
AUTOMATING MINI-ONTOLOGY GENERATION FROM CANONICAL TABLES

by

Stephen G. Lynn

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2008

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Stephen Lynn

This thesis proposal has been read by each member of the following graduate committee and by

majority vote has been found to be satisfactory.

Date

__
David W. Embley, Chair

Date

__
Deryle Lonsdale

Date

__
Dan Ventura

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Stephen Lynn in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
University library.

Date

__
David W. Embley
Chair, Graduate Committee

Accepted for the Department __
Parris Egbert
Graduate Coordinator

Accepted for the College __
Thomas W. Sederberg
Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

Automating Mini-Ontology Generation from Canonical Tables

Stephen Lynn

Department of Computer Science

Master of Science

In this thesis work we develop and test MOGO (a Mini-Ontology GeneratOr.) MOGO

automates the generation of mini-ontologies from canonicalized tables of data. This will help

anyone trying to organize large amounts of existing data into a more searchable and accessible

form. By using a number of different heuristic rules for selecting, enhancing, and modifying

ontology elements, MOGO allows users to automatically, semi-automatically, or manually

generate conceptual mini-ontologies from canonicalized tables of data. Ideally, MOGO operates

fully automatically while allowing users to intervene to direct and correct when necessary so that

they can always satisfactorily complete the translation of canonicalized tables into mini-

ontologies. Experimental results show that MOGO is able to automatically identify the concepts,

relationships, and constraints that exist in arbitrary tables of values with a relatively high level of

accuracy. This automation significantly reduces the work required to translate canonicalized

tables into mini-ontologies.

TABLE OF CONTENTS

List of Figures ... vii

Chapter 1: Introduction ... 1

Chapter 2: Related Work .. 4

Chapter 3: Mini-Ontology Generation .. 6

3.1 Auxiliary Services ... 8

3.1.1 Lexical Service ... 8

3.1.2 Data Frame Library Service ... 11

3.1.3 Name Finding Service.. 12

3.2 Concept/Value Recognition .. 12

3.3 Relationship Discovery ... 21

3.4 Constraint Discovery .. 28

Chapter 4: Experimental Results .. 33

4.1 Concept/Value Recognition .. 33

4.2 Relationship Discovery ... 34

4.3 Constraint Discovery .. 35

4.4 Results ... 35

v

4.5 Issues ... 36

Chapter 5: Conclusions and Future Work ... 39

5.1 Future Work .. 39

5.1.1 Linguistic Processing ... 39

5.1.2 Data Frame Library .. 40

5.1.3 Domain Specific Algorithms ... 40

5.1.4 MOGO as Part of a Semantic Web Annotation System 40

Bibliography ... 41

Appendix A – Evaluation Tables .. 43

vi

LIST OF FIGURES

Figure 1. Sample Table. ... 2

Figure 2. Sample mini-ontology, produced by MOGO for the table in Figure 1. 3

Figure 3. XML version of canonicalized table. .. 9

Figure 4. Graphical view of canonicalized sample table. ... 10

Figure 5. Sample table where values "belong" to their labels. ... 14

Figure 6. Object sets with values. ... 14

Figure 7. Object sets that the second algorithm creates. ... 16

Figure 8. Sample table with label column span. ... 17

Figure 9. Canonicalized version of sample table in Figure 8. .. 17

Figure 10. Object sets that algorithm three creates. .. 18

Figure 11. Sample table of car parts. .. 19

Figure 12. Object sets the fourth algorithm creates. ... 19

Figure 13. Object sets created by final algorithm. .. 20

Figure 14. Discovered object sets and value assignments. ... 21

Figure 15. Relationship sets from dimension trees. ... 22

Figure 16. Relationship sets after linguistic processing. ... 24

Figure 17. Relationship sets after data frame recognizers. ... 25

Figure18. Sample canonicalized table with nested year labels. .. 26

Figure19. Relationship sets for nested label table after data frame recognizers. 26

vii

viii

Figure 20. Relationship sets after processing augmentations. .. 27

Figure 21. Mini-ontology results from fragment merge. ... 28

Figure 22. Mini-ontology with generalization/specialization constraints. 29

Figure 23. Mini-ontology with computed value constraint. ... 30

Figure 24. Mini-ontology with functional constraints. ... 31

Figure 25. Final mini-ontology MOGO produces. ... 32

Table 1. Precision and recall values for evaluation tables. ... 36

CHAPTER 1: INTRODUCTION

 From libraries filled with millions of books to the Internet accessible to anyone

with a web browser, the amount of information available in the world is growing

exponentially. With this information explosion comes new challenges in organizing and

finding information that is relevant to a user’s needs. Most of the available information

does not follow any consistent format or structure, making it difficult to extract in a way

that supports queries beyond common keyword searching. One possible solution to this

problem is structuring the information on the Internet into standardized ontologies which

represent the inherent concepts, relationships, and constraints found in the information.

Exposing the information in an ontological model enables an entire new class of search

algorithms allowing queries to be expressed more completely and more explicitly, well

beyond anything currently available in today’s standard keyword searches.

Few use ontology-based representations to organize information on the Internet

because creating an ontology takes too much time and effort and requires a high degree

of expertise. TANGO [21] is a project which will reduce the time, effort, and degree of

expertise needed by automating the process of creating an ontology from the concepts,

relationships, and constraints found in sets of tabular data. As the second component of

the overall TANGO project, MOGO (a Mini-Ontology GeneratOr) develops and

implements the necessary algorithms and user interfaces for automatically, semi-

automatically, or manually generating mini-ontologies from canonicalized tables of data.

(The first component of the TANGO project interprets raw tables found on the web and

elsewhere and reorganizes them as canonical tables. The third component merges a set of

1

mini-ontologies into a large ontology representing a body of knowledge that is usable as a

means of organizing information on the Internet.)

Region and State Information
Location Population (2000) Latitude Longitude
Northeast 2,122,869
 Delaware 817,376 45 -90
 Maine 1,305,493 44 -93
Northwest 9,690,665
 Oregon 3,559,547 45 -120
 Washington 6,131,118 43 -120

Figure 1. Sample Table.

Given a table like the one in Figure 1, MOGO generates a conceptual model

(mini-ontology) that accurately represents the table of data by iterating through a set of

heuristics. Each heuristic deals with one of three main tasks: concept recognition,

relationship discovery, or constraint discovery. During each step of the process, MOGO

populates the conceptual model with the data in the original table. Figure 2 shows the

conceptual model (mini-ontology) MOGO generates from the table in Figure 1. The four

states in Figure 1 are members of the State object set in Figure 2. The two regions are in

the Region object set. Together the regions and states constitute the elements of the

Location object set. The states aggregated together constitute the different regions. The

values in the population, latitude, and longitude columns of the table in Figure 1 are

members of the Population, Latitude, and Longitude object sets respectively. Latitude

and longitude values aggregated together constitute the Geographic Coordinate object

set. For each location there are associated populations and geographic coordinates.

2

Figure 2. Sample mini-ontology, produced by MOGO for the table in Figure 1.

Our contribution is a tool, called MOGO, that accurately generates mini-

ontologies from canonicalized tables of data automatically, semi-automatically, or

manually. This tool is unique in that it combines both spatial and linguistic clues for

generating the conceptual model, and it is easily extensible, allowing the addition of new

algorithms at run time without the need for program recompilation.

The remainder of this thesis contains an overview of previous work and how it

relates to this project. After that, we provide a detailed implementation description

including an architectural overview, as well as detailed explanations of each of the

heuristics MOGO uses to generate conceptual models. We conduct an evaluation study

of MOGO on a set of randomly chosen tables and present precision and recall results in

the areas of concept/value recognition, relationship discovery, and constraint discovery.

