeHyperedges merges functionally equivalent
hyperedges together to reduce the number of input hyperedges. From now on, we can safely assume
that no two distinct functionally equivalent hyperedges exist.

Procedure MergeHyperedges

Input: a reduced acyclic hypergraph H and a set F of embedded FDs such that each
hyperedge in H is in BCNF.
Output: a reduced acyclic hypergraph H with no distinct functionally equivalent hy-
peredges and the same set F of embedded FDs.
1. Call Algorithm 4.4 on page 66 in [16] to compute E+ for each hyperedge E ∈ H.
2. Put hyperedges Ei and Ej in the same set if E+

i = E+
j .

3. For each set S with two or more hyperedges, do:
Merge all hyperedges in S together to form a new hyperedge and add it to H.
Remove each hyperedge in S from H. �

Example 7 Consider the FDs and hyperedges in Figure 4(a).3 Every FD is embedded in some
hyperedge, every hyperedge is in BCNF, and these hyperedges together constitute an acyclic hyper-
graph. The hyperedges AV2 and AV3 in Figure 4(a) are functionally equivalent because AV +

2 = AV +
3

= AV2V3. Thus, Procedure MergeHyperedges merges AV2 and AV3 together to form a new hyper-
edge AV2V3 and removes AV2 and AV3 from H. A join tree created by Procedure CreateJoinTree
in Section 2.1 for the resulting acyclic hypergraph is shown in Figure 4(b). �

3V1, . . . , V16 are attributes that appear in exactly one hyperedge. Attributes that appear in exactly one hyperedge
are not essential for our algorithm.
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Figure 4: Merging Functionally Equivalent Hyperedges and Creating a Join Tree.

3.3 Procedure ConstructHasseDiagramOf�
We now define a partial order on the labels of the input reduced acyclic hypergraph. Later we
derive a largest NNF scheme tree from the Hasse diagram of this partial order.

Definition 11 Let H be a reduced acyclic hypergraph and F be a set of embedded FDs. Two
distinct labels Li and Lj of H are functionally equivalent if Li → Lj and Lj → Li. Let C1, . . . , Cn

be the equivalence classes4 of labels of H such that all the labels in each equivalence class Ci are
pairwise functionally equivalent. We define � to be a partial order on C1, . . . , Cn in which Ci � Cj

if Li → Lj where Li ∈ Ci and Lj ∈ Cj . �

Lemma 6 of Section 5.3 states that the multiset of labels in any join tree for an acyclic hyper-
graph is the same. Therefore, the partial order � and its derived Hasse diagram are unique for the
input reduced acyclic hypergraph and the embedded FDs.

Procedure ConstructHasseDiagramOf�
Input: a join tree J and a set F of embedded FDs such that each node in J is in
BCNF.
Output: the Hasse diagram of �.
1. Call Algorithm 4.4 on page 66 in [16] to compute L+ for each label L of J .
2. Put labels Li and Lj in the same equivalence class if L+

i = L+
j .

3. For two equivalence classes Ci and Cj, Ci � Cj if L+
i ⊇ L+

j where Li ∈ Ci and

4An equivalence class is a set, not a multiset.
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Lj ∈ Cj.
4. Generate the Hasse diagram of �. �

Example 8 The labels B and C in Figure 4(b) are in the same equivalence class because they are
functionally equivalent. On the other hand, each of the other labels in Figure 4(b) is in a different
equivalence class. The Hasse diagram of � is shown in Figure 5(a), in which {BD} � {B,C},
{BD} � {D}, and {B,C} � {A}, and so on. �
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Figure 5: Constructing the Hasse diagram of � and Moving Labels to Center Nodes.

3.4 Procedure MoveLabelsToCenterNodes

Lemmas 7 and 8 of Section 5.3 together state that all distinct labels of any equivalence class of
labels are incident with a unique common node in a join tree. We call such a node the center node
of the equivalence class. Procedure MoveLabelsToCenterNodes makes all labels in a join tree that
appear in an equivalence class incident with the equivalence class’s center node.

Procedure MoveLabelsToCenterNodes

Input: a join tree J and a set of equivalence classes of labels in J .
Output: a modified join tree J with all labels in J that appear in an equivalence class
of labels incident with the equivalence class’s center node.
1. For each equivalence class C with two or more distinct labels, do:

Locate the center node E of C.
For each edge {Ei, Ej} in J such that Ei ∩ Ej is a label in C, do:

Remove {Ei, Ej} from J .
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If Ei becomes disconnected from E, then
establish an edge {Ei, E} with the label Ei ∩ Ej .

Else
establish an edge {Ej , E} with the label Ei ∩ Ej .

2. For each equivalence class C with exactly one label, do:
Arbitrarily choose one node of an edge in J with that label.
Designate that node as the center node for C.
Repeat the inner for-loop in Step 1. �

Example 9 Since B → C and C → B, we have the equivalence class of labels {B, C}. The center
node for {B, C} is BCV10 in Figure 4(b). The result of applying Procedure MoveLabelsToCenterNodes
on the join tree in Figure 4(b) is shown in Figure 5(b). �

3.5 Procedure ExtractLargestNNFSkeleton

Theorem 2 of Section 5.2 states that if an NNF scheme tree syntactically covers some hyperedges,
the hyperedges must be the nodes in a connected subtree of a join tree. Additionally, Theorem 3 of
Section 5.3 states that to satisfy NNF, this connected subtree cannot have any critical node. Based
on these two theorems, creating a largest NNF scheme tree that contains the greatest number of
hyperedges is the same as creating a largest NNF scheme tree that syntactically covers the nodes
in a connected subtree of a join tree where (1) the number of nodes in the connected subtree is
the greatest and (2) the connected subtree has no critical nodes. To accomplish this goal, we first
find a largest NNF skeleton in the Hasse diagram of � that contains the greatest number of labels.
Then, we attach the hyperedges with which these labels are incident to this skeleton to make it a
largest NNF scheme tree. The definitions of these concepts now follow.

Definition 12 A connected subtree of a join tree T is inductively defined as follows: (1) A single
node in T is a connected subtree of T . (2) If N ′ is a node in a connected subtree T ′ of T and N is
a node in T such that {N , N ′} is an edge in T , then T ′ augmented with the node N and the edge
{N , N ′} is a connected subtree of T . Let T ′ be a connected subtree of a join tree. The notation T ′

denotes the union of all the hyperedges that are nodes in T ′. �

Definition 13 Let H be an acyclic hypergraph and F be a set of embedded FDs in H. Let J be a
join tree for H and S be a connected subtree of J , which is not necessarily a proper subset. A label
L of H belongs to S if there is an edge E in S such that E’s label is L. A node N in S is critical
with respect to S if there are two labels Li and Lj belonging to S such that Li �→ Lj , Lj �→ Li,
and (Li ∪Lj) ⊆ N . If S is actually J , then we may simply call a node of J critical without having
to make any reference to S. �

Definition 14 Given an equivalence class C in the Hasse diagram of �, any tree rooted at C

extracted from the Hasse diagram of � is called a skeleton. Let K be a skeleton and J be a join
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tree. K’s induced set of edges is the set {E is an edge in J : E’s label appears in an equivalence
class in K}. A NNF skeleton is a skeleton whose induced set of edges constitutes a connected
subtree of J and the connected subtree has no critical nodes. �

Definition 15 Let Ci and Ck be two equivalence classes of labels such that Ci is a parent node of
Ck in the Hasse diagram of �. Ck is a nontrivial child of Ci, or Ck � Ci nontrivially, if for each
Li ∈ Ci and for each Lk ∈ Ck, Li �⊆ Lk. On the other hand, if there are labels Li ∈ Ci and Lk ∈ Ck

such that Li ⊂ Lk, then Ck is a trivial child of Ci, or Ck � Ci trivially. �

Theorem 4 of Section 5.4 proves that Procedure ExtractLargestNNFSkeleton indeed outputs
NNF skeletons.

Procedure ExtractLargestNNFSkeleton

Input: the Hasse diagram of � and the modified join tree J .
Output: a largest NNF skeleton.
1. For each equivalence class C of labels in the Hasse diagram of �, do:

Associate with C an integer variable labelCnt and set C.labelCnt = 0.
Associate with C a set of edges in J called myEdges where C.myEdges =
{E is an edge in J : E’s label appears in C}.

2. For each root node R in the Hasse diagram of �, do:
Call Procedure CalculateLabelCnt(R).

3. Select a root node R in the Hasse diagram of � with the greatest labelCnt.
4. Return the NNF skeleton rooted at R. �

Procedure CalculateLabelCnt(C: an equivalence class in the Hasse diagram of �)
1. If C.labelCnt = 0, then

For each nontrivial child D of C, do:
Call Procedure CalculateLabelCnt(D).
C.labelCnt = C.labelCnt + D.labelCnt.

For each trivial child D of C, do:
Call Procedure CalculateLabelCnt(D).

