
Reusing Ontologies and Language

Components for Ontology Generation

D.W. Lonsdale a,∗, David W. Embley a, Yihong Ding a, Li Xu b,
Martin Hepp c

aBrigham Young University, Provo, UT, USA 84602
bDepartment of Computer Science, University of Arizona South, USA

cDigital Enterprise Research Institute (DERI), University of Innsbruck, Austria

Abstract

Realizing the Semantic Web involves creating ontologies, a tedious and costly chal-
lenge. Reuse can reduce the cost of ontology engineering. Semantic Web ontologies
can provide useful input for ontology reuse. However, the automated reuse of such
ontologies remains underexplored. This paper presents a generic architecture for au-
tomated ontology reuse. With our implementation of this architecture, we show the
practicality of automating ontology generation through ontology reuse. We experi-
mented with a large generic ontology as a basis for automatically generating domain
ontologies that fit the scope of sample natural-language web pages. The results were
encouraging, resulting in five lessons pertinent to future automated ontology reuse
study.

Key words: Ontology generation, ontology reuse, concept matching, constraint
discovery

1 Introduction

Ontology construction is a central research issue for the Semantic Web. On-
tologies provide a way of formalizing human knowledge to enable machine
interpretability. Creating ontologies from scratch is, however, usually tedious

∗ Corresponding author.
Email addresses: lonz@byu.edu (D.W. Lonsdale), embley@cs.byu.edu (David

W. Embley), ding@cs.byu.edu (Yihong Ding), lxu@email.arizona.edu (Li Xu),
martin.hepp@deri.org (Martin Hepp).

Preprint submitted to Data and Knowledge Engineering 14 March 2008

and costly. When the Semantic Web requires ontologies that express Web
page content, the ontology engineering task becomes too expensive to be done
manually. Many Semantic Web ontologies may have overlapping domain de-
scriptions because many Web sites (or pages) contain information in common
domains. It is inefficient to redo ontology engineering for pre-explored do-
mains. These issues illustrate the importance of automated ontology reuse for
the Semantic Web.

Ontology reuse involves building a new ontology through maximizing the adop-
tion of pre-used ontologies or ontology components. Reuse has several advan-
tages. First, it reduces human labor involved in formalizing ontologies from
scratch. It also increases the quality of new ontologies because the reused
components have already been tested. Moreover, when two ontologies share
components through ontology reuse, mapping between them becomes sim-
pler because mappings between their shared components are trivial. One can
also simultaneously update multiple ontologies by updating their commonly
shared components. Hence ontology reuse also improves the efficiency of on-
tology maintenance.

Despite the many advantages of (automated) ontology reuse, the topic is not
well explored in the literature. There are many reasons for this. Before the
advent of the Semantic Web, few ontologies existed. Due to the difficulty of
constructing ontologies, as well as to the challenges of using ontologies in
applications, researchers were less interested in ontology development. With
the advance of Semantic Web technologies, the number of ontologies has sig-
nificantly increased recently. When the use of ontologies in Semantic Web
applications improves system performance, more people will appreciate the
advantage in using ontologies. In the meantime, most existing ontologies are
hard to reuse. The benefits of manual ontology reuse are often unclear since
the overhead of seeking and understanding existing ontologies by humans may
be even greater than simply building an ontology from scratch. At the same
time, many existing ontologies simply do not support effectively automated
ontology reuse. The corresponding information in these ontologies is hard to
retrieve for automated ontology reuse.

The work we describe below 1 offers three contributions for automated ontol-
ogy reuse. We first sketch the state of the art in ontology reuse (Section 2). We
then present our generic ontology reuse architecture and our implementation
(Section 3). Next, we discuss experimental results obtained by using our imple-
mentation on real-world examples, as well as five lessons we have learned from
this work (Section 4). We conclude with possible future directions (Section 5).

1 See also www.deg.byu.edu and www.tango.byu.edu.

2

2 Related Work

Ontology reuse has been studied for years. Most of the earlier research focuses
on the study of reusable ontology repositories. In 2001, Ding and Fensel [1]
surveyed these earlier ontology libraries. Due to the lack of ontologies, however,
very few studies on practically reusing ontologies exist prior to this survey.
Uschold and his colleagues [2] presented a “start-to-finish process” of reusing
an existing ontology in a small-scale application. According to the authors, the
purpose was a “feasibility demonstration only.” They concluded that reusing
an ontology was “far from an automated process” at that time.

With the growth of semantic web research, more and more ontologies have
been created and used in real-world applications. Researchers have started to
address more of the ontology reuse problem. Typically, there are two strands
of study: theoretical studies of ontology reusability [3–5], and practical studies
of ontology reuse [6–8]. Previous studies of ontology libraries showed that it
was difficult to manage heterogeneous ontologies in simple repositories. Stan-
dardized modules may significantly improve the reusability of ontologies. One
major purpose of modular ontology research concerns the reusability of on-
tologies [3–5]. There are, however, fewer ontology reuse studies quantifying
how modular ontologies may improve the efficiency of ontology reuse. Hence
one of our purposes is to argue for the use of modular ontologies in real-world,
automated ontology reuse experiments.

Meanwhile, there are also several studies on practical ontology reuse. Noy and
Musen [7] introduced “traversal views” that define an ontology view, through
which a user can specify a subset of an existing ontology. This mechanism en-
ables users to extract self-contained portions of an ontology describing specific
concepts. Stuckenschmidt and Klein [8] described another process for parti-
tioning very large ontologies into sets of meaningful and self-contained mod-
ules through a structure-based algorithm. Alani and his colleagues [6] coined
a new term for reusing existing ontologies: ontology winnowing. The intuition
of their research is that individual semantic web applications more profitably
use smaller customized ontologies rather than larger general-purpose ontolo-
gies. They therefore described a method for culling out—which they called
winnowing—useful application-specific information from a larger ontology.