3

CHAPTER 2: RELATED WORK

 Automating the creation of ontologies has become a widely researched area over

the past few years, and researchers from many different backgrounds have contributed a

variety of solutions. A common approach in the area of natural language processing

(NLP) attempts to “learn” ontologies by finding the terms, concepts, relations, and

concept hierarchies existing in large collections of unstructured text documents. The lack

of structure and appropriate metadata in these documents has so far made these

approaches less than accurate, thus requiring significant human post-processing before

the results can actually be used [5]. These approaches rely on a variety of methods to

identify concepts in free form text documents including: word co-occurrence [9], formal

concept analysis [23] for extracting concept hierarchies [6], and even fuzzy logic

principles [20]. These methods often result in concept recognition but do little by way of

understanding the relationships and constraints between these concepts. Our approach

differs from typical NLP approaches by using tabular data as the source information.

Using tabular data is useful in the creation of ontologies because the data has been

structured by humans into a form representing the relationships found in the data. This

structure makes the automatic discovery of relationship information much more effective

than algorithms based solely on unstructured text documents.

Some researchers in the area of reverse engineering have worked on the problem

of automatic generation of ontologies. Benslimane et al. [2] focus on generating OWL

ontologies using HTML web forms in conjunction with the database schema associated

with the forms. While this method shows promise, their approach differs from ours in

that it relies on access to an underlying database schema and is based on web forms rather

4

than tables. Significant work has been done over the years on reverse engineering

databases into conceptual models [1, 4, 7, 13, 15, 17, 19]. This work has focused on

using an existing database schema and deriving the concepts, relationships, and

constraints from the information implicit in the schema. While these projects have an

output goal similar to MOGO (generating conceptual models), the input data is

drastically different in that a database schema is a highly formalized structure which

significantly increases the predictability of the data. In the case of MOGO, tables can

have an arbitrary number of dimensions (unlike databases schemas which deal

exclusively with tables having only column headers), and for MOGO there are no

guarantees about the uniformity of table data values.

Pivk et al. [18] have approached automatic ontology creation in a manner similar

to MOGO. Their approach (implemented as a system called TARTAR) uses tabular data

as the input in the same way MOGO does, with the eventual output being an ontology

representation using F-Logic frames. F-Logic frames have their roots in object-oriented

program modeling and constitute a formal way to represent object identity, complex

objects, inheritance, polymorphic types, query methods, and encapsulation [16].

TARTAR focuses primarily on using statistical methods for string recognition and

grouping to discover concepts and relationships in a table. Our approach makes use of

some similar pattern matching heuristics but also includes a strong emphasis on heuristics

employing linguistic clues to discover concepts, relationships, and constraints in a table.

5

CHAPTER 3: MINI-ONTOLOGY GENERATION

 MOGO takes as input canonicalized tables of data based on Wang notation [22].

This notation preserves the labels found in the source table as well as their associated

data values. The notation organizes label information in simple data structures called

dimensions. Each dimension corresponds to a different axis of the table similar to the

different axes of a multi-dimensional array. Combining these dimensions allows every

data cell to be referenced using an element from each dimension. Because Wang

notation can represent any set of tabular data independent of layout, MOGO is agnostic to

the data’s original form.

 To further enhance MOGO’s ability to produce a useful mini-ontology, we

enhance standard Wang notation so information beyond row and column labels and data

values is preserved in a canonicalized form. These enhancements include the

identification of a table’s title, caption, and footnotes as well as row, column, and value

augmentations such as units of measure. For practical reasons we also keep track of the

original source URL of the document.

 Based on the canonicalized input data, MOGO tries to produce a mini-ontology

that conforms to the OSM data modeling language [12]. OSM provides a standard way of

representing concepts, relationships, and constraints. Thus the input to MOGO is a

canonicalized table in an XML document, and the output of MOGO is a conceptual

model in OSM. MOGO uses the following basic steps to automatically generate a mini-

ontology:

6

1. Concept/Value Recognition: MOGO extracts the set of concepts found in each of
the dimensions, and associates the table’s data values with the appropriate
concepts.

2. Relationship Discovery: MOGO adds relationship information to the concepts
using structural and linguistic clues.

3. Constraint Discovery: MOGO adds constraint information to the mini-ontology
by examining the table’s data values.

MOGO performs all of these steps automatically and allows the user to: accept the mini-

ontology without review, make adjustments to the mini-ontology, or manually rebuild the

mini-ontology.

 To illustrate how MOGO works, we use the table of geopolitical data in Figure 1

as an example. We compiled a small amount of data from multiple tables to create a

single sample table that illustrates the various facets of MOGO’s processing abilities.

Figure 3 shows the sample table in Figure 1 in canonicalized form in an XML document.

The input XML must validate against an XML-Schema specification previously

developed by others as part of the TANGO project. The Table tag contains a number of

attributes useful to the overall TANGO project for uniquely identifying different tables.

It also contains a title attribute which contains the table’s title if there is one. Each

element in the XML document has an object identifier (OID) for uniquely identifying the

different nodes. CategoryNodes contain all of the labels found in the table. The

CategoryParentNodes section captures the tree structure of the labels in each dimension.

The DataCells section contains all of the data values in the table as well as references

back to the labels that give the values a meaningful context. The final section,

Augmentations, describes all of the augmentations found in the table which can include

row, column, data, or table augmentations such as footnotes, values in labels (like the

value 2000 in Figure 1), and units of measure. MOGO uses JAXB 2.0, an XML binding

7

framework available as part of Java 6, to read and validate canonicalized XML input and

convert that input into simple Java objects.

 Figure 4 shows a graphical representation of the canonicalized table in Figure 3.

Each dimension of the table forms a tree structure with the depth of the tree determined

by how many levels of label nesting exist in the dimension. The second dimension in the

canonicalized table has no label value so a placeholder label of “[Dimension2]” is used.

Each label in the dimension represents a node in the tree and connects to other tree nodes

using a solid black line. Data values, at the bottom of the figure, connect to one node

from each dimension using a dashed line. The dotted line connecting the “Population”

node and the value “2000” indicates that the “2000” is an augmentation of the

“Population” node. The title of the table is also captured and marked as such.

3.1 Auxiliary Services

 Many of MOGO’s algorithms rely on access to a base set of common services.

These services provide access to basic lexical information and data frame classification

operations.

3.1.1 Lexical Service

 Many of the algorithms MOGO uses require access to external lexical

information. Rather than tie the system directly to a specific implementation of some

lexical resource, MOGO establishes an implementation-independent lexical service

interface (in the form of a Java interface) to access lexical information. This Java

interface defines what operations this service can perform, what parameters are required

for each operation, and what information will be returned by each operation.