While there is an unmarked trivial child of C, do:
Set maxD to an unmarked trivial child of C with the greatest labelCnt.
Mark maxD.
For each other unmarked trivial child D of C, do:

If the path between D’s center node and maxD ’s center node
in J does not contain any edge in C.myEdges, then

Remove D as a trivial child of C.
For each marked trivial child D of C, do:

C.labelCnt = C.labelCnt + D.labelCnt.
C.labelCnt = C.labelCnt + the size of C.myEdges. �
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Example 10 Steps 1, 3, and 4 of Procedure ExtractLargestNNFSkeleton are straightforward.
Let us focus on Step 2. With respect to the Hasse diagram in Figure 5(a), there are three
root nodes, namely {E}, {A}, and {D}. Suppose the root node R in Step 2 is {A}. Initially,
{A}.labelCnt = 0. Thus, Procedure CalculateLabelCnt enters the if-statement. Then, Proce-
dure CalculateLabelCnt recursively calls itself until it reaches the leaf nodes of the Hasse dia-
gram. The five leaf nodes in the Hasse diagram are {I}, {J}, {BG}, {K}, and {BD}. Since none
of these equivalence classes of labels has a child and since there is only one label in Figure 5(b) that
appears in each of these equivalence classes, {I}.labelCnt = 1, {J}.labelCnt = 1, {BG}.labelCnt =
1, {K}.labelCnt = 1, and {BD}.labelCnt = 1. As Procedure CalculateLabelCnt unwinds from
recursion, since {I} and {J} are nontrivial children of {BF}, {I}.labelCnt and {J}.labelCnt are
added to {BF}.labelCnt. And because there is only one label in Figure 5(b) that appears in {BF},
{BF}.labelCnt = 3, as Figure 6(a) shows. The same reasoning applies to {BH}.labelCnt. Now,
Procedure CalculateLabelCnt unwinds to the equivalence class {B, C} in Figure 5(a). {BF} is
selected first because {BF}.labelCnt is the greatest among all {B, C}’s trivial children. However,
there is a label B in between of {BF}’s center node and the center node of the other trivial child of
{B, C} in Figure 5(b). Thus, the inner for-loop of the while-loop in Procedure CalculateLabelCnt
has no effect. The next trivial child to be selected is {BH}. However, with respect to Fig-
ure 5(b), neither the path between {BH}’s center node and {BG}’s center node nor the path
between {BH}’s center node and {BD}’s center node contains any label B or label C. Thus,
Procedure CalculateLabelCnt removes {BG} and {BD} as trivial children of {B, C}. There
are four labels in Figure 5(b) that appear in {B, C}. Thus, {B, C}.labelCnt = {BF}.labelCnt +
{BH}.labelCnt + 4 = 3 + 2 + 4 = 9. Finally, Procedure CalculateLabelCnt unwinds back to
{A} and there is only one label in Figure 5(b) that appears in {A}. Thus, {A}.labelCnt = {B,
C}.labelCnt + 1 = 9 + 1 = 10, as Figure 6(b) shows. {E}.labelCnt and {D}.labelCnt are calculated
similarly. �

3.6 Procedure AttachHyperedges

The last step of our algorithm attaches hyperedges to a largest NNF skeleton.

Procedure AttachHyperedges

Input: a largest NNF skeleton T and the modified join tree J .
Output: a largest NNF scheme tree.
1. Let S be T ’s induced set of edges in J .
2. For each node E in S, do:

Find the lowest node N in T such that N contains a label L where L ⊆ E.
Let NE = {A ∈ E : A does not appear in any label in any equivalence class of T}.
If NE �= ∅, then

Add NE as a child node to N in T .
3. For each node N in T , do:
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Figure 6: Calculating labelCnt for each Equivalence Class in the Hasse diagram of �.

Merge all labels in N together.
4. For each child node N in T , do:

If an attribute A ∈ N is also in N ’s parent node, then
Remove A from N . �

Example 11 Figure 7(a) shows how Procedure AttachHyperedges turns an NNF skeleton into an
NNF scheme tree. As an example, the lowest node N is {B, C} for the hyperedge ABV1. Thus, V1

is added as a child node to {B, C}. Then, Procedure AttachHyperedges merges all labels together
in every node and removes every redundant attribute. Figure 7(b) shows the connected subtree
defined by the set S from which the NNF scheme tree in Figure 7(a) is constructed. �

4 Experimental Evaluation

As Theorem 4 of Section 5.4 asserts, the algorithms that underlie Procedure MergeHyperedges

and Procedure CreateJoinTree have been well-studied in the literature and have been proved to
run in time polynomial in the size of the input. In addition, Theorem 4 also shows that Proce-
dure AttachHyperedges runs in time linear with respect to the size of the input. Thus, in our experi-
ments, we focus on Procedure ConstructHasseDiagramOf�, Procedure MoveLabelsToCenterNodes,
and Procedure ExtractLargestNNFSkeleton. We have implemented these procedures in a Visual
Basic 2008 program, which first randomly generates join trees and equivalence classes of labels and
then extracts largest NNF skeletons from them. The computer used in our experiments is a Dell
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Figure 7: Turning an NNF Skeleton to an NNF Scheme Tree.

desktop PC with an E6300 Intel Core 2 CPU running at 1.86 and 1.87 GHz with 2045 MBs of
memory. The operating system is Windows Vista Business Edition.

Figure 8 shows the time taken by the simulation program, measured in milliseconds (ms), when
there are 2500, 5000, 7500, and 10000 hyperedges. Although the definition of a join tree does
not require a root node, having a root node in a join tree makes our implementation much easier.
As a result, the terms “parent nodes” and “child nodes” are applicable to our join trees. In our
experiments, each internal node of a join tree randomly has 1 or any number up to maxFanout

child nodes, where maxFanout is a variable that is set to 1, 3, 5, 10, 15, 20, 25, 50, 100 or
200. By increasing the value of maxFanout, more labels are clustered into an equivalence class
of labels. This in turn reduces their number. Fewer equivalence classes of labels results in fewer
comparisons needed to construct the partial order �. Thus, the program takes less time to complete.
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However, Figure 8 also shows that the time needed to complete the program levels off as the value
of maxFanout increases. One of the reasons for this phenomenon is that overhead operations take
more time as the value of maxFanout increases, which cancels out the advantage of increasing
maxFanout.
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Figure 8: Plotting time against maxFanout.

Another observation about Figure 8 is that for each of the 10 values of maxFanout, doubling
the number of hyperedges quadruples the time needed to find a largest NNF skeleton. This gives
a hint that these three procedures as a whole run in time polynomial in the size of the input.

Figure 9 provides further evidence for this claim. For each of the 10 values of maxFanout, we
plot n2/time against n, where n is the number of hyperedges. In all four values of n, the ratio be-
tween n2 and time (i.e., n2/time) is relatively stable for a fixed value of maxFanout. Since our join
trees and equivalence classes of labels are randomly generated, the results in Figure 9 suggest that
given that all other conditions remain the same, on average Procedure ConstructHasseDiagramOf�,
Procedure MoveLabelsToCenterNodes, and Procedure ExtractLargestNNFSkeleton considered as
a whole run in quadratic time in the size of the input.

5 Proofs for Claims

5.1 Acyclic Hypergraphs and Functionally Equivalent Hyperedges

Theorem 1, the main result of this section, states that there is no loss of generality to assume that
no two distinct functionally equivalent hyperedges exist. However, before we can prove Theorem 1,
we need to prove several lemmas.
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Lemma 1 In a join tree T for a reduced, acyclic hypergraph, for any two distinct hyperedges Ei

and Ej and for every attribute A in Ei ∩Ej , the label of each edge along the unique path between
Ei and Ej in T contains A.
Proof. See [3]. �

Let J be a join tree for an acyclic hypergraph H and {Ei, Ej} be an edge in J . We use Ji to
denote the connected subtree of J that contains the node Ei if the edge {Ei, Ej} were removed
from J . Likewise, Jj denotes the connected subtree of J that contains the node Ej if the edge
{Ei, Ej} were removed from J . To demonstrate how to obtain Ji and Jj from J , we may imagine
cutting along the curved dashed lines in Figure 10. Let F be a set of embedded FDs in H. An
FD X → Y ∈ F is inside of Ji if XY ⊆ J i;5 otherwise, X → Y is outside of Ji. Note that it is
possible for an FD to be inside of both Ji and Jj because J i and Jj are not disjoint. Let W+ be
the closure of a set W of attributes. In the following, we say an FD X → Y ∈ F is used in the
derivation of W+ if X → Y is used in the second step of this process: (1) W+ := W initially; (2)
W+ := W+ ∪ Y if X ⊆ W+ and Y − W+ �= ∅.

Lemma 2 Let J be a join tree for a reduced, acyclic hypergraph H and {Ei, Ej} be an edge in
J . Let F be a set of embedded FDs in H. For any set W of attributes such that W ⊆ J i, if
X → Y ∈ F is an FD that is outside of Ji and is used in the derivation of W+, then there is a
subset E′

i of Ei such that E′
i → Y .

Proof. Let X1 → Y1 ∈ F be the first FD that is outside of Ji and is used in the derivation of W+.
Since the FDs used before X1 → Y1 for generating W+ are all inside of Ji, X1 ⊆ J i. Since X1 → Y1

5Recall that the notation J i denotes the union of all the hyperedges that are nodes in Ji.
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is outside of Ji and X1 ⊆ J i, by Lemma 1, it must be that X1 ⊆ Ei. Thus, the basis is established.
Assume the lemma is true for k (k ≥ 1) or less FDs in F that are outside of Ji and are used in the
derivation of W+. Now, consider another FD Xk+1 → Yk+1 ∈ F that is outside of Ji and is used
in the derivation of W+. We first partition Xk+1 into two sets: Xk+1 ∩ J i and Xk+1 − J i. Since
Xk+1 → Yk+1 is outside of Ji, by Lemma 1, Xk+1 ∩J i is a subset of Ei. Now, consider an attribute
A in Xk+1 − J i. Since A ∈ Xk+1 and Xk+1 → Yk+1 is used in generating W+, A ∈ W+. Then,
before applying Xk+1 → Yk+1 it must be that A has been added to W+ by an FD in F that is
outside of Ji. By the induction hypothesis, there is a subset E′

A of Ei such that E′
A → A. Hence,

by forming the union of every E′
A for each A in Xk+1 − J i and Xk+1 ∩ J i, there is a subset E′

i of
Ei such that E′

i → Yk+1. �

Example 12 Consider the edge with the label BG in Figure 4(b). On the different sides of this
edge are the attribute J and the FD B → AV1. The attribute A is added to J+ by B → AV1; and
thus by Lemma 2, the node BHGV7 has a subset, namely B, that functionally determines A (i.e.,
B → A). �

Similar to what we have done for Lemma 2, we define some terms for Lemma 3. Let J be
a join tree for an acyclic hypergraph H and J ′ be a connected subtree of J . Let F be a set of
embedded FDs in H. An FD X → Y ∈ F is inside of J ′ if XY ⊆ J ′; otherwise, X → Y is outside
of J ′. Notationally, we let F+ be the closure of F , F+[E] be the set {X → Y ∈ F+ : E ∈ H and
XY ⊆ E} and F+[J ′] be the set ∪E∈SF+[E] where S is the set {E ∈ H : E is a node in J ′}.