A common implicit assumption in all these practical ontology reuse studies
is that source ontologies must be reusable for a target domain. Although this
assumption simplifies the problem, it does not address the general situation.
Besides our work, to the best of our knowledge, the only research that has
addressed (albeit implicitly) the domain-specific ontology reuse problem is by
Bontas and her colleagues [9]. Their case studies on ontology reuse identified
difficulties due to end-user unfamiliarity with the complex source structure.

3

Fig. 1. Generic architecture for automated ontology reuse

Although this assessment is reasonable, we found a further reason for the
difficulty they encountered. Even though source ontologies often declare a
target domain, the corresponding information is irretrievable for automated
ontology reuse. This is the real bottleneck for automated ontology reuse.

3 Automated Ontology Reuse

Figure 1 sketches our generic architecture for automated ontology reuse. The
reuse procedure takes at least two inputs: natural language (NL) documents
and source ontologies. NL documents express the projected domains and they
can encompass different types. Typical NL documents could include collections
of competency questions [10] or collections of sample Web pages [11].

In this architecture, ontology reuse consists of three sequential steps: con-
cept selection, relation retrieval, and constraint discovery. These correspond
to the three fundamental components in ontologies: concepts, relationships,
and constraints. The concept selection process identifies reusable ontology
concepts from source ontologies based on the descriptions in NL documents.
NL documents must contain sufficient information for a system to identify all
the necessary domain concepts. The identification methodologies vary with
respect to different types of NL documents. The relation retrieval process re-
trieves relationships among selected concepts from the previous step. These
relationships can be automatically gathered from source ontologies or perhaps
even (optionally) recoverable from the NL documents. Figure 1 represents
these optional requirements with dotted lines. The constraint discovery pro-
cess discovers constraints for previous selected concepts and relationships. An
ontology reuse system should be able to gather existing information about
constraints from source ontologies or even perhaps from NL documents.

After these three sequential steps, the system composes the selected concepts,

4

relationships, and constraints together into a unified ontology. Human experts
then inspect and revise these auto-generated ontologies.

We have implemented a prototype automated ontology reuse system based on
this generic architecture. Our system reuses existing ontologies to create small
domain ontologies within the scope of describing individual Web pages. In the
rest of this section we describe the system in more detail.

3.1 Preparation of Input

We first take a small set of sample Web pages as input NL documents, and
pre-process them to focus on the content that reflects the domain of interest.
This involves removing extraneous information such as advertisements, side
bars, and links to various other pages. Similarly, many pages might combine
several records together; in such cases each record is factored out and stored as
a separate document. We do some of these processes automatically and others
manually; information about how we automate this document preprocessing
work is available elsewhere [12,13]. Only the main body of each page remains,
which constitutes the focus of interest for readers.

Proper preparation of source ontologies is also essential for ontology reuse
automation. Poorly integrated source ontologies create a very complex on-
tology integration problem during final composition of the output ontology.
Two options exist: either we can directly adopt a single large-scale ontology,
or we can manually pre-integrate several small ones. For simplicity, we chose
the first option (and will discuss the second option later). Specifically, we
adopted the MikroKosmos (µK) ontology [14], a large-scale ontology contain-
ing more than 5000 hierarchically-arranged concepts (excluding instances).
These broad-coverage concepts describe various domains, a desideratum for
flexible experimentation. The µK ontology has an average of 14 inter-concept
links/node, providing rich interpretations for the defined concepts.

We adopted the DTD for the XML version of µK ontology as our standard on-
tology input XML DTD. Because the µK ontology is represented as a directed
graph, mapping any other graph-based knowledge sources, either directly or
indirectly, to µK is straightforward.

Still, the basic µK ontology itself is not sufficient for ontology generation. It
does not contain extensive lexical content, but rather has an associated lexicon
base that supports the ontology matching. Since the original lexicons were not
available for this work, we created our own separate lexicon base. This was
done by pre-integrating the leaf concepts from the µK ontology with external
lexicon dictionaries and declarative data recognizers. Most of these lexicons
and data recognizers are collected from the Web. For example, for the ontology

5

Fig. 2. Pre-integrated source ontology

concept capital-city we used a web browser to locate lists of all the capital
cities of the independent countries in the world. Since we collected information
from varied resources, we found that synonym identification became critical
for the performance of ontology reuse. We therefore adopted WordNet 2 for our
synonym resource in this work; see Lesson 5 below for related work involving
a hierarchical terminology resource.

To the extent possible, we rely on available resources for specifying lexical
content to be used in concept discovery and matching. However, we have
found it useful to develop our own libary of data frames used for this purpose.
These data frames consist of dictionaries of lexical items where enumeration
is necessary; otherwise their lexical content is specified via regular expressions
were possible. Associated with these definitions are contextual keywords and
other informative clues for concept matching.

Although this source ontology preparation process is quite involved, it is a one-
time effort. This integrated ontology source thus become static and constant
for all downstream ontology reuse applications.

3.2 Ontology Reuse Process

Figure 1 shows how our system extracts an appropriate sub-domain from
a larger, integrated source ontology by executing concept selection, relation
retrieval, and constraint discovery. Since any ontology can be viewed as a
conceptual graph, our algorithm is implemented to find nodes, edges, and
specific constraints in graphs.