8

<InterpretedTable>
 <Table TableOID=“Table1” Title=“Region and State Information” Number=“1” DocumentCitation=““>
 <CategoryNodes>
 <CategoryNode CategoryNodeOID=“C1” Label=“Location” />
 <CategoryNode CategoryNodeOID=“C1.1” Label=“Northeast” />
 <CategoryNode CategoryNodeOID=“C1.1.1” Label=“” />
 <CategoryNode CategoryNodeOID=“C1.1.2” Label=“Delaware” />
 <CategoryNode CategoryNodeOID=“C1.1.3” Label=“Maine” />
 <CategoryNode CategoryNodeOID=“C1.2” Label=“Northwest” />
 <CategoryNode CategoryNodeOID=“C1.2.1” Label=“” />
 <CategoryNode CategoryNodeOID=“C1.2.2” Label=“Oregon” />
 <CategoryNode CategoryNodeOID=“C1.2.3” Label=“Washington” />
 <CategoryNode CategoryNodeOID=“C2” Label=“” />
 <CategoryNode CategoryNodeOID=“C2.1” Label=“Population” />
 <CategoryNode CategoryNodeOID=“C2.2” Label=“Latitude” />
 <CategoryNode CategoryNodeOID=“C2.3” Label=“Longitude” />
 </CategoryNodes>
 </Table>
 <CategoryParentNodes>
 <CategoryParentNode CategoryParentNodeOID=“C1”>
 <CategoryNodes>
 <CategoryNode CategoryNodeOID=“C1.1” />
 <CategoryNode CategoryNodeOID=“C1.2” />
 </CategoryNodes>
 </CategoryParentNode>
 <CategoryParentNode CategoryParentNodeOID=“C2”>
 <CategoryNodes>
 <CategoryNode CategoryNodeOID=“C2.1” />
 <CategoryNode CategoryNodeOID=“C2.2” />
 <CategoryNode CategoryNodeOID=“C2.3” />
 </CategoryNodes>
 </CategoryParentNode>
 <CategoryParentNode CategoryParentNodeOID=“C1.1”>
 <CategoryNodes>
 <CategoryNode CategoryNodeOID=“C1.1.1”/>
 <CategoryNode CategoryNodeOID=“C1.1.2”/>
 <CategoryNode CategoryNodeOID=“C1.1.3”/>
 </CategoryNodes>
 </CategoryParentNode>
 . . .
 </CategoryParentNodes>
 <DataCells>
 <DataCell DataCellOID=“D1” DataValue=“2,122,869”>
 <CategoryLeafNode CategoryLeafNodeOID=“C1.1.1” />
 <CategoryLeafNode CategoryLeafNodeOID=“C2.1” />
 </DataCell>
 <DataCell DataCellOID=“D2” DataValue=““>
 <CategoryLeafNode CategoryLeafNodeOID=“C1.1.1” />
 <CategoryLeafNode CategoryLeafNodeOID=“C2.2” />
 </DataCell>
 <DataCell DataCellOID=“D4” DataValue=“817,376”>
 <CategoryLeafNode CategoryLeafNodeOID=“C1.1.2” />
 <CategoryLeafNode CategoryLeafNodeOID=“C2.1” />
 </DataCell>
 . . .
 </DataCells>
 <Augmentations>
 <Augmentation Augmentation=“2000” AugmentationType=”value”>
 <CategoryNodes>
 <CategoryNode CategoryNodeOID=“C2.1” />
 </CategoryNodes>
 </Augmentation>
 </Augmentations>
</InterpretedTable>

Figure 3. XML version of canonicalized table.

9

Figure 4. Graphical view of canonicalized sample table.

Supported operations include term normalization, and testing whether one word is a

hypernym, hyponym, meronym, or holonym of another word. Because all access to

lexical information in MOGO is done through this interface, the user can modify,

augment, or replace the underlying lexical service implementation without requiring

source code changes to MOGO’s various heuristic procedures.

In this implementation, MOGO uses WordNet, an electronic lexical database [14],

for accessing lexical information. WordNet provides a number of freely available APIs

enabling programmatic access to the underlying lexical repository. MOGO uses the Java

API for WordNet Searching (JAWS) as its API for accessing WordNet resources.

Because JAWS does not provide a mechanism for looking up a word’s inherited

hypernym list directly, MOGO’s lexical service implementation builds these lists by

looking up a word in WordNet and then recursively looking up each of the hypernyms of

all senses of that word until a word with no hypernyms is reached. Similar operations are

available for looking up a word’s inherited hyponym and holonym lists.

10

 To help increase the accuracy of lexical operations, MOGO’s lexical service

provides a term normalization routine. When doing term comparisons, it is important

that the operations are performed using a unified lexicon so that matches can be correctly

identified. MOGO normalizes all terms by looking terms up in WordNet and capturing

all the associated word forms. Comparison operations involve looking for an exact match

in at least one word form of a normalized term. For example, when the lexical service

normalizes the term “Iowa”, WordNet returns the word forms: “Iowa”, “Ioway”,

“Hawkeye State”, and “IA”. For term comparisons, these different word forms are all

treated as equivalent and an exact match with any one of them will return a valid match

for the entire normalized term.

3.1.2 Data Frame Library Service

 Another service that MOGO uses is the data frame library service. Data frames

provide a mechanism for recognizing different types of objects from strings of data using

regular expression recognizers [10]. MOGO’s data frame library service takes a string as

input, iterates over a collection of data frame recognizers attempting to classify the string,

and returns the data frame (and the associated ontology fragment) that matches that

string. Each ontology fragment associated with a data frame contains one or more

concepts, zero or more relationship sets, and zero or more constraints. In every case, one

concept in the fragment is marked as the primary concept for the fragment. This primary

concept serves as the connection point for MOGO’s data frame related algorithms.

 To illustrate how this works, suppose the string ’12-08-2007’ needs to be

classified. MOGO’s data frame service takes the string and loops through each of the

data frame recognizers looking for a match. In this case the Date data frame recognizes

11

dates in the form MM-DD-YYYY and will successfully match the search string. The

data frame service returns the specific object set (concept) on which the search terms

match, as well as a reference to the entire ontology fragment associated with this data

frame.

3.1.3 Name Finding Service

 The final general service MOGO provides is a name finding service available at

each step of the process for assigning names to unnamed concepts. Titles, footnotes,

captions and augmentations can contain words which are helpful for naming unnamed

concepts. The combined set of words from these sources forms a pool of possible

concept names. Given an unnamed concept, MOGO uses the lexical service to retrieve

the inherited hypernym list of each value assigned to a concept, compares the list with

each of the words in the naming pool, and assigns the concept a name if one of the words

in the pool is a direct match to a word in the hypernym list. If the name finding service

does not find any matches to words in the pool then MOGO attempts to identify an

appropriate label by looking for the first common word in the inherited hypernym lists of

each of the concept’s first ten data values. If a common word is found, MOGO assigns

that word as the concept’s name.

3.2 Concept/Value Recognition

 MOGO extracts concepts from a canonicalized table using a set of concept

recognition algorithms and assigns the appropriate data values to those concepts. Each

concept recognition algorithm conforms to a standard interface making it easy to augment

MOGO with additional heuristic algorithms. MOGO implements six concept recognition

12

algorithms. We execute each of the algorithms until each table label and table data value

of the canonicalized table (Figure 2) is recognized as either a concept or a value for a

concept. Each algorithm classifies the table labels and table data values it recognizes,

and subsequent algorithms only evaluate unclassified labels and values until all labels and

values have been classified, at which point MOGO skips any subsequent algorithms.

 Table labels can either be concepts or data values for a concept. In Figure 1, the

label Delaware is a data value for the concept State and Northwest is a data value for the

concept Region, but the label Population is a concept containing population values.

Unlike table labels, table data values are always data values for a concept.

 A concept is synonymous with an object set in the OSM data modeling language.

According to OSM an object set identifies a group of objects or values [12]. Object sets,

either lexical or non-lexical, are the ontological elements representing the different

concepts found in a table. A lexical object set is one whose members are printable and

represent themselves (e.g., telephone numbers, names of companies). In OSM a lexical

object set is visually represented by a box with a dashed border. A non-lexical object

set’s members are object identifiers that are non-printable (e.g., identifiers that stand for

persons or companies). In OSM a non-lexical object set is visually represented by a box

with a solid border.