Lemma 3 Let J be a join tree for a reduced, acyclic hypergraph H and J ′ be a connected subtree
of J . Let F be a set of embedded FDs in H. For any set W of attributes such that W ⊆ J ′, F+[J ′]
is sufficient to derive W+ ∩ J ′.
Proof. Since J ′ is a connected subtree of J , removing the nodes (hyperedges) in J ′ from J will
partition the remaining nodes in J into one or more connected subtrees J1, J2, . . . , Jp (p ≥ 1).
Two of them are shown in Figure 11, in which the dashed lines outline the boundaries of Ji, Jj and
J ′. In addition, for each Ji (1 ≤ i ≤ p), there is a node called Ei in J ′ that connects directly to a
node in Ji.

If we only need the FDs in F that are inside of J ′ to derive W+ ∩ J ′, this lemma is vacuously
true. Hence, suppose we need some FDs in F that are outside of J ′ to generate W+ ∩ J ′. We
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now describe a procedure that derives W+ ∩ J ′ by using the FDs in F+[J ′]. Thus, we demonstrate
that F+[J ′] is sufficient to derive W+ ∩ J ′. Without loss of generality, we assume the right-hand
side of each FD in F is a single attribute. For this procedure, we declare F ′, a set of FDs, that is
continually a subset of F+[J ′]. F ′ is initially set to {X → A ∈ F : X → A is inside of J ′}. We
then apply the FDs in F ′ to generate W+ until no more attribute can be added. Assume n (n ≥ 0)
such FDs are applied in this order:

X1 → A1 ∈ F ′,
X2 → A2 ∈ F ′,

...
Xn → An ∈ F ′.

Because these n FDs are all in F ′, A1 ∈ J ′, A2 ∈ J ′, . . . , and An ∈ J ′. At this point, we have to
apply some FDs in F − F ′ in order to continue to add attributes. Assume m (m ≥ 2) such FDs
are applied in this order:

Xn+1 → An+1 ∈ F − F ′,
...

Xn+m−1 → An+m−1 ∈ F − F ′,
Xn+m → An+m ∈ F − F ′.

Without loss of generality, we assume that these m FDs are selected in such a way that An+1, . . . ,
An+m−1 must all be added to W+ before An+m can be added to W+, and also An+1 �∈ J ′, . . . ,
An+m−1 �∈ J ′, and An+m ∈ J ′. Since (Ji − J ′) ∩ (Jj − J ′) = ∅ when i �= j (1 ≤ i, j ≤ p), our
assumption implies that the FDs Xn+1 → An+1, . . . , Xn+m−1 → An+m−1, Xn+m → An+m are all
inside of the same connected subtree Ji. Note that since An+m ∈ J ′ and Xn+m → An+m is outside
of J ′, by Lemma 1, An+m ∈ Ei.

By Lemma 2, for each Xj → Aj (n + 1 ≤ j ≤ n + m), there is a subset Eij of Ei such that
Eij → Aj. We now show by induction that F ′ implies W → Eij (n + 1 ≤ j ≤ n + m). For the FD
Xn+1 → An+1, since Xn+1 → An+1 is outside of J ′ and Xn+1 ⊆ WA1 · · ·An ⊆ J ′, by Lemma 1,
Xn+1 ⊆ Ei. Thus, Xn+1 is the subset of Ei that we want; and obviously F ′ implies W → Xn+1.
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Hence, the basis is established. Now, consider an FD Xk → Ak for some k where n+1 < k ≤ n+m.
With respect to the order of applying the FDs, Xk ⊆ WA1 · · ·AnAn+1 · · ·Ak−1. We now partition
Xk into two sets: Xk ∩ J ′ and Xk − J ′. Since An+1, An+2, . . . , Ak−1 are not in J ′, therefore
the argument for Xk ∩ J ′ is the same as that for Xn+1. That is, Xk ∩ J ′ ⊆ WA1 · · ·An ⊆ J ′,
Xk ∩ J ′ ⊆ Ei and F ′ implies W → Xk ∩ J ′. Now, consider an attribute A ∈ Xk − J ′. Since A ∈ Xk

and A �∈ J ′, A must be added to W+ by an FD before Xk → Ak in the above order. By Lemma 2,
there is a subset EA of Ei such that EA → A; and by the induction hypothesis, F ′ implies W → EA.
Thus, if we let S be the union of every EA for each attribute A ∈ Xk − J ′, then S ∪ (Xk ∩ J ′) is a
subset of Ei, F ′ implies W → S ∪ (Xk ∩ J ′), S ∪ (Xk ∩ J ′) → Xk and S ∪ (Xk ∩ J ′) → Yk. This
means S ∪ (Xk ∩ J ′) is the subset of Ei that we want6 and our induction step is complete. Now, by
setting k = n + m, we have F ′ implies W → Ein+m where Ein+m ⊆ Ei and Ein+m → An+m. Since
An+m ∈ Ei, Ein+m → An+m ∈ F+[Ei] ⊆ F+[J ′]. As the last step, we add Ein+m → An+m to F ′.
Thus, Xn+m → An+m is not essential for adding An+m to W+ ∩ J ′ and hence can be excluded.

We now have excluded one FD in F −F ′ that can contribute to W+∩J ′. Execute this procedure
repeatedly will exclude all FDs in F −F ′ that can contribute to W+∩J ′. Eventually this procedure
will halt since F is finite. Thus, the proof is complete. �

Lemma 4 Let J be a join tree for a reduced, acyclic hypergraph H and F be a set of embedded
FDs in H such that each hyperedge of H is in BCNF. Let Ei and Ej be two distinct nodes in J

such that Ei → Ej . Let P be the unique path between Ei and Ej in J . There exists a node Ek on
P such that Ek �= Ej , Ek contains a key of Ej as a subset, and Ei → Ek.
Proof. Figure 12 shows the path P , in which we designate Ea as the neighboring node of Ej .
Let P ′ be the subpath of P from Ei to Ea, including Ei and Ea. If Ej ⊆ P ′, then by Lemma 1,
Ej ⊆ Ea. This means H is not reduced—a contradiction. Hence, Ej �⊆ P ′. Since P is a connected
subtree of J , by Lemma 3, F+[P ] implies the FD Ei → Ej . Thus, F+[P ] implies Ei → K for every
key K of Ej . If P ′ does not contain any key of Ej as a subset, P ′+ = P ′ where P ′+ is the closure
of P ′ under F+[P ]. Since Ei ⊆ P ′, E+

i ⊆ P ′+. However, Ej �⊆ P ′(= P ′+) implies Ej �⊆ E+
i —a

contradiction. Thus, P ′ contains a key K̂ of Ej as a subset. By Lemma 1, K̂ ⊆ Ea. Therefore,
there exists a node Eb on P such that each of the nodes in between of Ea and Eb on P , including
Ea and Eb, contains K̂ as a subset; and every node to the left of Eb in Figure 12, if there is any,
does not contain any key of Ej . We are left to show Ei → Eb. If Ei and Eb are the same node,
we are done. Assume Ei �= Eb. This implies there is an attribute A ∈ (K̂ − Ei) that does not
appear in any node to the left of Eb on P . Let P ′′ be the subpath of P from Ei to Eb, including
Ei and Eb. Since Ei → K for every key K of Ej, Ei → K̂. Since P ′′ is a connected subtree of J ,
by Lemma 3, F+[P ′′] implies the FD Ei → K̂. Because A does not appear in any node to the left
of Eb, it follows that Ei → K where K → A is a nontrivial FD in F+[Eb]. Since Eb is in BCNF,
K → Eb and thus Ei → Eb. �

6That is, S ∪ (Xk ∩ J ′) is Eik .
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Figure 12: The Path P between Ei and Ej of Lemma 4.