2 http://wordnet.princeton.edu/

6

�������	
��

����
�������

�����
���������������

����CAPTIAL-CITY����

����POPULATION ����

����FINANCIAL-CAPITAL ����

μμμμ����
��
������
������
������
����

(a)

�������	
��

����
�������

�����
���������������

����COUNTRY-NAME ����

����CAPITAL-CITY����

μμμμ����
��
������
������
������
����

(b)

Fig. 3. Matching concepts from the µK ontology via: name selection (a), and value
selection (b)

3.2.1 Concept Selection

We have implemented the concept selection process as three concept recogni-
tion procedures (which could be executed in parallel) followed by a concept
disambiguation procedure. In particular, the three recognition procedures in-
volve matching concept names and concept values.

Concept name matching associates content in NL documents with concept
names in source ontologies. We have implemented three concept selection
strategies:

S1 compare a string with the name of a concept;
S2 compare a string with values belonging to a concept; and
S3 apply data-frame recognizers to recognize a string.

S1 and S2 are concept recognition procedures (which could be executed in par-
allel) and S3 is a concept disambiguation procedure. Concept name matching
associates content in NL documents with concept names in source ontologies
in the preparation stage described above.

For example, consider the sentence “Afghanistan’s capital is Kabul and its
population is 17.7 million.” Concept matching would associate the word “cap-
ital” with the ontology concepts capital-city and financial-capital. It
also matches the word “Kabul” with the concept capital-city.

The process is similar for Web page content. In Figure 3(a), S1 matches
the string “Capital” in a Web page with the concepts capital-city and
financial-capital in the µK Ontology. Similarly, the string “Population”
matches with the µK concept Population. Thus the three object sets, capital-
city, financial-capital and population, are potential candidates for se-
lected object sets.

Figure 3(b) shows the kind of matches S2 provides. “Afghanistan” is an in-
stance of a name of a country and “Kabul” is an instance of a capital city.
Hence we select the object sets country-name and capital-city as poten-

7

Afghanistan

Capital—Kabul,

Population:17.7 million.

<POPULATION >

<PRICE>

μμμμK
Ontology

Fig. 4. Matching concepts via data frames

tial candidates.

Figure 4 illustrates S3, which selects concepts based on regular-expression
recognizers in the data-frame library. Two data frame patterns match the
“17.7 million” in the training record. One pattern associates with the concept
Population, and the other associates with Price. Note that the knowledge
sources preprocessing has already integrated the concepts in the data-frame
library with the concepts in the µK Ontology. We thus add the associated two
µK concepts into the potential candidate list of object sets.

Clearly, matches occasionally entail incorrect conceptual interpretations. For
example, in Figure 3(a), S1 selects both financial-capital and capital-
city, but only the latter is correct. The conflict resolution step attempts to
resolve these incorrect matches. To resolve conflicts, we have implemented
three heuristics, namely: (1) same string only one meaning, (2) favor longer
over shorter, and (3) context decides meaning. We sketch each in turn.

Same string only one meaning. A given string in a document record may match
more than one concept. Such a string, however, can have only one meaning
for each occurrence. Therefore, only one concept can be the correct selection.
For our purposes if all three heuristics S1, S2, and S3 confidently identify a
concept to be a correct selection, any other concept by the same string that
conflicts with this interpretation is considered an error. In fact, we use the
weaker condition that if in a document, both S1 and S2, or both S1 and S3
select a concept, we accept it as a correct selection. 3 Any other concept that
recognizes the same string then is deemed an error, and the conflict resolution
procedure removes it from the list of candidate concepts. Figure 5(a) illustrates
this heuristic.

Although both financial-capital and capital-city match “Capital” in
the document via S1, we know we cannot have both. Since capital-city
also matches “Capital” by S2, we accept capital-city as a correct selection.

Figure 5(b) shows another example. Although S3 suggests both the concept

3 Theoretically, exceptional cases may exist, though we have not encountered any
during our experiments.

8

�������	
��

����
�������

�����
���������������

����FINANCIAL-CAPITAL ����

����CAPITAL-CITY����

μμμμ����
��
������
������
������
����

By H2

by H1

(a)

�������	
��

����
�������

�����
��������������� ����Population����

����Price����

��
������ ���
������ ���
������ ���
������ �

!������!������!������!������

by H1

μμμμ����
��
������
������
������
����

����POPULATION ����

(b)

Fig. 5. Resolution via same string only one meaning, using: S1 and S2 (a), and S1
and S3 (b)

(a)

�������	
��

����
�������

�����
��������������� ����Population����

����Price����

��
������ ���
������ ���
������ ���
������ �

!������!������!������!������

by keyword
indentification

population

(b)

Fig. 6. Resolution via: favor longer over shorter (a), and context decides meaning
(b)

population and price for the string “17.7 million”, the system accepts the
concept population as the correct selection based on the additional sugges-
tion from S1 because of the string “Population”.

Favor longer over shorter. If concept A recognizes string A′ and concept B
recognizes string B′, where A′ is a proper substring of B′, the selection process
chooses concept B over A because the meaning of B′ overrides the meaning
of A′.

In Figure 6(a), S2 recognize the word “bronze” as an instance of alloy,
while S2 matches the whole string, “bronze medal” as an instance of sport-
artifact. Because “bronze” is a proper substring of “bronze medal”, the
system chooses the concept sport-artifact instead of the concept alloy.

Context decides meaning. Sometimes we can use the context around a target
string to identify one of multiple matching concepts for a string. Figure 6(b)
shows an example.

In order to decide between the potential candidates population and price,
we use an associated keyword defined in the data-frame library as a context
keyword. Since we find the keyword “Population” close to the occurrence of a
data value for the concept population and do not find any context keywords
of the concept price, such as the strings “price”, “cost”, “GNP”, “amount”,
“$”, or “dollars”, the concept population has a higher preference for being

9

the correct match. The data frame library provides these contextual keywords.