 The first concept recognition algorithm uses lexical clues to determine to which

dimension labels the table’s data values belong. MOGO uses its lexical service to

compare each data value to its corresponding dimension labels. A data value is said to

“belong” to a label if the data value is a hyponym of at least one of the label’s senses, and

is not a hyponym of any other dimension label associated with that data value. If the

13

majority of the data values “belong” to an associated label, MOGO flags the label as a

potential object set. After evaluating all the dimension labels, if all the labels MOGO

flags belong to the same dimension then it marks all of the labels in that dimension as

lexical object sets and associates the corresponding data values with those object sets.

Otherwise, MOGO clears the flags and proceeds to the next algorithm.

 The first concept recognition algorithm fails to discover any concepts for the table

in Figure 1 because all the data values in the table are numbers and there is no way to

determine, using only lexical clues, if those numbers belong to their associated labels.

This algorithm does succeed, however, for the sample table in Figure 5. Figure 6 shows

the object sets the algorithm creates out of each set of data values in the table. MOGO

examines each table value to see if that value belongs to the dimension label associated

with the value. In the case of the first column, the label “City” is found to be a hypernym

of the table values “Salt Lake City” and “Provo”, so MOGO flags the label “City” as a

potential object set. Similarly, the label “State” is found to be a hypernym of the value

“Utah”, so MOGO flags “State” as a potential object set as well. Because all of the

flagged labels are from the same dimension, MOGO creates an object set for each of the

flagged labels and assigns the associated table values to the appropriate object set.

City State
Salt Lake City Utah
Los Angeles California

San Francisco California
Figure 5. Sample table where values "belong" to their labels.

Figure 6. Object sets with values.

 The second concept recognition algorithm also uses the lexical service, but in this

case the objective is to determine if a label is an instance of its parent label. Each

14

dimension has one label referred to as the root label. Below that, a dimension can contain

several levels of label nesting. Beginning with the labels directly under the dimension’s

root label, MOGO uses its lexical service to look up each unmarked label in a dimension

and retrieve that label’s list of inherited hypernyms. A label is said to be an instance of

its parent label if either the parent label, or the name of the object set the parent label is

assigned to, is found in the label’s inherited hypernym list. If the majority of the labels at

one level of label nesting are instances of that level’s parent label, MOGO marks all the

labels at that level as values, creates an unnamed lexical object set, and assigns the values

to the object set. MOGO evaluates each succeeding level of label nesting in like manner

until the leaf labels have been evaluated. MOGO uses the name finding service to find an

appropriate name for any unnamed object sets produced by this algorithm. In cases

where labels are found to belong to their parent label and the dimension only contains

one level of label nesting, MOGO creates a single object set, names that object set using

the dimension’s root label, and assigns all of the labels of the dimension as values to that

object set.

 For the sample table in Figure 1, Figure 7 shows the object sets and associated

data values the second algorithm creates for each level of label nesting in the “Location”

dimension. The inherited hypernym list for each label in the “Location” dimension

(Northeast, Northwest, Delaware, Maine, etc.) contains the word “Location.” MOGO

marks the labels at each level of nesting as values, creates unnamed lexical object sets for

each level of nesting, and assigns the values from each level to the corresponding object

set. The naming service extracts possible names for these object sets from word tokens in

the title of the table. The inherited hypernym lists for each of the values assigned to the

15

region object set contain the word “Region” which is also a word that appears in the title

of the table. Similarly, each of the inherited hypernym lists for the state values contains

the word “State” which is also a word in the title of the table. MOGO finds these

matches and assigns the names “Region” and “State” to the two unnamed object sets.

Figure 7. Object sets that the second algorithm creates.

 The third algorithm checks for labels at the same level of nesting that have the

exact same name. Tables often contain multiple columns with the same type of

information. This is usually manifest in tables that have labels that span multiple

columns or rows and usually only appears in tables with more than one level of label

nesting. Beginning with the labels directly under the dimension’s root label, MOGO

compares each unmarked label with the other labels at that same level to see if all of the

labels are exactly the same. If all the labels at one level of label nesting are the same,

MOGO creates a named object set using the common name of the source labels, and

assigns all of the values associated with those labels to the newly created object set.

MOGO evaluates each succeeding level of label nesting in like manner until the leaf

labels have been evaluated.

 The labels in Figure 1 are all different, so this third algorithm does not apply to

the table in Figure 1. For the sample table in Figure 8, Figure 10 shows the object sets

16

the third algorithm creates. While the label “Number of Deaths” does not appear twice in

the source table, it does appear twice in the canonicalized version of the table. Figure 9

shows how the canonicalization process duplicates the single source label “Number of

Deaths”. This replication is an artifact of the canonicalization process encountering

labels that span multiple columns. In this case, MOGO recognizes the label duplication,

merges the duplicate labels into one object set, assigns the common label as the name of

the object set, and assigns any values associated with the labels to the newly created

object set.

 2002 2003
Province Number of Deaths
Quebec 54,896 56,411
Ontario 83,410 84,155

Figure 8. Sample table with label column span.

Province

Quebec Ontario

[Dimension2]

20032002

54,896 84,15556,411

Number of Deaths Number of Deaths

Figure 9. Canonicalized version of sample table in Figure 8.

17

Figure 10. Object sets that algorithm three creates.

 The fourth concept recognition algorithm takes each unmarked dimension label

and attempts to classify all the data values associated in a row or column with that label

using MOGO’s data frame service to determine to which dimension labels the table’s

data values belong. If all the data values in a row or column have the same type, MOGO

temporarily associates that type with the dimension label. After MOGO classifies all the

labels for a dimension using its data frame service, if there are at least two labels in the

dimension of different types, MOGO flags all of the labels in the dimension as lexical

object sets and associates the corresponding data values with the object sets. Requiring

two different types avoids misidentifying object sets in a table uniformly populated by

data of the same type, such as a table full of percentages or of currency values.

 Using the sample table in Figure 11 as the source table, Figure 12 shows the

object sets the fourth algorithm creates. Using the data frame library service, MOGO

classifies each of the data values found in the source table. For the sample table in Figure

11, the values “Tire”, “Transmission”, and “Steering Wheel” all match the car part data

frame. The values “$115.60”, “$356.45”, and “$32.34” all match the currency data

frame. Because the values in two different columns match two separate data frames,

MOGO creates object sets for each of the columns, uses the label associated with that

column to name the object set, and assigns the values associated with those columns to

the newly created object sets.

18

Car Part Price
Tire $115.60

Transmission $356.45
Steering Wheel $32.34

Figure 11. Sample table of car parts.

Figure 12. Object sets the fourth algorithm creates.

 The fifth concept recognition algorithm tries to identify concepts among sibling

labels. MOGO first classifies each unmarked dimension label using its data frame

service. For each set of sibling labels that have the same data frame classification,

MOGO marks the labels as values, creates an object set, names the object set with the

same name as the matching concept returned by the data frame service, and associates the

sibling labels with the new object set.

 For the sample table in Figure 8, MOGO classifies the labels “2002” and “2003”

as instances of a “Year” object set using the data frame library service. Because both

sibling labels are classified as the same type, MOGO creates an object set, uses the name

of the matching concept to name the object set “Year”, and assigns the labels “2002” and

“2003” as data values to the newly created object set.

If the prior algorithms do not successfully mark all items in the canonicalized

table as object sets or values, MOGO processes the remaining unmarked items based on

whether or not the dimension’s root has a real label or a placeholder label. For

dimensions whose root nodes contain a placeholder labels, MOGO flattens any label

nesting in the dimensions by prepending parent labels to child labels, removes parent

labels until there is no more nesting, and marks all of the unmarked labels as lexical

object sets. If the data values associated with those labels are currently unassigned,

19

MOGO assigns the data values to the newly created object sets. For any unmarked labels

in the remaining dimensions, MOGO groups the labels that are at the same level of

nesting in each dimension, treats the labels as values, creates unnamed object sets for

each group of labels, associates the values with the newly created object sets, and uses

the name finding service to find appropriate names for the object sets. For any remaining

data values that are not currently assigned to an object set, MOGO creates a new

unnamed object set and assigns the values to that object set.