Example 13 Consider the nodes IV15 and BCV10 in Figure 4(b). The FDs in Figure 4(a) imply
the FD IV15 → BCV10. In the path between IV15 and BCV10, the node BEFIV12 contains B, a
key of BCV10. Also, IV15 → BEFIV12. Therefore, BEFIV12 fits the statement of Lemma 4. �

Lemma 5 Let J be a join tree for a reduced, acyclic hypergraph H and F be a set of embedded
FDs in H such that each hyperedge of H is in BCNF. Let P be the unique path between two
distinct nodes Ei and Ej in J where Ei → Ej and for any other node Ek on P such that Ek �= Ei

and Ek �= Ej , Ei �→ Ek. If Ej is not already a neighboring node of Ei, we can rearrange the nodes
on P so that Ej becomes a neighboring node of Ei.
Proof. If Ej is already a neighboring node of Ei, then we are done. Therefore, let us assume Ej

is not a neighboring node of Ei. Like Lemma 4, Figure 12 shows the path P between Ei and Ej

where Ea is the designated neighboring node of Ej on P . As indicated in Figure 13, we show that
the edge {Ea, Ej} can be removed, and we can add an edge between Ei and Ej . By so doing, we
obtain another join tree for H. We now begin our argument. Since Ei �→ Ek for any other node
Ek on P where Ek �= Ei and Ek �= Ej , by Lemma 4, Ei contains a key K of Ej as a subset. Let
L be the label of the edge {Ea, Ej}. By Lemma 1, K ⊆ L. If K ⊂ L, then since Ea is in BCNF,
K → Ea. This means Ei → Ea—a contradiction. Thus, L = K. In addition, if Ei contains an
attribute A ∈ (Ej − K), then by Lemma 1, A ∈ Ea—a contradiction. Thus, we conclude that
Ea ∩ Ej = Ei ∩ Ej = K. As such, we can remove the edge {Ea, Ej} and add an edge between Ei

and Ej, as Figure 13 shows. �

a

E
i

E
j

E

Figure 13: The Rearranged Path of Lemma 5.

Example 14 Consider the nodes ABV1 and BHKV8 in Figure 4(b). These two nodes fit the
statement of Lemma 5, which means we can remove the edge {ABV1, BDV5} and establish another
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edge between ABV1 and BHKV8 with exactly the same label B. �

Theorem 1 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such
that each hyperedge of H is in BCNF. Let C be a set of hyperedges in H such that for any Ei and
Ej in C, Ei → Ej and Ej → Ei under F . The hypergraph (H − C) ∪ {C} is equivalent to H, and
is also acyclic, and each of its hyperedges is in BCNF as well.
Proof. We first consider a simple case, which will be used later in the proof. Suppose J is a join
tree for H, and {Ei, Ej} is an edge in J such that Ei → Ej and Ej → Ei under F . If we create a
new node Ei ∪Ej and add it to J , and remove Ei and Ej from J , and at the same time make every
edge that was incident with Ei or Ej to be incident with this new node, we obtain a join tree for the
hypergraph H ′ = (H − {Ei, Ej}) ∪ {Ei ∪ Ej}. Hence, H ′ is acyclic. To show that H ′ is equivalent
to H, observe that because {Ei, Ej} is an edge in J , Ei → Ej and Ej → Ei, then by Lemma 4,
Ei includes a key of Ej and Ej includes a key of Ei. As such, every key of Ei implies the key of
Ej that is included in Ei. Likewise, every key of Ej implies the key of Ei that is included in Ej .
Therefore, every key of Ei is equivalent to every key of Ej. This means H and H ′ are equivalent.
Now suppose X → A is a nontrivial FD that holds in Ei ∪Ej. By Lemma 3, X → A is implied by
F+[Ei] ∪ F+[Ej ]. Since both Ei and Ej are in BCNF, if X does not include any key of Ei or Ej ,
X = X+ and F+[Ei] ∪ F+[Ej] does not imply X → A—a contradiction. Therefore, X includes at
least one key of Ei or Ej . Since every key of Ei is equivalent to every key of Ej, then X → Ei and
X → Ej, which implies X → (Ei ∪ Ej). Thus, Ei ∪ Ej is in BCNF. By repeatedly applying the
procedure specified in the proof for Lemma 5 and merging two functionally equivalent nodes that
are neighbors, as in the case we just discussed, we can reduce the number of pairs of functionally
equivalent nodes to zero. The proof is then complete. �

5.2 NNF and Connected Subtrees

Theorem 2, the main result of this section, states that if we want to construct an NNF scheme
tree that syntactically covers some hyperedges, the hyperedges must be the nodes in a connected
subtree of a join tree. Otherwise, there will be a violation of NNF.

Theorem 2 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally
equivalent. Let T be an NNF scheme tree that is a syntactic cover of a set S of hyperedges in H.
The hyperedges in S are precisely the nodes of a connected subtree of a join tree for H (i.e., there
exists a join tree J for H such that for any two hyperedges Ep and Eq in S, the path between Ep

and Eq in J only includes S’s hyperedges).
Proof. Let us assume that S’s hyperedges are not the nodes of a connected subtree of any join
tree for H. This assumption implies that S contains two distinct hyperedges Ep and Eq in H such
that the path between Ep and Eq in any join tree for H includes some hyperedges in H − S. Let
J be a join tree for H such that the path P between Ep and Eq in J is the shortest among all the
possible paths between Ep and Eq. Figure 14 shows the path P and a subpath P ′ of P , where the
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endpoints of P ′, namely Ei and Ej , are the only hyperedges on P ′ that are in S. Since Ei and
Ej are the only nodes on P ′ that are in S, removing Ei ∩ Ej from S will generate at least two
connected components Ci and Cj where (Ei−Ej) ⊆ Ci and (Ej −Ei) ⊆ Cj. That is, Ci and Cj are
two connected components of the hypergraph {E − (Ei ∩Ej) : E is a hyperedge of S} − {∅}. This
means S generates the nontrivial MVDs (Ei ∩ Ej) →→ Ci and (Ei ∩Ej) →→ Cj . Since T is an NNF
scheme tree that syntactically covers S and S generates these two MVDs on Aset(T ), by NNF’s
Condition 1, MVD(T ) ∪ FD(T ) implies both of these MVDs on Aset(T ). Nevertheless, if H ∪ F

does not imply neither of them, then T violates NNF’s Condition 1 because MVD(T ) ∪ FD(T )
implies some MVDs on Aset(T ) that do not follow from H ∪ F . This will give us a contradiction,
which means our assumption is wrong.

P

i
E

p
E

j

E
q

P’

E

Figure 14: The Subpath P ′ of Theorem 2.

To show H ∪ F does not imply neither (Ei ∩ Ej) →→ Ci nor (Ei ∩ Ej) →→ Cj , we first establish
several claims. First, we claim that Ei ∩ Ej is a proper subset of every label on the path P ′ in
Figure 14. Assume not; we derive a contradiction as follows. By Lemma 1, Ei ∩ Ej is a subset of
every label on P ′. Let {E′

i, E′
j} be an edge on P ′ such that its label is equal to Ei∩Ej (i.e., E′

i∩E′
j

= Ei ∩ Ej), and as Figure 15 shows, E′
i and E′

j are chosen in such a way that E′
i is closer to Ei

and E′
j is closer to Ej . By our assumption, P ′ includes at least one hyperedge in H − S as a node.

Then, Ei �= E′
i or E′

j �= Ej. Since (E′
i ∩ E′

j) ⊆ Ei, if Ei �= E′
i, then we can remove the edge {E′

i,
E′

j} from J and add an edge between Ei and E′
j to obtain another join tree for H with a shorter

path between Ei and Ej , and thus a shorter path for Ep and Eq—a contradiction. We will obtain
a similar contradiction if E′

j �= Ej . Therefore, Ei ∩Ej is a proper subset of every label on P ′. Our
second claim is that (Ei ∩Ej) �→ A for any A ∈ (P ′− (Ei ∩Ej)). Assume not, then let E be a node
on P ′ that contains an attribute A such that (Ei ∩Ej) → A is nontrivial. Let E′ be a neighboring
node of E on P ′. By our first claim, (Ei ∩ Ej) ⊂ (E ∩ E′). Therefore, A ∈ E and (Ei ∩ Ej) ⊂ E.
Since E is in BCNF and (Ei ∩ Ej) → A is nontrivial in F+[E], (Ei ∩ Ej) → E. Similarly, because
E′ is in BCNF and (Ei ∩ Ej) ⊂ (E ∩ E′), (Ei ∩ Ej) → E′. Thus, E and E′ share a key of Ei ∩ Ej

as a common key and therefore E and E′ are functionally equivalent—a contradiction.
Now, consider removing (Ei∩Ej)+, the closure of Ei∩Ej under F , from H. By our second claim,
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Figure 15: The Edge {E′
i, E′

j} of Theorem 2.

removing (Ei ∩ Ej)+ from the nodes on P ′ does not remove any more attributes than removing
Ei ∩ Ej from the nodes on P ′. By our first claim, all the nodes on P ′ remain connected after
removing Ei ∩Ej from the nodes on P ′. Thus, Ei −Ej and Ej −Ei are both contained as subsets
in the same connected component of the hypergraph {E − (Ei ∩ Ej)+ : E is a hyperedge of H} −
{∅}. Therefore, H ∪ F implies neither (Ei ∩ Ej) →→ Ci nor (Ei ∩ Ej) →→ Cj on Aset(T ) and the
proof is complete. �

Example 15 A scheme tree with B as the root node and DV5 and HKV8 as B’s child nodes is
not in NNF because BDV5—BHKV8 is not a connected subtree in Figure 4(b). Removing B from
the join tree in Figure 4(b) will not separate DV5 and HKV8, as the scheme tree implies. �

5.3 NNF and Critical Nodes

Theorem 3, the main result of this section, ties critical nodes and connected subtrees together. It
states that there exists an NNF scheme tree that syntactically covers the nodes in a connected
subtree S of a join tree if and only if S does not have a critical node with respect to S.