3.2.2 Relation Retrieval

The crux of the relation retrieval process is about finding appropriate edges
between two concept nodes. An obvious resolution is to find all possible paths
between any two candidate concepts. It would be easier for users to reject
inapplicable edges rather than to add new relations. But this resolution entails
serious performance difficulties. Hence we must seek an alternative resolution.

Different paths in an ontology graph refer to relations with different meanings.
In addressing the problem of ontology generation, it is almost never necessary
to find all possible paths; for a generated ontology we typically only want one.
From our studies we have found that in general a shorter path represents a
closer or more straightforward relationship between two concepts. An extra-
long path often means a very uncommon relation between the two concepts
within the domain. Hence it is reasonable to set a threshold length to reduce
the search space and thus the complexity of the edge-searching algorithm.

In the implementation, we adapted the well-known Dijkstra’s algorithm. Al-
though the original algorithm computes only the shortest path, it can be easily
extended by repeatedly computing the next shortest path until a threshold
length is reached. Since Dijkstra’s algorithm has polynomial time complex-
ity and the threshold length is fixed and finite, the time complexity of this
updated algorithm is also polynomial.

After this edge-searching procedure, the system performs a subgraph detec-
tion procedure to finalize the target domain. Quite often, the edge-searching
procedure results in multiple unconnected subgraphs. Normally, two sepa-
rate subgraphs represent two independent domains. Since we focus only on
narrow-domain applications and assume that the NL documents represent
this domain, we expect only one subgraph. Since we also assume that the
NL documents are data-rich, we can assume that the largest subgraph of con-
cepts is the subgraph of interest. This subgraph becomes the conceptual model
instance for the ontology we generate. Obviously this also helps boost the ac-
curacy and performance of the system by reducing the possible inventory of
concepts to be processed.

We use a standard algorithm to find the largest subgraph, which is the sub-
graph containing the largest number of concepts. Theoretically there could
be two largest subgraphs with the same size. In practice this situation rarely
occurs; indeed, usually we obtain one large subgraph and either no other sub-
graphs or only a few other small subgraphs, each often having just one node
and no edges.

10

�������	
�� �

!������ 	����	�
��

���� � �	������
� ��

"��#�$ ��%�������

������ 	���

����$�
�� ��&� �
��

$�������� ����$ ��

$�

��������
��

��
	��#���#�

�
	��'����

��

���

����COUNTRY-NAME ����

����LANGUAGE ����

����NATION ����

(��
 %�)
�
 	 …

'� �
���
� ��

�����	��$�����

����
	��* �
�� 	��

$�

��+�� ������#��

���
����%�����

���%�$
	+���� 	
�

���%�$
	����	�

!������ 	��,���	���

)����	�

����COUNTRY-NAME ����

����NATION ����

����AGRICULTURAL-PRODUCT ����

����AGRICULTURAL-PRODUCT ����

NATION [0:1] has COUNTRY-NAME [1:1]

NATION [0:*] has LANGUAGE [1:1]

NATION [0:*] has AGRICULTURAL-PRODUCT [1

����LANGUAGE ����

Fig. 7. Generating participation constraints

3.2.3 Constraint Discovery

Ontologies involve numerous types of constraints; this paper cannot possibly
enumerate them all or discuss the methods for reusing constraints. For our
purpose in demonstrating automated ontology reuse, we limited our study to
cardinality constraints and their discovery. Unlike many other constraints in
ontologies, cardinality constraints contain quantitative scales, which render
the automatic discovery process particularly interesting.

We have implemented a cross-counting algorithm to discover cardinality con-
straints from NL documents. 4 The cardinality constraints we discover are
participation constraints [15]. Each participation constraint consists of a pair
with a minimum number and a maximum number [min : max]. The cross-
counting algorithm counts the instantiated numbers of paired concepts, from
which the system can decide these minimum and maximum numbers. For ex-
ample, suppose that in document D1 concept A is instantiated by a1, and
there are no instantiations for concept B in the same document. In another
document D2, however, concept A is instantiated by the same a1 and concept
B is instantiated by b2. With these two documents, we can determine that the
minimum cardinality constraint of concept A to the relation AB is 0 because
for an instance a1 of A, it may not always have an instance of B appearing at
the same time. The details of this algorithm are presented elsewhere [11].

Figure 7 shows an example of discovering a [1 : 1] participation constraint.
Suppose that we have two NL documents as this figure shows. For each record,

4 The original µK ontology does not contain information about cardinality con-
straints.

11

we recognize three concepts: country-name, language and agricultural-
product. By the primary concept resolution process we determine that na-
tion is the primary concept of this application. We retrieve three binary rela-
tionship sets: NATION has COUNTRY-NAME, NATION has LANGUAGE, and NATION

has AGRICULTURAL-PRODUCT. Since nation is the primary concept, the min-
imum participation constraint for nation for each relationship set is 0, and
each minimum participation constraint of the object sets in each of the three
relationship sets is 1. By construction, the primary concept appears only once
in each record. The concept country-name also appears only once in each
record, and for a different instance of country-name appearing in each
record. Thus the system sets the maximum participation constraint for both
concepts to 1. Hence the system generates the object set NATION[0:1] has

COUNTRY-NAME[1:1].

For the relationship set NATION has AGRICULTURAL-PRODUCT, the system gen-
erates the maximum participation constraint for nation to be * because each
record contains more than one instance of agricultural-product. How-
ever, we can find at least one instance “wheat” in both the records. That
is, the same instance of agricultural-product can be found for different
instances of nation. The system therefore also generates the maximum par-
ticipation constraint for agricultural-product to be *. Hence, the system
generates NATION[0:*] has AGRICULTURAL-PRODUCT[1:*].