 Using the sample table in Figure 1 as the source table, Figure 13 shows the results

of running the final algorithm. The algorithm creates lexical object sets for each of the

labels in the “[Dimension2]” dimension because the dimension’s root node contains a

placeholder label and none of its labels are marked as either an object set or a data value

by any of the previous algorithms. MOGO also assigns the associated data values, none

of which are assigned to an object set by previous algorithms, to the newly created object

sets.

Figure 13. Object sets created by final algorithm.

 Figure 14 shows all the object sets MOGO identifies in our sample table from

Figure 1 after all of the concept/value recognition algorithms have completed.

20

Figure 14. Discovered object sets and value assignments.

3.3 Relationship Discovery

 With all of the concepts identified and the values assigned to those concepts,

MOGO next identifies all of the relationships that exist between the different concepts.

MOGO adds relationship information to the object sets using a set of relationship

discovery algorithms. Each relationship discovery algorithm conforms to a standard

interface making it easy to augment MOGO with additional heuristic algorithms. MOGO

implements five relationship discovery algorithms. We execute the algorithms in order,

passing the newly discovered relationship information on to the next algorithm until each

of the algorithms has successfully run. Unlike the concept recognition algorithms which

only run until all labels and values have been classified, the full set of relationship

recognition algorithms runs — each successively refines the results of the previous.

 The first relationship discovery algorithm extracts relationship information from

the dimension trees. For each dimension, MOGO creates relationship sets between the

object sets from that dimension anywhere an edge exists in the dimension trees. When

labels at one level of nesting have been merged into a single object set, MOGO only

creates one relationship set between the parent object set and the child object set. If

sibling object sets (object sets coming from labels in the same level of label nesting) do

21

not have any related object sets higher in the tree, MOGO creates an object set of

unknown type, labels it with the dimension’s name (if there is one), and creates

relationship sets between this new object set and each of the sibling object sets.

 Figure 15 shows the relationship sets MOGO adds between the different object

sets for our running example beginning with Figure 1. MOGO associates the “Region”

and “State” object sets because they come from different levels of the same dimension,

“State” from the leaf level and “Region” from the intermediate level of the “Location”

tree in Figure 4. The “Population”, “Latitude”, and “Longitude” object sets are sibling

object sets whose parent object set is the placeholder “[Dimension 2]” — meaning that

“Population”, “Latitude”, and “Longitude” have no identified conceptual parent object

set. In this case, MOGO creates an object set of unknown type, and associates the sibling

object sets with the newly created object set. Object sets of unknown type are visually

represented as a shaded box with no border.

Figure 15. Relationship sets from dimension trees.

 The second relationship discovery algorithm modifies the generated ontology

relationship sets using lexical clues. MOGO’s lexical service provides a way to analyze

object set labels and sets of values associated with object sets to discover semantic

relationship information like hypernyms, hyponyms, holonyms, and meronyms.

22

Hypernyms and hyponyms translate to generalization/specialization relationships

(represented as an empty triangle). Holonyms and meronyms translate to aggregation

relationships (represented as a filled-in triangle). MOGO looks for more specific

relationship information by examining each object set involved in a relationship set to see

if the labels or values in the two object sets contain any of these semantic relationships.

If they do, MOGO adjusts the relationship set by replacing it with an aggregation or

generalization/specialization.

 If aggregations are found between the different object sets from one dimension,

MOGO looks for any generalization/specializations that might exist in the table. Using

its lexical service, MOGO looks up the inherited hypernym list of each object set label

participating in the aggregation. If the dimension’s root label is in the inherited

hypernym lists of all the different object sets, MOGO creates a new lexical object set,

labels it with the dimension’s root label, and associates this new object set with each of

the object sets that participate in the aggregation using generalization/specialization.

 Figure 16 shows the sample table’s ontology elements in Figure 15 after MOGO

modifies them using lexical clues. Using its lexical service, MOGO finds that

“Delaware” is an instance of an “American State” which is a hyponym of “region.”

MOGO uses this information to create an aggregation constraint from the “Region”

object set to the “State” object set. Because the “Region” and “State” object sets come

from the same dimension, MOGO checks to see if the dimension’s root label is in the

inherited hypernym list of those object sets. MOGO successfully finds the root label

“Location” in the inherited hypernym lists so it transforms the root object set into a

23

generalization and associates this object set with the existing object sets as

specializations.

Figure 16. Relationship sets after linguistic processing.

 The third relationship discovery algorithm uses MOGO’s data frame service to

find relationships between the object sets. MOGO first attempts to recognize each object

set label using the data frame service and stores any matches found. When all of the

object sets have been classified, MOGO searches the list of matches looking for object

sets that match different concepts in the same data frame ontology fragment and merges

these matches. For each data frame match, MOGO adds the ontology fragment

associated with the data frame to the mini-ontology, removes all of the previous object

sets represented by the new ontology fragment, and updates any relationship sets

associated with the removed object sets to point at the primary object set found in the

data frame ontology fragment. In cases where all of the labels at a given level of label

nesting are classified as the same data frame type, MOGO adds the ontology fragment

associated with the data frame to the mini-ontology, removes all of the previous object

sets represented by the new ontology fragment and assigns their labels as data values to

the appropriate object set in the ontology fragment, and updates any relationship sets

associated with the removed object sets to point at the object set generated from the

parent label.

24

 Figure 17 shows the results of MOGO’s applying this algorithm. MOGO finds

data frame matches on the “Latitude” and “Longitude” object sets. These object sets

match different object sets in the same data frame so MOGO merges the two matches

into one. The matching data frame contains information about geographical coordinate

objects. MOGO adds the ontology fragment for this data frame to the mini-ontology,

removes the previous “Latitude” and “Longitude” object sets, and transfers any

relationship sets previously connected to the “Latitude” and “Longitude” object sets to

the primary object set of the data frame ontology fragment which in this case is the

“Geographic Coordinate” object set.

Figure 17. Relationship sets after data frame recognizers.

 For the sample canonicalized table in Figure 18, Figure 19 shows the relationship

sets that the third relationship discovery algorithm finds. MOGO’s data frame service

recognizes the “2005” and “2006” labels as values in a “Year” object set. Because the

“2005” and “2006” labels represent all of the labels at that level of label nesting, MOGO

adds the “Year” object set associated with the matched data frame to the mini-ontology,

removes any previous object sets associated with the “2005” and “2006” labels, assigns

these labels as data values to the “Year” object set, assigns the values previously

25

associated with those labels to the “Passengers” object set which was generated from

these labels’ parent label, and creates a ternary relationship set among the “Airport”,

“Year”, and “Passengers” object sets.

Figure18. Sample canonicalized table with nested year labels.

Figure19. Relationship sets for nested label table after data frame recognizers.

 The fourth relationship discovery algorithm processes any augmentations that

exist in the canonicalized table. For each row and column augmentation that is a value

and not a unit, footnote, or a parenthetical remark as indicated by the canonicalized table,

MOGO creates a singleton object with the value found in the augmentation, and forms an

n-ary relationship set among the singleton object and the object sets associated with the

augmentation.

26

 Figure 20 shows the results of MOGO’s applying this algorithm. As Figures 1, 3,

and 4 show, the “Population” column has the augmentation “2000”. MOGO creates a

singleton object of value 2000 and creates a ternary relationship set among the object of

value 2000, the “Population” object set, and the unnamed object set already related to the

“Population” object set.