Lemma 6 All join trees for a reduced, acyclic hypergraph have the same multiset of labels.
Proof. Let H be an acyclic hypergraph. If H has only one hyperedge, the join tree for H has
a single node and no label. The empty set of labels is vacuously unique. Assume this lemma
is true if H has k (k ≥ 1) or less hyperedges. Consider the case that H has k + 1 hyperedges.
Since H is acyclic, H has a join tree J . Arbitrarily choose a leaf node EL in J . Since EL is a
leaf node, removing EL from J results in a join tree for the acyclic hypergraph H − {EL}. Since
H − {EL} is acyclic and has k hyperedges, by the induction hypothesis, H − {EL} has a unique
multiset of labels. Consider the edge that connects EL to another node in J . That edge has the
label EL ∩ (∪E∈(H−{EL})E), which is determined only by EL and H − {EL} and not by J . Thus,
reattaching EL back to J gives us a unique multiset of labels for H. �

Lemma 7 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that
each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent.
Let {L1, . . . , Ln} be an equivalence class (a set) of n ≥ 1 functionally equivalent labels of H. For
any i and j such that 1 ≤ i, j ≤ n and i �= j, Li → Lj is nontrivial.
Proof. Assume not; we derive a contradiction as follows. First, observe that since L1, . . . , Ln are
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labels in the same set (not multiset), L1, . . . , Ln are all distinct. So, if there are i and j such that
1 ≤ i, j ≤ n, i �= j and Li → Lj is trivial, Lj ⊂ Li. Since Li is a label, there is an edge {Ei1 , Ei2}
in a join tree for H such that Ei1 and Ei2 are hyperedges in H, and Ei1 ∩ Ei2 = Li. Since Li and
Lj are functionally equivalent, Lj → Li. Since Lj ⊂ Li, Lj → Li, and Ei1 and Ei2 are both in
BCNF, Ei1 and Ei2 share a key of Lj as a common key. This implies Ei1 and Ei2 are functionally
equivalent—a contradiction. �

Lemma 8 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that
each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent.
For any two distinct and functionally equivalent labels Li and Lj of H, there is a unique hyperedge
E ∈ H such that (Li ∪Lj) ⊆ E. Further, Li and Lj are keys of E and there is a connected subtree
like the one in Figure 16(b) in any join tree for H.
Proof. Suppose that H has no hyperedge that includes Li ∪ Lj as a subset. Let J be a join tree
for H. Since Li and Lj are labels of H, there are two nodes Ei and Ej in J such that Li ⊆ Ei and
Lj ⊆ Ej . By our assumption, Lj �⊆ Ei and Li �⊆ Ej. Without loss of generality, Ei and Ej are
chosen in such a way that the path P between them in J is the shortest among all possible paths
in J . As such, except Ej , no node on P includes Lj as a subset. Similarly, except Ei, no node on
P includes Li as a subset. Let Ea be the neighboring node of Ej on P , as Figure 16(a) shows. (It
is possible that Ea and Ei are the same node.) Since Lj �⊆ Ea, there is an attribute A ∈ Lj such
that A �∈ Ea. Additionally, A is not in any node to the left of Ea in Figure 16(a); otherwise by
Lemma 1, A ∈ Ea—a contradiction.
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Figure 16: The Path P between Ei and Ej and the Connected Subtree of Lemmas 8 and 9.

Since P is a connected subtree of J , by Lemma 3, F+[P ] implies the FD Li → Lj. With respect
to Figure 16(a), let P ′ be the subpath of P from Ei to Ea, including Ei and Ea. Since F+[P ]
implies Li → Lj and A ∈ (Ej − P ′), it must be that F+[P ] implies Li → K where K → A is a
nontrivial FD in F+[Ej ]. Since Ej is in BCNF, K → Ej . This implies Li → Ej , which results in
Ei → Ej because Li ⊆ Ei. Similarly, we can show that Ej → Ei. Thus, Ei and Ej are functionally
equivalent—a contradiction.

To show that there is only one hyperedge E ∈ H that includes Li∪Lj as a subset, assume there
are two distinct hyperedges Ei and Ej such that (Li ∪Lj) ⊆ Ei and (Li ∪Lj) ⊆ Ej . Since Li → Lj

is nontrivial and Ei and Ej are both in BCNF, Li → Ei and Li → Ej . This means Ei and Ej share
a key of Li as a common key. Thus, Ei and Ej are two functionally equivalent hyperedges in H—a
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contradiction.
We now show that there is a connected subtree like the one in Figure 16(b) in any join tree for

H. Observe that since Li and Lj are labels of H, there are two other hyperedges Ep and Eq in H

such that Ep includes Li but not Lj as a subset and Eq includes Lj but not Li as a subset. Let Ei

be the neighboring node of E on the path between Ep and E. By Lemma 1, Li ⊆ (Ei ∩ E). Since
Li → Lj is nontrivial, (Li ∪Lj) ⊆ E, and E is in BCNF, Li → E. Assume Li ⊂ (Ei ∩E). Since Ei

is also in BCNF and Li → E, Li → Ei as well. This means Ei and E are functionally equivalent—a
contradiction. Therefore, the label of the edge {Ei, E} is Li, as Figure 16(b) shows. In addition,
if there exists a proper subset L′

i of Li such that L′
i → Li, we will reach the same contradiction

because Li → E. Therefore, Li is a key of E. The same results can be similarly established for Lj

and thus the proof is now complete. �

Lemma 9 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that
each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent.
Let Ci and Cj be two distinct equivalence classes of labels of H such that Cj is a parent node of
Ci in the Hasse diagram of the partial order � of H. Suppose that for each Li ∈ Ci and for each
Lj ∈ Cj, Lj �⊆ Li. There exists a pair of labels (Li, Lj) ∈ Ci × Cj and a unique hyperedge E ∈ H

such that (Li ∪Lj) ⊆ E. Further, Li is a key of E and there is a connected subtree like the one in
Figure 16(b) in any join tree for H.
Proof. Let J be a join tree for H. Assume there is no node in J that includes Li ∪ Lj as a
subset for every pair of labels (Li, Lj) ∈ Ci × Cj. Choose two nodes Ei and Ej in J such that
the path P between Ei and Ej is the shortest under the requirements that Li ⊆ Ei, Lj ⊆ Ej, and
(Li, Lj) ∈ Ci ×Cj. By our assumption, except Ej , no node on P includes Lj as a subset. Similarly,
except Ei, no node on P includes Li as a subset. Let Ea be the neighboring node of Ej on P , as
Figure 16(a) shows. (It is possible that Ea and Ei are the same node.) Since Lj �⊆ Ea, there is
an attribute A ∈ Lj such that A �∈ Ea. Additionally, A is not in any node to the left of Ea in
Figure 16(a); otherwise by Lemma 1, A ∈ Ea—a contradiction.

Since P is a connected subtree of J , by Lemma 3, F+[P ] implies the FD Li → Lj. With respect
to Figure 16(a), let P ′ be the subpath of P from Ei to Ea, including Ei and Ea. Since F+[P ] implies
Li → Lj and A ∈ (Ej − P ′), it must be that F+[P ] implies Li → K where K → A is a nontrivial
FD in F+[Ej]. Since Ej is in BCNF, K → Ej . This implies Li → Ej , which means Li → K for any
key K of Ej. If P ′ does not include a key of Ej as a subset, then P ′+ = P ′ under F+[P ]. However,
since Li ⊆ P ′ and Lj �⊆ P ′, then F+[P ] does not imply Li → Lj—a contradiction. Therefore,
P ′ includes a key K̂ of Ej as a subset. Thus, by Lemma 1, K̂ ⊆ (Ea ∩ Ej). If K̂ ⊂ (Ea ∩ Ej),
then because Ea is in BCNF, Ea and Ej share K̂ as a common key, which means Ea and Ej are
functionally equivalent—a contradiction. Thus, K̂ = Ea ∩ Ej . Observe that Lj �→ K̂; otherwise,
K̂ ∈ Cj and therefore Ei and Ea should have been chosen in the first place—a contradiction. Thus,
Li → K̂ where K̂ is the label of the edge {Ea, Ej} in Figure 16(a). In turn, K̂ → Lj and Lj �→ K̂.
This means Cj is not a parent node of Ci in the Hasse diagram of the partial order � of H—a
contradiction. Therefore, there is a pair of labels (Li, Lj) ∈ Ci × Cj and a hyperedge E ∈ H such
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that (Li ∪ Lj) ⊆ E.
To show that E is unique, we may reuse the third paragraph of the proof for Lemma 8. To show

that Li is a key of E and there is a connected subtree like the one in Figure 16(b) in any join tree
for H, we may reuse the fourth paragraph of the proof for Lemma 8 for the label Li. For the label
Lj, observe that if the label of the edge {E, Ej} is not Lj , then it must be a proper superset of Lj .
Since E and Ej are both in BCNF, if Lj → (E ∩Ej), then E and Ej are functionally equivalent—a
contradiction. Therefore, Lj �→ (E ∩Ej). Since Li is a key of E, Li → (E ∩Ej). This implies Cj is
not a parent node of Ci in the Hasse diagram of the partial order � of H—a contradiction. Thus,
the label of the edge {E, Ej} is Lj. The proof is now complete. �

Example 16 Consider the labels J and B in Figure 4(b). The FD J → B is nontrivial. By
Lemma 9, there is a unique node that contains JB as a subset, which is BFJV11 in Figure 4(b). �

Lemma 10 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally
equivalent. Let J be a join tree for H and S be a connected subtree of J . If there is a node in S

that is critical with respect to S, then there does not exist an NNF scheme tree that syntactically
covers the set of nodes in S.
Proof. Suppose T is an NNF scheme tree that syntactically covers the set of nodes in S. Let E be
such a critical node in S and Li and Lj be two labels belonged to S such that Li �→ Lj, Lj �→ Li,
and (Li ∪ Lj) ⊆ E. Since Li �→ Lj and Lj �→ Li, E must be on the path between Li and Lj ,
as Figure 17 shows. With respect to Figure 17, Li →→ Ci is a hypergraph-generated MVD where
Ci ⊇ (Ei −Li) �= ∅ and Ci is a connected component of the hypergraph {E −Li : E is a hyperedge
of S} − {∅}. Similarly, Lj →→ Cj is a hypergraph-generated MVD where Cj ⊇ (Ej − Lj) �= ∅ and
Cj is a connected component of the hypergraph {E − Lj : E is a hyperedge of S} − {∅}.
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Figure 17: The Labels Li, Lj , and the Critical Node E of Lemma 10.