For the relationship set NATION has LANGUAGE, Record 1 has three instances of
language and Record 2 has two instances of language while none of these
instances is the same. Thus, each nation can have more than one language,
and each language belongs to only one nation. Hence, the system generates
NATION[0:*] has LANGUAGE[1:1].

Note that this last example is not totally correct. People know that more than
one nation can use the same language. For example, both the United States
and the United Kingdom use English as their native language. Significant bias
may result from a lack of sufficient examples. Thus, we need a large enough
collection of NL documents to generate correct participation constraints. How-
ever, even a huge unsupervised selected document base may not totally solve
this problem. Supervised selection of NL documents can overcome this prob-
lem, but the tradeoff requires more human effort.

3.2.4 Ontology Refinement

After finding concepts, relations, and constraints, composing them together
into an ontology is straightforward. The result probably will not precisely
describe the target domain, so in a final stage a human revises the resulting
ontology manually. There are four basic operations for revision: (1) remove the

12

unexpected content (i.e. object sets or relationship sets), (2) rename the inap-
propriate content, (3) modify the incorrect content, and (4) add the missing
content. In general, a preferred ontology reuse procedure will produce outputs
requiring less revision operations on (3) and (4), especially the latter. It is in
general much easier for users to reject unexpected components than to add
something totally new into an ontology on their own initiative. Based on this
refinement perspective, our ontology reuse system preserves as much useful
information as possible, minimizing the need for addition by users.

4 Experiments and Discussions

This section describes a series of experiments with our ontology reuse system;
full details on the experimental methodology, results, and evaluation are avail-
able in [1]. We cast our discussion in five lessons that we believe are pertinent
to future automated ontology reuse studies.

Lesson 1. Ontology coverage is best specified by the leaf concepts.

For ontology reuse, the coverage of an ontology is the reusable domain de-
scribed by an ontology. Users for ontology reuse would be justified in believ-
ing that we can straightforwardly determine the coverage of an ontology by its
root definition. For example, when the root concept of an ontology is book,
this ontology should cover the domain of books; when the root concept is
finanical-report, this ontology must cover the domain of financial reports.
Since the root of the µK ontology is all (i.e. everything), as näıve users we
began our study believing that we could reuse the µK ontology to describe
arbitrary domains.

Our initial experiments produced disappointing output. Usually we either got
no result or the composed ontologies were outside the expected domains. Care-
ful study of the results located the problem: the real coverage of an ontology
is not determined by its root definition. Although theoretically the root def-
inition of an ontology should be an abstract characterization of the entire
domain, often ontology developers do not properly circumscribe the domain
and thus a significant portion of the domain is often not reusable. Instead, the
real reusable domain of an ontology (i.e. the real coverage of an ontology) is
primarily determined by the union of its leaf-level concepts, a subset of the
root-specified domain. For example, if a nation ontology contains leaf-level
concepts like usa, russia, china, australia, etc., but lacks montenegro,
the concept montenegro is not reusable with respect to this ontology. This
observation is fairly simple though critical for ontology reuse research; inter-
estingly, previous ontology reuse publications miss this point.

13

Lesson 2. Extend ontology coverage with lexicons and data recognizers.

To improve the degree of reusability of existing ontologies, we want to boost
the coverage of an ontology so that it is closer to its root definition. We refer to
this as the “applicable coverage” of an ontology, where the term “applicable”
means the new concepts can be evaluated by an ontology reuse program.

To boost the applicable coverage of our source ontology during the source-
ontology preparation stage, we associated lexicons and data recognizers with
the leaf-level concepts. We have named the result “instance recognition se-
mantics”, or formal specifications that identify instances of a concept C in
ordinary text [16]. These are essential to automating ontology reuse.

We further populate the ontology with some upper-level ontology concepts.
For example, prior to June 3, 2006 Montenegro was not an independent nation,
so the original µK ontology did not have a leaf concept montenegro under
nation. This portion of the ontology becomes non-reusable for many situa-
tions involving Montenegro after June 3, 2006. It is a very complicated issue
to obtain permission and then properly modify an ontology that is created by
somebody else. For the purpose of automated reuse, however, we developed a
simple and effective (though imperfect) alternative. We simply bind a lexicon
set to the non-leaf concept nation, thus adding the name of Montenegro into
the lexicon after June 3, 2006. Although we still have not formally specified
Montenegro as a country in the ontology, we have rendered the original source
ontology reusable for situations involving the new country Montenegro. In the
new generated ontology, instead of a specific concept montenegro as an in-
dependent nation, we can correctly generate an upper-level concept—nation,
and thus all the properties of nation become applicable in this new generated
domain ontology. With such a technique, we artificially boost the applicable
coverage of the source ontology.

In our experiments we augmented lexicons and data recognizers for leaf-level
concepts in the µK ontology and their superclasses up to 2 levels above (on
average). The union of these augmented concepts and their relations composes
the applicable coverage of the source ontology in our experiments.

Lesson 3. For known target domains, ontology reuse is already possible and
even valuable.

After having prepared the source ontology, we started our real experiments.
Based on Lesson 1, we decided to focus our experiments on several selected do-
mains rather than on arbitrary domains. We want human inspection to assure
that the projecting domains have significant overlap with the applicable cover-
age of our source ontology. In particular, we chose experiments in three narrow

14

domains: car advertisements, apartment rentals, and nation descriptions. This
paper only briefly summarizes our results; see [11] for details.

First we list some basic settings and statistics of our experiments. Each of the
three target domains contains a dozen to twenty concepts. For each domain, we
feed four to seven cleaned sample Web pages (NL documents) to the ontology
reuse system. The source ontology had been pre-integrated and augmented by
its applicable coverage. In order to evaluate the performance of our outputs,
we had human experts separately create ontologies for each target domain.
We adopted the human-created ontologies as a gold standard to which the
automatically generated ontologies were compared for precision and recall.