Figure 20. Relationship sets after processing augmentations.

 The final relationship discovery algorithm merges ontology fragments into a mini-

ontology. Ontology fragments are made up of all of the ontology elements that are inter-

connected via some type of relationship set. MOGO joins the ontology fragments by

creating an n-ary relationship set among the ontology fragment link-in points. An

ontology fragment’s link-in point is the object set in the fragment that came from the

highest level label or labels in the dimension — typically the object set associated with

the dimension’s root label. If one of the link-in points is a placeholder object set and

there is only one other ontology fragment, MOGO removes the placeholder object set and

the n-ary relationship set, and transfers all of the removed object set’s relationships to the

remaining ontology fragment’s link-in point.

27

 In our sample table, there are two ontology fragments. Figure 21 shows the result

of merging the two sample ontology fragments into a mini-ontology. MOGO removes

the placeholder object set from the one ontology fragment because there is only one other

ontology fragment. MOGO then assigns the orphaned relations to the link-in point of the

other ontology fragment (the “Location” object set).

Figure 21. Mini-ontology results from fragment merge.

3.4 Constraint Discovery

 MOGO adds constraints to the mini-ontology using a set of constraint discovery

algorithms. Each constraint discovery algorithm conforms to a standard interface making

it easy to augment MOGO with additional heuristic algorithms. MOGO implements four

constraint discovery algorithms. We execute each algorithm until each has run

successfully. Each checks for a single kind of constraint; if an algorithm finds that the

constraint it is checking holds, it adds the constraint to the mini-ontology being created.

 The first constraint discovery algorithm adds constraints to

generalization/specialization relationships that exist in the mini-ontology. A

generalization/specialization relationship can be constrained to be a union, a mutual

exclusion, or a partition. MOGO constrains a generalization/specialization relationship to

28

be a union (represented as a triangle containing a U) if all values in the generalization

object set are also in at least one of the specialization object sets. MOGO adds a mutual

exclusion constraint (represented as a triangle containing a +) if there is no overlap in the

values in each of the specialization object sets. When the generalization/specialization is

constrained by both union and mutual exclusion, MOGO assigns a partition constraint

(represented as a triangle containing both a U and a +) to the relationship.

 Figure 22 shows the results of running this algorithm on our sample table.

MOGO determines that there are no values assigned to the “Location” object set that are

not also assigned to the “Region” or “State” object sets. The values in the “Region” and

“State” object sets are also found to be mutually exclusive. Thus, MOGO assigns a

partition constraint to the generalization/specialization relationship in the mini-ontology.

Figure 22. Mini-ontology with generalization/specialization constraints.

 The second constraint discovery algorithm looks for any computed values in the

table. Tables often include columns or rows that contain the summation, average, or

other aggregates of values in the table. MOGO examines the values related to object sets

that come from dimensions with label nesting. By computing aggregates of the values

from related object sets and comparing them to given values to test whether the

29

aggregates hold, MOGO captures these constraints and adds them as annotations to the

mini-ontology.

 Figure 23 shows the results of running this algorithm on our sample table.

Looking for possible aggregate values, MOGO determines that the population values

related to the “Region” object set values are the summation of the population values

related to the “State” object set. MOGO thus adds the constraint “Region.Population =

sum(Population); Region” to the mini-ontology. (The notation here means that a region’s

population is the sum of the population values grouped by Region; it is adapted from [8],

which defines computational expressions over ER conceptual models).

Figure 23. Mini-ontology with computed value constraint.

 The third constraint discovery algorithm looks for functional relationship sets.

Each of the data values in a table is functionally determined by the set of dimension

labels associated with those values. MOGO identifies the object sets that contain the

table’s data values and marks the relationship sets coming into those object sets as

functional. Object sets assigned values that are dimension labels are handled separately.

MOGO evaluates each of these object sets to see if the values assigned to the object set

functionally map to values assigned to any related object sets (i.e. checks each domain

30

value or combination of domain values to see if there is at most one range value). If so,

MOGO marks the relationship set as functional.

 Figure 24 shows the results of running this algorithm on our sample table. The

“Population”, “Latitude”, and “Longitude” object sets contain the data values from the

canonicalized tables, so MOGO marks the relationship sets coming into these object sets

as functional. Because the “Latitude” and “Longitude” object sets were replaced by an

ontology fragment associated with a data frame, MOGO marks the relationship sets

coming into the “Geographic Coordinate” object set (the ontology fragment’s primary

object set) as functional. The “Region” and “State” object sets contain values from

dimension labels. Because the values assigned to the “State” object set appear to

functionally determine the values assigned to the “Region” object set (i.e. there is only

one region for each state), MOGO marks the relationship set from the “State” object set

to the aggregation connecting it to the “Region” object set as functional.

Figure 24. Mini-ontology with functional constraints.

 The final constraint discovery algorithm determines if objects in an object set

participate mandatorily or optionally in associated relationship sets. Optional

participation is represented in OSM as an o placed near the object set’s connection point

31

to a relationship set line. MOGO identifies object sets whose objects have optional

participation in relationship sets by considering empty value cells in the canonicalized

table. MOGO determines where these non-existing values mapped in the mini-ontology

and marks participation in any relationship sets between one of these object sets and any

other object set as optional.

 Figure 25 shows the results of running this algorithm on our sample table. The

canonicalized table contains four empty data cells. These non-existing values “belong”

to the “Longitude” and “Latitude” object sets. MOGO thus marks participation of object

sets in any relationship sets coming into either of these object sets as optional. Because

these object sets were replaced by an ontology fragment associated with a data frame,

MOGO marks the connection between the “Location” object set and the relationship set

that comes into the data frame’s primary object set, the “Geographical Coordinate” object

set, as optional.

Figure 25. Final mini-ontology MOGO produces.

32

CHAPTER 4: EXPERIMENTAL RESULTS

We evaluated MOGO using a test set of tables found on the Internet by a third-

party participant. We asked the participant to capture the URL of twenty different web

pages that contain tables. Because tables can vary drastically in form and complexity, we

asked that the test tables meet the following criteria: the tables should come from at least

three distinct sites; the tables should contain a mix of simple tables (one-dimensional

with no label nesting) and complex tables (multi-dimensional with or without label

nesting); and that all the tables be from the geopolitical domain.

For each test URL gathered by the participant, we saved a local copy of the page’s

source HTML and used the tools created in the first component of the TANGO [21]

project to canonicalize the tables. MOGO processed each of the twenty canonicalized

tables and the resulting mini-ontologies were formatted and saved for evaluation. We

evaluate each mini-ontology in three different areas: concept/value recognition,

relationship discovery, and constraint discovery.

It is necessary to point out that when building ontologies, there is often no “right”

answer. For any given set of data there can be multiple ontologies that are valid

conceptualizations of the data set. For that reason, it is necessary for the evaluation to be

done manually by a trained expert in the field of data conceptualization.

4.1 Concept/Value Recognition

Every table has a fixed number of concepts, concept labels, and data values. We

observe how many concepts, concept labels, and data values MOGO correctly identifies,

how many it misses, and how many it proposes that are invalid. We compute precision

33

values with respect to concept/value recognition by dividing the total number of correct

concepts, labels, and data values MOGO finds by the total number of actual concepts,

labels, and data values combined with the incorrect concepts, labels, and data values

MOGO proposes. We compute recall values with respect to concept/value recognition by

dividing the total number of correct concepts, labels, and data values MOGO finds by the

total number of actual concepts, labels, and data values found in the canonicalized table.