Since T syntactically covers the set of nodes in S, Li →→ Ci holds for T . Therefore, we need to
test it against NNF’s Condition 1, which stipulates that MVD(T ) and FD(T ) must imply Li →→ Ci.
By Lemma 4.5 in [19] and Lemma 3 of this paper, MVD(T ) and FD(T ) imply Li →→ Ci if and only
if MVD(T ) implies L+

i →→ Ci where L+
i is the closure of Li under F+[S]. Proposition 4.1 in [21]

states that MVD(T ) is equivalent to the join dependency (JD) �{P1, . . . , Pn} where Pk denotes
the union of the nodes in the path Pk of T and P1, . . . , Pn are all the paths in T . In addition,
L+

i →→ Ci is equivalent to the JD �{L+
i Ci, L+

i (S − L+
i Ci)}. (Note that S = Aset(T ), the set of

attributes of T .) Therefore, MVD(T ) implies L+
i →→ Ci if and only if for every path Pk in T , Pk
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⊆ L+
i Ci or Pk ⊆ L+

i (S − L+
i Ci) (see Chapter 8 in [16]). Likewise, MVD(T ) implies L+

j →→ Cj if
and only if for every path Pk in T , Pk ⊆ L+

j Cj or Pk ⊆ L+
j (S − L+

j Cj).
We are now ready to derive a contradiction. We assume Ei, E, and Ej each appears in (not

necessarily distinct) paths Pi, P , and Pj in T respectively. Since Li �→ Lj, there is an attribute
Aj ∈ Lj such that Aj �∈ L+

i . Similarly, since Lj �→ Li, there is an attribute Ai ∈ Li such that
Ai �∈ L+

j . By Lemma 1, Aj �∈ Ci; otherwise Aj ∈ Li—a contradiction. Likewise, Ai �∈ Cj ; otherwise
Ai ∈ Lj—a contradiction. Therefore, Ai �∈ L+

j Cj and Aj �∈ L+
i Ci. Since Ai ∈ Li, Aj ∈ Lj and

(Li ∪ Lj) ⊆ E, Ai and Aj both appear in P—the path in which E appears. Let Ni and Nj be
the (not necessarily distinct) nodes in P that contain Ai and Aj respectively. Since Li �→ Aj and
Lj �→ Ai, Li �→ Nj and Lj �→ Ni. Now, there are four cases to consider.
(I) Li �→ Ei, Lj �→ Ej: By NNF’s Condition 1, Pi ⊆ L+

i Ci or Pi ⊆ L+
i (S − L+

i Ci). Since Li �→ Ei,
there is an attribute A ∈ Ei such that A �∈ L+

i . Since (Ei−Li) ⊆ Ci, A ∈ Ci and thus A �∈ S−L+
i Ci.

Hence, A �∈ L+
i (S − L+

i Ci). Since Ei appears in Pi, A ∈ Pi. Thus, it must be that Pi ⊆ L+
i Ci.

Likewise, Lj �→ Ej implies Pj ⊆ L+
j Cj . Since Ei and E both contain Ai, Pi and P share Ni as a

common node. However, the node Nj must not be a node in Pi; otherwise Aj ∈ Pi and Aj �∈ L+
i Ci

imply Pi �⊆ L+
i Ci—a contradiction. Hence, Nj �= Ni and Nj must be lower than Ni in P ; otherwise

Nj is a node in Pi—a contradiction. This, however, means that Ni is a node in Pj because P and
Pj share Nj as a common node. This implies Ai ∈ Pj . Nevertheless, Ai ∈ Pj and Ai �∈ L+

j Cj imply
Pj �⊆ L+

j Cj—a contradiction.
(II) Li �→ Ei, Lj → Ej: Since Lj → Ej, Lj is a key of Ej; otherwise Ej and its neighboring node in
Figure 17 are functionally equivalent—a contradiction. Thus, with respect to Figure 17, for every
A ∈ (Ej − Lj), A does not appear in any node to the left of Ej; otherwise, by Lemma 1, A ∈ Lj ,
which means Lj is not a key of Ej—a contradiction. Therefore, A �∈ Ci for any A ∈ (Ej −Lj) and
if Li → A for some A ∈ (Ej − Lj), it must be that Li → K where K → A is nontrivial in F+[Ej].
Because Ej is in BCNF, K → Ej . This implies Li → Ej , which means Li → Lj—a contradiction.
Hence, for any A ∈ (Ej − Lj), A �∈ L+

i Ci.
Like in the previous case, Li �→ Ei implies Ni is a node in Pj . For any A ∈ (Ej − Lj), let

N be the node in Pj that contains A. Like Aj , because A �∈ L+
i Ci for any A ∈ (Ej − Lj) and

Ni is a node in Pj , N �= Ni and N must be lower than Ni in Pj . Thus, for each A ∈ (Ej − Lj),
Lj �→ Ancestor(N ) because Ni ⊆ Ancestor(N ) and Lj �→ Ni. Therefore, since Lj → A nontrivially
for each A ∈ (Ej − Lj), T violates NNF’s Condition 2—a contradiction.
(III) Li → Ei, Lj �→ Ej : This case is symmetrical to the previous case.
(IV) Li → Ei, Lj → Ej : As we have already proved, Lj → Ej implies there is an attribute
A′

j ∈ (Ej − Lj) such that Li �→ A′
j. Likewise, Li → Ei implies there is an attribute A′

i ∈ (Ei − Li)
such that Lj �→ A′

i. Let N ′
i and N ′

j be the nodes in T that contain A′
i and A′

j respectively. Since
Li �→ A′

j and Lj �→ A′
i, Li �→ N ′

j and Lj �→ N ′
i . Without loss of generality, we assume Nj = Ni

or Nj is higher than Ni in P . As such, Nj is on both Pi and Pj. Since Nj is on Pi and Li → A′
i

nontrivially, N ′
i must be higher than Nj in Pi because Li �→ Nj; otherwise T violates NNF’s

Condition 2—a contradiction. This implies N ′
i is on both Pi and Pj . Further, since N ′

i is on Pj
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and Lj → A′
j nontrivially, N ′

j must be higher than N ′
i in Pj because Lj �→ N ′

i . This also means N ′
j

is on both Pi and Pj . Thus, Ni, Nj , N ′
i , N ′

j , in this order, are all on the same path. However, this
will make N ′

j ⊆ Ancestor(N ′
i ). We now have a violation of NNF’s Condition 2 because Li → A′

i

nontrivially and Li �→ Ancestor(N ′
i )—a contradiction. �

Lemma 11 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally
equivalent. Let J be a join tree for H and S be a connected subtree of J . If there is not a node in
S that is critical with respect to S, then the Hasse diagram of the partial order � on S’s labels is
a rooted tree.
Proof. For each pair of edges {Ei, E} and {E, Ej} in S, either (Ei ∩E) → (E∩Ej) or (E∩Ej) →
(Ei ∩E); otherwise E, a node in S, is critical with respect to S—a contradiction. Therefore, if the
Hasse diagram is not a rooted tree, it must have a “V-shape.” For example, there are two V-shapes
in Figure 5(a). We now show that a V-shape in the Hasse diagram implies it has a critical node
with respect to S. By this, we obtain a contradiction. Assume such a V-shape is made up by three
equivalence classes Ci, Cj and Ck of functionally equivalent labels in S such that Ci and Cj are
two parent nodes of Ck in the Hasse diagram. We have the following cases to consider.
(I) ∀Li ∈ Ci∀Lk ∈ Ck(Li �⊆ Lk),∀Lj ∈ Cj∀Lk ∈ Ck(Lj �⊆ Lk): Since S is a connected subtree, S

itself is also a join tree. By Lemma 9, there exists a pair of labels (Li, Lki
) ∈ Ci ×Ck and a unique

node Ei ∈ S such that (Li ∪ Lki
) ⊆ Ei. Further, Lki

is a key of Ei. Likewise, there exists a pair
of labels (Lj , Lkj

) ∈ Cj × Ck and a unique node Ej ∈ S such that (Lj ∪ Lkj
) ⊆ Ej. Further, Lkj

is a key of Ej. If Ei �= Ej, then because Lki
and Lkj

are functionally equivalent and Lki
and Lkj

are keys of Ei and Ej respectively, Ei and Ej are functionally equivalent—a contradiction. Hence,
Ei = Ej and Ei is a critical node.
(II) ∀Li ∈ Ci∀Lk ∈ Ck(Li �⊆ Lk),∃Lj ∈ Cj∃Lkj