In general, we obtained low precision results. In the three target domains, the
best precision was 48% for concept generation, 14% for relation generation,
and 10% for cardinality constraint generation. The news is not all bad. Low
precision implies the need for more rejections of corresponding components
within a generated ontology. For humans, as mentioned earlier, rejecting in-
appropriate ontology components is much easier than adding new ontology
ones. Hence our strategy is to favor greater recall values (i.e. less addition)
over greater precision values (i.e. less rejection).

We updated the traditional recall calculation equation as follows:

updated recall = # correctly-reused / # existing-in-source

where the numerator is the number of component types (i.e. either concept,
relationship, or constraint) correctly reused in a generated ontology; the de-
nominator is the number of component types contained in input sources (both
from NL documents and source ontologies). We use this formula because not
everything defined in the human-created ontology is also identifiable by the
inputs. For example, human experts defined a concept feature in the car-ads
ontology, a concept missing from the source µK ontology. Hence it is impossi-
ble for a system to reuse an non-pre-existing concept. To be more equitable,
our recall calculation must eliminate this type of error.

With the new formula, in the three test domains our worst recall values were
83% (concept generation), 50% (relation generation), and 50% (cardinality
constraint generation). All the best recall values were close or equal to 100%.
Our ontology reuse system performs quite well even though it still is a proto-
type. The recall values show that we may reduce at least half of the human
effort in ontology construction through ontology reuse when a target ontol-
ogy is properly contained in the applicable coverage of the source ontology.
Considering the expense of training professional ontologists and the time they
need to build and tune ontologies, 50% already represents substantial savings.
There are many ways to further improve the performance of the system. Al-
ready, though, our experiments demonstrate that ontology reuse is no longer

15

“far from an automated process” [2].

Lesson 4. Ontology modularization facilitates automated ontology reuse.

During our experiments, another metric studied was running time. In general
the system took about 1000 seconds to resolve all the ontology components
with respect to about 50 to 100 candidate concepts on a Pentium 800 MHz
single processor machine. This execution time is rather short compared to the
time required for manually creating an ontology of the same scale. Our bench-
mark showed that almost 90% of the execution time was spent on the relation
retrieval process. Though we may further improve this time performance by
optimizing our implementation, the problem lies mainly in the magnitude of
the source ontology (over 5000 concepts and over 70000 relationships to ex-
plore).

Reducing the execution time of relation retrieval should be possible by using
modular ontologies rather than a single large-scale one. Modular ontologies are
usually small and designed to be self-contained. An ontology module is self-
contained if all of its defined concepts are specified in terms of other concepts
in the module, and do not reference any other concepts outside the module. As
soon as several major concepts in a module are selected as candidate concepts,
an ontology reuse system may decide to directly reuse the entire module rather
than perform a costly relation retrieval algorithm. Hence the execution time
for relation retrieval can be significantly reduced.

To pursue this issue, we manually pruned several comparatively independent
clusters of ontology components from our source ontology and used them as
individual modules. Since these clusters originated from a previously unified
ontology, we did not need to further integrate them. The same experiments
were re-run with these multiple “modular” ontologies. On average the system
took less than 300 seconds—saving more than 70% of run time—to resolve
all the ontology components for about 50 to 100 candidate concepts. Because
these pruned clusters were not true, self-contained modular ontologies, the
performance in terms of precision and recall decreased in this experiment.
Saving execution time by replacing a large unified ontology with multiple
small modular ontologies is thus a convincing strategy. By using really well-
designed modular ontologies, our ontology reuse system achieves both higher
precision and recall values, as well as faster run-time performance.

Lesson 5. Sample documents may help us mine “latent” knowledge from text
documents.

We also carefully studied our low-precision experimental results. Many reused
concepts and relations that were generated fell beyond the scope of the expert-

16

created ontologies. Yet they were not all meaningless or useless. On the con-
trary, we found that useful information—latent in the document but beyond
the topic directly at hand—could be gleaned from the results. Such latent
information is not really what people cannot find, but is easily overlooked by
human readers. We believe that automated ontology generation may provide
various industrial and research communities an attractive solution for seeking
valuable latent information.

Of course, the generation of reasonable ontologies depends crucially on on
how well the knowledge base addresses the domain of interest. A perfect fit
is not likely, so we rely on extensible knowledge bases which allow ontology
builders to generate ontologies even in the presence of only partial coverage. In
this section we sketch an experiment that explored extending the default µK
ontology with two other knowledge sources and testing it on a novel application
domain.

One resource was Eurodicautom, a large-scale terminology bank 5 which con-
sists of over a million concept entries covering a wide range of topics. Each
entry is multilingual in character, containing equivalents in any of several lan-
guages. For this work we only focused on the English terms, discarding those in
other languages. Since Eurodicautom was not in XML format at the time, we
first converted entries into the TBX lexicon/termbase 6 exchange framework
developed by the SALT project. SALT specifies a data model for interchange
among diverse collections of lexicon/termbase data, including a provision for
their ontological structure. 7

The TBX termbase itself is not helpful for this task, though, because it merely
defines terms with only minimal hierarchical or relationship information. How-
ever, an associated resource called Lenoch places each Eurodicautom term into
a more completely specified conceptual hierarchy. Because Lenoch codes define
a hierarchy for Eurodicautom terms, we were able to integrate them together
and arrange them in the µK XML format. Figure 8(a) shows some examples of
Lenoch codes, and figure 8(b) shows corresponding samples from the µK XML
encoding. More details on the Eurodicautom, Lenoch, and µK integration are
documented elsewhere [17].