4.2 Relationship Discovery

We evaluate relationship discovery by observing how many valid relationship

sets, aggregations, and generalization/specializations MOGO discovers, how many it

proposes that are invalid, and how many MOGO does not discover. In cases where a

relationship set, aggregation, or generalization/specialization should exist but does not

because MOGO did not correctly identify a concept, we count the missing relationship

set, aggregation, or generalization/specialization as one that MOGO did not discover.

We compute precision values with respect to relationship discovery by dividing the total

number of correct relationship sets, aggregations, and generalization/specializations

MOGO finds by the total number of actual relationship sets, aggregations, and

generalization/specializations combined with the incorrect relationship sets, aggregations,

and generalization/specializations MOGO proposes. We compute recall values with

respect to relationship discovery by dividing the total number of relationship sets,

aggregations, and generalization/specializations MOGO finds by the total number of

actual relationship sets, aggregations, and generalization/specializations found in the

canonicalized table.

34

4.3 Constraint Discovery

We evaluate constraint discovery by observing how many valid constraints

MOGO discovers, how many invalid constraints it proposes, and how many valid

constraints MOGO does not discover. Observations are made for each of the following

types of constraints: functional dependencies, generalization/specialization constraints,

computed values, and optional participation of objects in object sets and their associated

relationship sets. In cases where constraints should exist but do not because MOGO did

not correctly identify a concept or relationship, we count the missing constraint as one

that MOGO did not discover. We compute precision values with respect to constraint

discovery by dividing the total number of correct constraints MOGO finds by the total

number of actual constraints combined with the incorrect constraints MOGO proposes.

We compute recall values with respect to constraint discovery by dividing the total

number of constraints MOGO finds by the total number of actual constraints found in the

canonicalized table.

4.4 Results

Appendix A contains all of the original HTML tables and the mini-ontologies

MOGO generated as part of the evaluation. We report the accuracy of MOGO with

respect to precision and recall values. Table 1 shows the precision and recall values for

each area of evaluation. MOGO achieves a precision of 87% and recall of 94% for the

concept recognition task, a precision of 73% and recall of 81% for the relationship

discovery task, and a precision of 89% and recall of 91% for the constraint discovery

task. As a combined measure of precision and recall we add F-measures to Table 1.

35

Concept recognition and constraint discovery both have an F-measure of 90% while

relationship discovery has an F-measure of 77%.

 Precision Recall F-measure
Concept Recognition 87% 94% 90%

Relationship Discovery 73% 81% 77%
Constraint Discovery 89% 91% 90%

Table 1. Precision and recall values for evaluation tables.

 Unfortunately, a direct comparison of MOGO’s results with results achieved by

TARTAR [18], a similar system for converting tables to conceptual models, is not

possible. TARTAR’s results take into account both the table canonicalization process

and the conversion to a conceptual model. MOGO’s results are based on a set of

canonicalized tables that were checked to be accurately canonicalized before being

processed by MOGO. So while at first glance it might appear that MOGO performs

significantly better than TARTAR, because the results measure different objects/targets,

it is very difficult to compare the two systems in a meaningful way.

4.5 Issues

 One issue that MOGO encounters in concept recognition is generating duplicate

concepts. In our set of evaluation tables, a number of tables had multiple columns that

corresponded to the same concept. The only difference in the columns was in units of the

data values. For example, a table about mountain peaks contains two columns labeled

height but in one column the height is given in meters and in the other column the height

appears in feet. MOGO was unable to correctly merge these concepts into one. Further

enhancements to MOGO’s use of data frames would likely yield the desired results in

these types of cases.

36

 The other concept recognition area MOGO struggled with is in identifying a valid

label for a concept. There are a number of reasons why this occurs. Sometimes a valid

label for the concept does not even exist in the table. Many tables assume that the reader

can infer the correct label based on the context in which the table occurs. Unfortunately,

this contextual information is not available in the canonicalized table which MOGO uses

as input. In some cases, such as a table containing an unlabeled column of country

names, MOGO is able to successfully identify a valid label using its lexical service. In

other cases, such as an unlabeled column of numbers, MOGO cannot identify a label for

the concept that contains these values.

 In the relationship discovery task, MOGO occasionally struggles with identifying

aggregations and generalization/specializations. The main case for which MOGO was

not able to identify aggregations and generalization/specializations is when these types of

relationships exist between two sibling labels. MOGO only looks for these types of

relationships when there is label nesting present in the dimension. In cases where sibling

labels form an aggregation, such as a table with a column full of city names and another

column full of state names, MOGO’s heuristics do not cover checking for aggregations or

generalization/specializations.

 The other main area that MOGO struggles with in relationship discovery is

assigning relationship sets to invalid concepts. Errors in earlier phases of mini-ontology

generation have a cascading effect on errors in later parts of the process. Invalid concepts

found in the concept recognition phase invariably lead to invalid relationship sets in the

relationship discovery phase.

37

 In the constraint discovery task, MOGO occasionally misclassifies a

nonfunctional relationship set as a functional one. The most common cause of this was

when the canonicalized table values contained lists of items instead of a single value.

MOGO treats all table values as singleton objects and uniformly constrains relationship

sets with the object sets that contain these values as functional. In cases where table

values contain lists of objects, this behavior is incorrect.

 The final area in the constraint discovery task that MOGO struggles with is in

tables that contain arbitrary rows and columns that contain totals. When a column or row

only contains values that are the computed sums or averages of the other values in the

table, MOGO does not correctly identify these computed values. Only when the row or

column represents a conceptual aggregation of the other values, such as a state population

containing the computed sum of the populations of the cities in that state, does MOGO

correctly identify the computed value.

38

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

 We have created a system called MOGO that automates the generation of mini-

ontologies from canonicalized tables of data. MOGO uses a novel approach to ontology

generation by combining both spatial and linguistic clues for generating conceptual

models, and it is easily extensible allowing the addition of new algorithms at run time

without the need for program recompilation.

 Experimental results show that MOGO is able to automatically identify the

concepts, relationships, and constraints that exist in arbitrary tables of values with a

relatively high level of accuracy — with F-measures of 90%, 77%, and 90% respectively

for concept/value recognition, relationship discovery, and constraint discovery in web

tables selected from the geopolitical domain. This automation can significantly reduce

the work required to generate ontologies from canonicalized tables.

5.1 Future Work

 The base set of algorithms MOGO uses to generate mini-ontologies cover many

of the common patterns found in tables but they do not constitute an exhaustive set of

algorithms for table conversion. The following possibilities for future work include both

algorithm refinements as well as other possible applications for MOGO.

5.1.1 Linguistic Processing

 Many of the algorithms in MOGO take advantage of external lexical resources

using MOGO’s lexical service. Our current implementation of this lexical service only

uses WordNet [14] for querying lexical information. Future work could be done not only

39

in how WordNet is used by the lexical service, but also in the incorporation of other

external linguistic resources.

5.1.2 Data Frame Library

 MOGO makes frequent use of a data frame library for recognizing complex data

types using its data frame library service. The idea of data frames has been well thought

out and successfully implemented [10] but the set of data frame recognizers in the library

is still somewhat limited. Increasing the coverage of the set of data frame recognizers in

the data frame library could significantly increase MOGO’s effectiveness.

5.1.3 Domain Specific Algorithms

 All the algorithms MOGO uses to generate mini-ontologies are designed to be

very general-purpose algorithms. It is very likely that tables from specific domains

would benefit from algorithms written specifically for that domain. Such algorithms

might be able to recognize common abbreviations, formats, or terms specific to a

particular domain. These algorithms could be written to run in addition to or in place of

MOGO’s algorithms.