∈ Ck(Lj ⊂ Lkj
): By Lemma 9, there exists a pair

of labels (Li, Lki
) ∈ Ci × Ck and a unique node Ei ∈ S such that (Li ∪ Lki

) ⊆ Ei. Further, Lki

is a key of Ei. If Lkj
= Lki

, then Ei is a critical node. Assume Lkj
�= Lki

. By Lemma 8, there
is a node Ek of which Lki

and Lkj
are keys. If Ei �= Ek, then since Lki

is a key for both of them,
Ei and Ek are functionally equivalent—a contradiction. Hence, Ei = Ek and thus Lj ⊂ Lkj

⊂ Ei.
Hence, Ei is a critical node.
(III) ∃Li ∈ Ci∃Lki

∈ Ck(Li ⊂ Lki
),∀Lj ∈ Cj∀Lk ∈ Ck(Lj �⊆ Lk): This case is symmetrical to the

previous case.
(IV) ∃Li ∈ Ci∃Lki

∈ Ck(Li ⊂ Lki
),∃Lj ∈ Cj∃Lkj

∈ Ck(Lj ⊂ Lkj
): If Lki

= Lkj
, then either one

of the two nodes of an edge whose label is Lki
is a critical node. If Lki

�= Lkj
, then by Lemma 8,

there is a node Ek of which Lki
and Lkj

are keys. Hence, Ek is a critical node. �

Lemma 12 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally
equivalent. Let J be a join tree for H and S be a connected subtree of J . If there is not a node in
S that is critical with respect to S, then there exists an NNF scheme tree that syntactically covers
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the hyperedges in S.
Proof. By Lemma 11, the Hasse diagram of the partial order � on S’s labels is a rooted tree
T . Suppose Step 2 of Procedure AttachHyperedges finds two nodes Ni and Nj in different paths
of T for a node E in S. Thus, there are labels Li ∈ Ni and Lj ∈ Nj such that (Li ∪ Lj) ⊆ E.
Since Ni and Nj are in different paths of T , Li �→ Lj and Lj �→ Li. This implies E is critical—a
contradiction. Hence, we may run Steps 2, 3 and 4 of Procedure AttachHyperedges on T to obtain
a scheme tree T ′.

We first prove by induction on the number n of nodes in T that every node in S appears in a
path of T ′. If n = 0, then T is empty. This implies S has zero or one node. In the former case,
our claim is vacuously true. In the latter case, the only node of S becomes the only node of T ′. If
n = 1, T has a single node. Then, all the labels in that node are merged together to form the root
node of T ′ and each node in S forms a path in T ′. Therefore, our claim is also true when n = 1.
Assume our claim is true if n ≤ k for some k ≥ 1. Run Procedure MoveLabelsToCenterNodes on
S. Let Tk be an NNF skeleton with k nodes. Consider a child node Nc of a node Np in the Hasse
diagram of � where Np is already a node in Tk. We obtain NNF skeleton Tk+1 by adding Nc as
a child node to Np in Tk. If Nc � Np nontrivially, then by Lemma 9 there are labels Lp ∈ Np,
Lc ∈ Nc, and a unique node E in S such that (Lp ∪ Lc) ⊆ E. If Nc � Np trivially, then there are
labels Lp ∈ Np, Lc ∈ Nc such that Lp ⊂ Lc. Let E′ be the node of an edge with the label Lp such
that if that edge was removed from S, E′ would separate from Lc. Observe that for each L ∈ Nc,
L �⊆ E′. Thus, E′ must be attached to Np. By the induction hypothesis, Lp ⊆ Ancestor(Np) in
T ′. By Lemma 1, the intersection of a label in Np and a label in Nc is a subset of Lp. Therefore,
since Nc is a child node of Np in T , every label in Nc is a subset of Ancestor(Nc) in T ′. This means
that every node in S that is attached to Nc appears in a path of T ′. The induction step is thus
complete. Since we do not add any attribute to T that is not in any node in S, Aset(T ′) = S.
Hence, T ′ syntactically covers the set of nodes in S.

We are left to prove that T ′ is in NNF. Since S is a connected subtree of J , S itself is also a join
tree. Thus, the set of MVDs generated by S is equivalent to �{E1, . . . , Em} where E1, . . . , Em are
the nodes in S [3]. Hence, to prove T ′ satisfies NNF’s Condition 1, we need to show that MVD(T ′)
and FD(T ′) are equivalent to �{E1, . . . , Em} and F+[S]. We stated earlier that MVD(T ′) is
equivalent to �{P1, . . . , Pn} where P1, . . . , Pn are all the paths in T ′ (see the proof for Lemma 10).
Also, observe that FD(T ′) is equivalent to F+[S]. Thus, one direction of the equivalence is easily
established because T ′ syntactically covers the set of nodes in S. For each path P in T ′, consider
P ’s leaf node NE = {A ∈ E : A does not appear in any label in any node of T} for some hyperedge
E ∈ S. Let NE ’s parent node be N . Since E contains a label in N , E → Ancestor(N ) in T ′.
Therefore, P ⊆ E+. By Chapter 8 in [16], T ′ satisfies NNF’s Condition 1.

To prove T ′ satisfies NNF’s Condition 2, observe that by Lemma 3 it is sufficient to only consider
F+[S]. Thus, let X → A be a nontrivial FD in F+[E] for some node E in S. Since E is in BCNF,
X → E. Assume E is attached to a node N in T . It is clear that E → Ancestor(N ) in T ′ and thus
X → E ∪ Ancestor(N ) in T ′. It follows that T ′ satisfies NNF’s Condition 2 as well. �
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Theorem 3 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally
equivalent. Let J be a join tree for H and S be a connected subtree of J . There exists an NNF
scheme tree that syntactically covers the hyperedges in S if and only if there is not a node in S

that is critical with respect to S.
Proof. This theorem follows immediately from Lemmas 10, 11 and 12. �

5.4 Correctness

Theorem 4 Procedure Main of Section 3.1 generates a largest NNF scheme tree from its input in
polynomial time.
Proof. Let T and J respectively be the input NNF skeleton and the input modified join tree
of Procedure AttachHyperedges. We first show that the set S defined in Step 1 of Proce-
dure AttachHyperedges constitutes a connected subtree of J and it does not have a critical node.
By Lemmas 7, 8, and 9, if Nc � Np nontrivially for two nodes Np and Nc in T where Np is the
parent of Nc, then the edges whose labels are in Np and Nc clearly form a connected subtree of
J . On the other hand, if Nc � Np trivially, then there are labels Lp ∈ Np and Lc ∈ Nc such that
Lp ⊂ Lc. As such, we may make an edge with the label Lp to be incident with the center node of
Nc in S. Thus, the edges whose labels are in Np and Nc also form a connected subtree of J .

We now proceed to prove that S does not have a critical node. Assume not, let Li and Lj be
two labels in T such that Li �→ Lj and Lj �→ Li; and let E be a node in S such that (Li ∪Lj) ⊆ E.
As such, E must be on the path between Li and Lj in S, as Figure 17 shows. If there is at least
one label Lk between Li and Lj on that path such that Lk �→ Li and Lk �→ Lj, then the existence
of E will lead to Lk → Li or Lk → Lj—a contradiction. Let Li ∈ Ni and Lj ∈ Nj and assume Ni

and Nj are nodes in T that have different parents. Then, there is at least one label Lk between
Li and Lj in S such that Lk �→ Li and Lk �→ Lj—a contradiction. Hence, Ni and Nj are child
nodes of the same parent Nk in T . As such, Ni �� Nj , Nj �� Ni, Nk �� Ni, and Nk �� Nj . Since
Nk is the parent of Ni and Nj in T , there are nodes Ei and Ej in S such that (Lki

∪Li) ⊆ Ei and
(Lkj

∪ Lj) ⊆ Ej where Lki
, Lkj

∈ Nk, Li ∈ Ni and Lj ∈ Nj. We now have the following cases to
consider.
(I) Ni � Nk nontrivially and Nj � Nk nontrivially: Assume Ei = Ej . By Lemma 9, Li and Lj are
keys of Ei. This implies Ni � Nj and Nj � Ni—a contradiction. Hence, Ei �= Ej. As such, there
is a label Lk ∈ Nk that is in between of Li and Lj in S—a contradiction. Hence, there is no node
in S that is critical.
(II) Ni � Nk nontrivially and Nj � Nk trivially: Assume Ei = Ej . By Lemma 9, Li is a key of Ei.
This implies Ni � Nj—a contradiction. Hence, Ei �= Ej. We may now proceed like in the previous
case from this point on.
(III) Ni � Nk trivially and Nj � Nk nontrivially: This case is symmetrical to the previous case.
(IV) Ni � Nk trivially and Nj � Nk trivially: Suppose there is a label Lk ∈ Nk in between of Ni’s
center node and Nj ’s center node. Then, there is a label Lk ∈ Nk in between of Li and Lj in S—a

32



contradiction. Hence, there is not a label Lk ∈ Nk in between of Ni’s center node and Nj ’s center
node. However, in this case Procedure CalculateLabelCnt at best selects one of Ni and Nj or at
worst selects none of Ni and Nj in constructing a largest NNF skeleton. Thus, S has no critical
nodes.