We ran our tool on various U.S. Department of Energy (DOE) abstracts 8 . The
expert who created a reference ontology in advance was only interested in the
generic information about these abstracts, such as the theme of a document,
the number of figures and tables, etc. But our ontology reuse tool found much

5 On 28 June 2007 the Eurodicautom project was subsumed by the new Inter-Active
Terminology for Europe (IATE) project.
6 This is the widely used term for terminology (data)bases.
7 In progress as ISO 16642 (forthcoming).
8 A corpus in the ACL/DCI set; see www.ldc.upenn.edu/Catalog/LDC93T1.html.

17

ER Earth Resources - Energy

ER1 general aspects of the subject field

ER4 energy sources

ER41 fossil energy

ER42 nuclear energy

ER43 alternative sources of energy

(nt: primary sources of energy)

ER431 durable sources of energy

ER4311 wind energy

ER4312 tidal energy

ER4313 solar energy

ER7 fossil raw materials

ER71 coal (sn: energy source; ...)

ER711 coal varieties

(a)

<RECORD>

<CONCEPT>energy sources</CONCEPT>

<SLOT>SUBCLASSES</SLOT>

<FACET>VALUE/FACET>

<FILLER>alternative sources of energy </FILLER>

<UID><0></UID>

</RECORD>

<RECORD>

<CONCEPT>alternative sources of energy </CONCEPT>

<SLOT>SUBCLASSES</SLOT>

<FACET>VALUE/FACET>

<FILLER>durable sources of energy</FILLER>

<UID><0></UID>

</RECORD>

<RECORD>

<CONCEPT>durable sources of energy</CONCEPT>

<SLOT>SUBCLASSES</SLOT>

<FACET>VALUE/FACET>

<FILLER>wind energy</FILLER>

<UID><0></UID>

</RECORD>

(b)

Fig. 8. Sample Lenoch codes (a) and XML data model from Eurodicautom via SALT
(b)

more useful information. For instance, in one sample abstract it generated
some concepts and relations indicating that crude oil prices dropped in the year
1986. Although this was not what the human expert originally expected and
it was outside the expert-specified domain of interest, we could not deny that
this type of information could be very valuable. Figure 9 shows a very small
portion of the output ontology generated by the system using the updated
knowledge base.

Within the generated ontology, of course, there are several dozen posited re-
lationship sets; some are spurious but in fact several are correct. For example,
a novel relationship is appropriately posited between the concept crudeoil
(which was a new concept introduced via the integration of Eurodicautom) and
the concept nation (an original concept in µK). The discovery and capture
of such interactions between concepts is possible via the procedure outlined
in this paper. It should be noted that the focus of this experiment was to test
whether the system could properly integrate new sources and generate mean-
ingful relationships between the new added concepts and the original ones. A
larger question is whether the DOE abstracts are well suited for treatment
by the system, and here we are skeptical since they do not contain extensive
data-rich, narrow-domain information that we assume as input.

18

-- DOE Abstract Ontology

Alloy [0:*] MadeOf.SOLIDELEMENT.Subclasses MetallicSolidElement [0:*];
Alloy [0:*] IsA.METAL.StateOfMatter.SOLID.Subclasses CrudeOil [0:*];
Alloy [0:*] IsA.PHYSICALOBJECT.ThemeOf.PHYSICALEVENT.Subclasses Produce [0:*]
AmountAttribute [0:*] IsA.SCALARATTRIBUTE.MeasuredIn.MEASURINGUNIT
Consumption [0:*] IsA.FINANCIALEVENT.Agent Human [0:*];
ControlEvent [0:*] IsA.SOCIALEVENT.Agent Human [0:*];
ControlEvent [0:*] IsA.SOCIALEVENT.Location.PLACE.Subclasses Nation [0:*];
CountryName [0:*] NameOf Nation [0:*];
CountryName [0:*] IsA.REPRESENTATIONALOBJECT.OwnedBy Human [0:*];
CrudeOil [0:*] IsA.PHYSICALOBJECT.Location.PLACE.Subclasses Nation [0:*];
CrudeOil [0:*] IsA.PHYSICALOBJECT.OwnedBy Human [0:*];
CrudeOil [0:*] IsA.PHYSICALOBJECT.ThemeOf.GROW.Subclasses GrowAnimate [0:*];
CrudeOil [0:*] IsA.PHYSICALOBJECT.ThemeOf.PHYSICALEVENT.Subclasses Increase [0
CrudeOil [0:*] IsA.PHYSICALOBJECT.ThemeOf.PHYSICALEVENT.Subclasses Combine [0
CrudeOil [0:*] IsA.PHYSICALOBJECT.ThemeOf.PHYSICALEVENT.Subclasses Display [0
CrudeOil [0:*] IsA.PHYSICALOBJECT.ThemeOf.PHYSICALEVENT.Subclasses Produce [0
Custom [0:*] IsA.ABSTRACTOBJECT.ThemeOf.MENTALEVENT.Subclasses AddUp [0:*];
Display [0:*] IsA.PHYSICALEVENT.Theme.PHYSICALOBJECT.Subclasses Gas [0:*];
Display [0:*] IsA.PHYSICALEVENT.Theme.PHYSICALOBJECT.OwnedBy Human [0:*];
ForProfitCorporation [0:*] OwnedBy Human [0:*];
ForProfitCorporation [0:*] IsA.CORPORATION.HasNationality Nation [0:*];
Gas [0:*] IsA.PHYSICALOBJECT.Location.PLACE.Subclasses Nation [0:*];
Gas [0:*] IsA.PHYSICALOBJECT.ThemeOf.GROW.Subclasses GrowAnimate [0:*];
LinseedOil [0:*] IsA.PHYSICALOBJECT.ThemeOf.PHYSICALEVENT.Subclasses Increase

Fig. 9. Sample relations in the generated ontology for DOE abstracts

5 Conclusion

We have presented an automated ontology reuse approach. Although we only
applied our system to reuse the µK ontology, our methodology supports auto-
mated ontology reuse in general. Informed by our experiments on real-world
examples, we have summarized five lessons that are constructive for future
exploration of ontology reuse studies. In essence, we conclude that ontology
reuse is no longer “far from an automated process” [2].