5.1.4 MOGO as Part of a Semantic Web Annotation System

 MOGO’s primary goal is to function as the second component of the larger

TANGO [21] project. The TANGO project focuses on automating the process of

creating an ontology from the concepts, relationships, and constraints found in sets of

tabular data. Another possible application for MOGO would be to use the resultant mini-

ontologies as extraction ontologies [11]. Extraction ontologies are useful for annotating

source tables with ontology information thereby making those tables accessible as part of

the semantic web [3].

40

BIBLIOGRAPHY

1. Alhajj, R., Extracting the Extended Entity-Relationship Model from a Legacy
Relational Database, Information Systems 28 (6), 2003, 597-618.

2. Benslimane, S.M., Benslimane, D., and Malki, M., Acquiring OWL Ontologies
from Data-intensive Web Sites, Proceedings of the 6th International Conference
on Web Engineering, Palo Alto, California, July 2006, 361-368.

3. Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web, Scientific
American 5 (284), 2001, 34-43.

4. Chiang, R.H.L., Barron, T.M., and Storey, V.C., Reverse Engineering of
Relational Databases: Extraction of an EER Model from a Relational Database,
Data & Knowledge Engineering 12 (2), 1994, 107-142.

5. Cimiano, P., Ontology Learning and Population from Text: Algorithm, Evaluation
and Applications, Springer, New York, New York, 2006.

6. Cimiano, P., Hotho, A., and Staab, S., Learning Concept Hierarchies from Text
Corpora Using Formal Concept Analysis, Journal of Artificial Intelligence
Research 24 2005, 305-339.

7. Comyn-Wattiau, I., and Akoka, J., Reverse Engineering of Relational Database
Physical Schema, Proceedings of the 15th International Conference on
Conceptual Modeling, Cottbus, Germany, October 7-10, 1996, 372-391.

8. Czejdo, B., and Embley, D.W., An Approach to Computation Specification for an
Entity-Relationship Query Language, Proceedings of the 6th Entity-Relationship
Conference, New York, New York, November 1987, 307-321.

9. Dittenbach, M., Berger, H., and Merkl, D., Improving Domain Ontologies by
Mining Semantics from Text, Proceedings of the First Asian-Pacific Conference
on Conceptual Modelling, Dunedin, New Zealand, Jan, 2004, 91-100.

10. Embley, D., Programming with Data Frames for Everyday Data Items, National
Computer Conference, Anaheim, California, May, 1980, 301-305.

11. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Y.-
K., N., and Smith, R.D., Conceptual-Model-Based Data Extraction from Multiple-
Record Web Pages, Data & Knowledge Engineering 31 (3), 1999, 227-251.

12. Embley, D.W., Kurtz, B.D., and Woodfield, S.N., Object-oriented Systems
Analysis: A Model-driven Approach, Prentice-Hall, 1992.

13. Embley, D.W., and Xu, M., Relational Database Reverse Engineering: A Model-
Centric, Transformational, Interactive Approach Formalized in Model Theory,
DEXA'97 Workshop Proceedings, Toulouse, France, September 1-5, 1997, 372-
377.

14. Fellbaum, C., WordNet: An Electronic Lexical Database, MIT Press, 1998.
15. Johannesson, P., A Method for Transforming Relational Schemas Into Conceptual

Schemas, Proceedings of the Tenth International Conference on Data
Engineering, Houston, Texas, February 14-18, 1994, 190-201.

16. Kifer, M., Lausen, G., and Wu, J., Logical Foundations of Object-oriented and
Frame-based Languages, Journal of the Association for Computing Machinery 42
(4), 1995, 741-843.

41

17. Lammari, N., Comyn-Wattiau, I., and Akoka, J., Extracting Generalization
Hierarchies from Relational Databases: A Reverse Engineering Approach, Data
& Knowledge Engineering 63 (2), 2007, 568-589.

18. Pivk, A., Sure, Y., Cimiano, P., Gams, M., Rajkovic, V., and Studer, R.,
Transforming Arbitrary Tables into Logical Form with TARTAR, Data &
Knowledge Engineering 60 2007, 567-595.

19. Premerlani, W.J., and Blaha, M.R., An Approach for Reverse Engineering of
Relational Databases, Communications of the ACM 37 (5), 1994, 42-49.

20. Raymond, Y.K.L., Yuefeng, L., and Yue, X., Mining Fuzzy Domain Ontology
from Textual Databases, Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, Fremont, California, November 2007, 156-162.

21. Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., and Nagy, G., Toward
Ontology Generation from Tables, World Wide Web: Internet and Web
Information Systems 8 (3), September 2004, 251-285.

22. Wang, X., Tabular Abstraction, Editing and Formatting, PhD dissertation,
Department of Computer Science, University of Waterloo, 1996.

23. Wille, R., Formal Concept Analysis as Mathematical Theory of Concepts and
Concept Hierarchies, Formal Concept Analysis, Foundations and Applications,
LNCS 3626, Springer, 2005, 1-33.

42

APPENDIX A – EVALUATION TABLES

 This appendix includes images of all the original HTML evaluation tables along

with the mini-ontologies generated by MOGO for each table. Object sets with labels

beginning with “osmx” followed by a number are equivalent to unlabeled object sets.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

	AUTOMATING MINI-ONTOLOGY GENERATION FROM CANONICAL TABLES
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	Figure 1. Sample Table.
	Figure 2. Sample mini-ontology, produced by MOGO for the table in Figure 1.

	CHAPTER 2: RELATED WORK
	CHAPTER 3: MINI-ONTOLOGY GENERATION
	3.1 Auxiliary Services
	3.1.1 Lexical Service
	Figure 3. XML version of canonicalized table.
	Figure 4. Graphical view of canonicalized sample table.

	3.1.2 Data Frame Library Service
	3.1.3 Name Finding Service

	3.2 Concept/Value Recognition
	Figure 5. Sample table where values "belong" to their labels.
	Figure 6. Object sets with values.
	Figure 7. Object sets that the second algorithm creates.
	Figure 8. Sample table with label column span.
	Figure 9. Canonicalized version of sample table in Figure 8.
	Figure 10. Object sets that algorithm three creates.
	Figure 11. Sample table of car parts.
	Figure 12. Object sets the fourth algorithm creates.
	Figure 13. Object sets created by final algorithm.
	Figure 14. Discovered object sets and value assignments.

	3.3 Relationship Discovery
	Figure 15. Relationship sets from dimension trees.
	Figure 16. Relationship sets after linguistic processing.
	Figure 17. Relationship sets after data frame recognizers.
	Figure18. Sample canonicalized table with nested year labels.
	Figure19. Relationship sets for nested label table after data frame recognizers.
	Figure 20. Relationship sets after processing augmentations.
	Figure 21. Mini-ontology results from fragment merge.

	3.4 Constraint Discovery
	Figure 22. Mini-ontology with generalization/specialization constraints.
	Figure 23. Mini-ontology with computed value constraint.
	Figure 24. Mini-ontology with functional constraints.
	Figure 25. Final mini-ontology MOGO produces.

	CHAPTER 4: EXPERIMENTAL RESULTS
	4.1 Concept/Value Recognition
	4.2 Relationship Discovery
	4.3 Constraint Discovery
	4.4 Results
	Table 1. Precision and recall values for evaluation tables.

	4.5 Issues

	CHAPTER 5: CONCLUSIONS AND FUTURE WORK
	5.1 Future Work
	5.1.1 Linguistic Processing
	5.1.2 Data Frame Library
	5.1.3 Domain Specific Algorithms
	5.1.4 MOGO as Part of a Semantic Web Annotation System

	BIBLIOGRAPHY
	APPENDIX A – EVALUATION TABLES