To prove that Procedure Main generates a largest NNF scheme tree, we show that if we add
one more node (hyperedge) in J to S, S will have a critical node. Now, suppose we add one more
equivalence class C of labels in the Hasse diagram of � to T . Because of Theorem 2, C must
be connected to an equivalence class CT already in T . Further, C cannot be a child node of CT

in the Hasse diagram of � (i.e., C �� CT ); otherwise, Procedure CalculateLabelCnt has already
considered C in constructing T . Suppose CT �� C. If the label of the edge between C’s center
node and CT ’s center node is in C, then CT ’s center node is a critical node. If the label of the
edge between C’s center node and CT ’s center node is in CT , then C’s center node is a critical
node. Now suppose CT � C. Observe that CT cannot be a root node in the Hasse diagram of �;
otherwise CT �� C. Then, there is a V-shape in T , which means CT ’s center node is a critical node.
�

5.5 Complexity Analysis

We now prove by a worst-case analysis that Procedure Main runs in time polynomial in the size
of the input. We first consider the two preparatory procedures: Procedure MergeHyperedges and
Procedure CreateJoinTree. Procedure MergeHyperedges uses Algorithm 4.4 on page 66 in [16]
in its computation. This algorithm has time complexity O(p), where p is the number of symbols
required to represent the given set of FDs. Thus, generating the closure E+ of one hyperedge E

takes O(p) time. For q ≥ 1 hyperedges, it takes O(pq) time to compute the p closures of the q

hyperedges. Let n be the number of symbols required to represent the input acyclic hypergraph
and the set of embedded FDs. It is easy to see that p and q are proportional to n. Hence, it
takes O(n2) time to compute the q closures. Now, consider merging two hyperedges when their
closures are equal. Given q > 1 closures over r > 1 distinct attributes, we compute the number
of comparisons in the worst case that no pair of closures is equal. First, we use a matrix with q

rows and r columns to represent these q closures where cell(i, j)—the cell at row i and column
j—is equal to 1 if closure Ci has attribute Aj ; otherwise, cell(i, j) is equal to 0. Filling up this
matrix obviously takes O(n) time. With this matrix, closure Ci is equal to closure Cj if and only
if cell(i, 1) = cell(j, 1), cell(i, 2) = cell(j, 2), . . . , and cell(i, r) = cell(j, r). Thus, checking whether
Ci = Cj takes r comparisons. Proving closure C1 is not equal to any other closure therefore takes
(q − 1)r comparisons. For closure C2, it similarly takes (q − 2)r comparisons. The same reasoning
applies to all the other closures. Hence, it takes (q−1)r+(q−2)r+· · ·+r = q(q−1)r/2 comparisons
to prove that no closure is equal to another closure. Since r is also proportional to n, it takes O(n3)
time to show that no pair of closures is equal. As stated in [24], a straightforward implementation
for Procedure CreateJoinTree runs in time quadratic in the size of the input acyclic hypergraph.
Hence, both Procedure MergeHyperedges and Procedure CreateJoinTree run in polynomial time
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with respect to n.
As for Procedure ConstructHasseDiagramOf�, Procedure MoveLabelsToCenterNodes, and

Procedure ExtractLargestNNFSkeleton, our experiments strongly indicate that these three pro-
cedures considered as a whole run in time quadratic in the number of hyperedges. However, since the
hyperedges and equivalence classes of labels are generated randomly, this can only be considered as
an average-case complexity. For a worst-case analysis of Procedure ConstructHasseDiagramOf�,
let n be the number of symbols required to represent the input acyclic hypergraph and the set of
embedded FDs. Observe that the number of labels is one less than the number of nodes (hyper-
edges) in any join tree. Hence, sorting functionally equivalent labels in a join tree into equivalence
classes is similar to merging functionally equivalent hyperedges in an acyclic hypergraph. Further,
for two distinct labels Li and Lj , L+

i ⊂ L+
j , L+

j ⊂ L+
i , and L+

i = L+
j can all be tested successively in

the same pass. Thus, sorting labels into equivalence classes and generating the partial order � can
be done at the same time. Therefore, Procedure ConstructHasseDiagramOf� at most takes O(n3)
time. Procedure MoveLabelsToCenterNodes at most reorganizes every edge in a join tree once.
Thus, Procedure MoveLabelsToCenterNodes runs in time linear in the number of labels in a join
tree, which is proportional to n. The time complexity of Procedure ExtractLargestNNFSkeleton

clearly depends on the time complexity of Procedure CalculateLabelCnt, which is recursive. This
recursive procedure visits each equivalence class of labels in the Hasse diagram of � once as it
calculates its labelCnt. Hence, Procedure CalculateLabelCnt runs in time linear in the number of
equivalence classes of labels, which again is proportional to n. Obviously, each other step of Proce-
dure ExtractLargestNNFSkeletonhas time complexity O(n). Hence, Procedure ExtractLargest-
NNFSkeleton has time complexity O(n). For Procedure AttachHyperedges, note that a reasonable
implementation of a label has two pointers that point at the two nodes (hyperedges) to which it
connects. Thus, given an NNF skeleton, finding the set S of Step 1 in Procedure AttachHyperedges
takes time linear in the number of labels in the NNF skeleton. Attaching them to the NNF skeleton
then also takes time linear in the number of labels in the skeleton, which is proportional to n. �

6 Concluding Remarks

In this paper we presented a polynomial-time algorithm to generate a largest redundancy-free XML
storage structure from an acyclic hypergraph and a set of embedded FDs where each hyperedge
is in BCNF. The algorithm generates a largest NNF scheme tree, which can then be mapped to
a redundancy-free XML storage structure. Besides reducing space requirements and overcoming
update anomalies, the algorithm also determines a largest set of hyperedges such that no join is
needed to navigate from one data item to another within the storage structure. Further, when
applied repeatedly on hypergraph edges not already included in generated scheme-trees, the al-
gorithm always yields redundancy-free XML storage structures and often, especially in practical
cases, yields the fewest. This, then, also reduces the join cost to navigate from any data item within
the application to any other.
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It is an open problem to determine whether a polynomial-time algorithm exists to generate a
minimum number of scheme trees from an acyclic hypergraph and a set of embedded FDs where
each hyperedge is in BCNF. However, since NNF is equivalent to BCNF when only flat relation
schemes are allowed [19], BCNF’s well-known intractable problems might carry over to this open
problem. For example, Theorem 4.22 in [14] states that “The problem of finding a lossless join
and nonredundant decomposition of schema R that is in BCNF with respect to a set F of FDs
over R, and such that the number of relation schemas in R is less than or equal to some natural
number k ≥ 1 is NP-hard.” It suffices to say that at this point more research is needed for this
open problem.

Acknowledgements
The work described in this paper was partially supported by Strategic Research Grants 7001945
and 7002140 of City University of Hong Kong. D.W. Embley was supported in part by the National
Science Foundation under grant numbers 0083127 and 0414644.

References

[1] Reema Al-Kamha. Conceptual XML for Systems Analysis. PhD dissertation, Department of
Computer Science, Brigham Young University, Provo, Utah, June 2007.

[2] Marcelo Arenas and Leonid Libkin. A normal form for XML documents. ACM Transactions
on Database Systems, 29:195–232, 2004.

[3] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of
acyclic database schemes. Journal of the ACM, 30(3):479–513, 1983.

[4] Ronald Bourret. XML and databases. September 2005.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[5] Ronald Bourret. XML database products. March 2007.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm.

[6] Yi Chen, Susan B. Davidson, Carmem S. Hara, and Yifeng Zheng. RRXF: Redundancy
reducing XML storage in relations. In Proceedings of 29th International Conference on Very
Large Data Bases, pages 189–200, Berlin, Germany, September 9-12 2003.

[7] David W. Embley and Wai Yin Mok. Developing XML documents with guaranteed “good”
properties. In Proceedings of the 20th International Conference on Conceptual Modeling, pages
426–441, Yokohama, Japan, November 27-30 2001.

[8] Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A simplified universal relation
assumption and its properties. ACM Transactions on Database Systems, 7(3):343–360, 1982.

35



[9] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia Neumann,
Robert Schiele, and Till Westmann. Anatomy of a native XML base management system.
The VLDB Journal, 11(4):292–314, 2002.

[10] Nathan Goodman, Oded Shmueli, and Y. C. Tay. GYO reductions, canonical connections, tree
and cyclic schemas and tree projections. In Proceedings of the Second ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, pages 267–278, Atlanta, Georgia, March 21-23
1983.

[11] Gang Gou and Rada Chirkova. Efficiently querying large XML data repositories: A survey.
IEEE Transactions on Knowledge and Data Engineering, 19(10):1381–1403, 2007.

[12] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lakshmanan, Andrew Nier-
man, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana, Yuqing
Wu, and Cong Yu. TIMBER: A native XML database. The VLDB Journal, 11(4):274–291,
2002.

[13] Solmaz Kolahi and Leonid Libkin. XML design for relational storage. In Proceedings of the
16th International Conference on World Wide Web, pages 1083–1092, Banff, Alberta, Canada,
May 8-12 2007.

[14] Mark Levene and George Loizou. A Guided Tour of Relational Databases and Beyond.
Springer, 1999.

[15] Leonid Libkin. Normalization theory for XML. In Proceedings of the 5th International XML
Database Symposium, pages 1–13, Vienna, Austria, September 23-24 2007.

[16] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[17] Wai Yin Mok. A comparative study of various nested normal forms. IEEE Transactions on
Knowledge and Data Engineering, 14(2):369–385, 2002.

[18] Wai Yin Mok and David W. Embley. Generating compact redundancy-free XML documents
from conceptual-model hypergraphs. IEEE Transactions on Knowledge and Data Engineering,
18(8):1082–1096, 2006.

[19] Wai Yin Mok, Yiu-Kai Ng, and David W. Embley. A normal form for precisely characterizing
redundancy in nested relations. ACM Transactions on Database Systems, 21(1):77–106, 1996.

[20] Matthias Nicola and Bert Van der Linden. Native XML support in DB2 universal database. In
Proceedings of the 31st International Conference on Very Large Data Bases, pages 1164–1174,
Trondheim, Norway, August 30 - September 2 2005.
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