In the meantime, a few critical problems remain to be solved. One is to auto-
matically decide whether a target domain is within the reusable coverage of
an integrated source ontology. If the majority of a target domain lies outside
the source ontology, ontology reuse becomes nothing but extra overhead. Also,
we need to experiment with applying modular ontologies for ontology reuse.
Until now, the research on modular ontologies is still at the stage of theoreti-
cal analysis. We need practical study cases to push this research field forward.
The study of instance recognition semantics should be paired with modular
ontology research to improve the reusability of modular ontologies. Last but
not least, mining latent information through ontology reuse is an interesting
research topic. More exploration on this topic may bring many benefits to
users, especially in the business domain.

So far there are few published studies on automated ontology reuse research.
We hope that our results draw more attention to this field of research.

19

Acknowledgements

This work was funded in part by U.S. National Science Foundation Informa-
tion and Intelligent Systems grants for the TIDIE (IIS-0083127) and TANGO
(IIS-0414644) projects. Part of the work was also supported by the European
Commission under the projects DIP (FP6-507483), SUPER (FP6-026850),
and MUSING (FP6-027097), by the Austrian BMVIT/FFG under the FIT-
IT project myOntology (grant no. 812515/9284), and by a Young Researcher’s
Grant from the University of Innsbruck. We are also grateful to Sergei Niren-
burg for providing a copy of µK for this work.

References

[1] Y. Ding, D. Fensel, Ontology library systems: The key for successful ontology
reuse, in: Proceedings of the First Semantic Web Working Symposium
(SWWS’01), Stanford, CA, 2001, pp. 93–112.

[2] M. Uschold, M. Healy, K. Williamson, P. Clark, S. Woods, Ontology reuse and
application, in: Proceedings of the International Conference on Formal Ontology
and Information Systems (FOIS’98), Trento, Italy, 1998, pp. 179–192.

[3] J. Bao, D. Caragea, V. Honavar, Modular ontology – a formal investigation of
semantics and expressivity, in: Proceedings of the First Asian Semantic Web
Conference (ASWC 2006), Beijing, China, 2006, pp. 616–631.

[4] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, H. Stuckenschmidt,
Contextualizing ontologies, Journal of Web Semantics 1 (4) (2004) 325–343.

[5] B. Grau, B. Parsia, E. Sirin, A. Kalyanpur, Modularizing OWL ontologies,
in: Proceedings of the Workshop on Ontology Management, 3rd International
Conference on Knowledge Capture (K-CAP 2005), Banff, Canada, 2005.

[6] H. Alani, S. Harris, B. O’Neil, Ontology winnowing: A case study on the
AKT reference ontology, in: Proceedings of the International Conference on
Intelligent Agents, Web Technology and Internet Commerce (IAWTIC’2005),
Vienna, Austria, 2005, pp. 710–715.

[7] N. Noy, M. Musen, Specifying ontology views by traversal, in: Proceedings of
the Third International Semantic Web Conference (ISWC 2004), Hiroshima,
Japan, 2004, pp. 713–725.

[8] H. Stuckenschmidt, M. Klein, Structure-based partitioning of large class
hierarchies, in: Proceedings of the Third International Semantic Web
Conference (ISWC 2004), Hiroshima, Japan, 2004, pp. 289–303.

[9] E. Bontas, M. Mochol, R. Tolksdorf, Case studies on ontology reuse, in:
Proceedings of the 5th International Conference on Knowledge Management
(I-Know05), Graz, Austria, 2005, pp. 345–353.

20

[10] M. Uschold, M. King, Towards a methodology for building ontologies, in:
Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing
in conjunction with IJCAI-95, Montreal, Canada, 1995.

[11] Y. Ding, Semi-automatic generation of resilient data-extraction ontologies,
Master’s thesis, Brigham Young University, Provo, UT (June 2003).

[12] D. Embley, Y. Jiang, Y.-K. Ng, Record-boundary discovery in Web documents,
in: Proceedings of the 1999 ACM International Conference on Management of
Data (SIGMOD’99), Philadelphia, Pennsylvania, 1999, pp. 467–478.

[13] D. Embley, L. Xu, Record location and reconfiguration in unstructured multiple-
record Web documents, in: Proceedings of the Third International Workshop
on the Web and Databases (WebDB2000), Dallas, TX, 2000, pp. 123–128.

[14] K. Mahesh, Ontology development for machine translation: Ideology and
methodology, Tech. Rep. MCCS-96-292, Computer Research Laboratory, New
Mexico State Univeristy (1996).

[15] S. Liddle, D. Embley, S. Woodfield, Cardinality constraints in semantic data
models, Data & Knowledge Engineering 11 (3) (1993) 235–270.

[16] Y. Ding, D. Embley, S. Liddle, Automatic creation and simplified querying of
semantic web content: An approach based on information-extraction ontologies,
in: Proceedings of the first Asian Semantic Web Conference (ASWC 2006)
LNCS 4185, Beijing, China, 2006, pp. 400–414.

[17] D. Lonsdale, Y. Ding, D. W. Embley, A. Melby, Peppering knowledge sources
with SALT: Boosting conceptual content for ontology generation, in: Semantic
Web meets Language Resources: Papers from the AAAI Workshop, AAAI Press,
Menlo Park, CA, 2002, pp. 30–36, Technical Report WS-02-16.

21

