
Automatic Generation of Ontologies from

Canonicalized Web Tables

Stephen Lynn and David W. Embley�

Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract. Ontology creation is a daunting task—manual creation is
tedious and time consuming, and automatic creation is disappointingly
inaccurate. But for applications such as the semantic web or making web
content directly queriable, we must facilitate ontology creation, making
it reasonable to produce the vast number and variety of ontologies re-
quired for future web applications. In this paper we describe a tool devel-
oped to automate the generation of ontologies from ordinary web tables.
The process is akin to reverse-engineering relational tables to concep-
tual models, but must account for a much greater variety of table layout
patterns. The tool uses auxiliary knowledge and heuristic rules to select,
enhance, and modify ontology elements discovered in tables. Although
designed to operate fully automatically, the tool allows users to intervene
to direct and correct when necessary so that they can always acquire a
satisfactory ontology from a given web table. Experimental evaluations
show that the automatic ontology acquisition process can perform well,
yielding F-measures of 90% for concept recognition, 77% for relationship
discovery, and 90% for constraint discovery in web tables selected from
the geopolitical domain.

1 Introduction

From libraries filled with millions of books to the Internet available for any-
one with a web browser, the amount of information available in the world is
growing exponentially. With this information explosion comes new challenges
in organizing and finding information relevant to a user’s needs. Most of the
available information does not follow any consistent format or structure, making
it difficult to extract in a way that supports queries beyond common keyword
searching. One possible solution to this problem is structuring the information on
the web into standardized ontologies which represent the inherent concepts, re-
lationships, and constraints found in the information. Exposing the information
in an ontological model enables an entire new class of search algorithms allow-
ing queries to be expressed more completely and more explicitly, well beyond
anything currently available in standard keyword searches available today.

Few people and organizations use ontology-based representations to organize
information on the web, however, because creating an ontology takes too much

� Supported in part by the National Science Foundation under Grant #0414644.



2 S. Lynn and D.W. Embley

Region and State Information
Location Population (2000) Latitude Longitude

Northeast 2,122,869

Delaware 817,376 45 -90

Maine 1,305,493 44 -93

Northwest 9,690,665

Oregon 817,376 45 -90

Washington 817,376 45 -90

Fig. 1. Sample Table.

time and effort and requires a high degree of expertise. TANGO (Table ANalysis
for Generating Ontologies [16]) is a project aimed at reducing the time, effort,
and degree of expertise needed by automating the process of creating an ontology
from the concepts, relationships, and constraints found in sets of tabular data. A
component of the overall TANGO project is to transform an individual table into
a conceptual model. We call the conceptual model acquired from a table a mini-
ontology, “mini” because it is small relative to an ontology for an entire domain
and “ontology” because the conceptual model is formal, based fundamentally on
predicate calculus but limited to be equivalent to description-logics over which
reasoners can operate. We call our tool MOGO (a Mini-Ontology GeneratOr);
it implements the necessary algorithms and user interfaces for automatically,
semi-automatically, or manually generating mini-ontologies from canonicalized
tables of data.1

Given a table like the one in Figure 1, MOGO generates a conceptual model (a
mini-ontology) that accurately represents the table of data by iterating through a
number of heuristic rules. Each heuristic deals with one of three main tasks: con-
cept recognition, relationship discovery, and constraint discovery. During each
step of the process, MOGO populates the conceptual model with the data in
the original table. Figure 2 shows the conceptual model (mini-ontology) MOGO

1 The first component of the TANGO project reorganizes raw tables found on the
web and elsewhere and into tables in a canonical form. The third component merges
groups of mini-ontologies into a large ontology representing some body of knowledge.

Fig. 2. Generated Mini-ontology for the Sample Table in Figure 1.



Lecture Notes in Computer Science 3

generates from the table in Figure 1. The four US states in Figure 1 are members
of the State object set in Figure 2. The two regions are in the Region object set.
Together the regions and states constitute the elements of the Location object
set. The states aggregated together constitute the different regions. The values in
the population, latitude, and longitude columns of the table in Figure 1 are mem-
bers of the Population, Latitude, and Longitude object sets respectively. Latitude
and longitude values aggregated together constitute the Geographic Coordinate
object set. Each US state has a population and a geographic coordinate, and
each region has a population computed as the sum of the populations from the
states in the region.

Our MOGO/TANGO approach to generating ontologies differs fundamen-
tally from typical research on ontology generation, which focuses on “learning”
ontologies by finding the terms, concepts, relations, and concept hierarchies ex-
isting in large collections of unstructured text documents (see [4], a recent survey
that summarizes much of this research). The lack of structure and appropriate
metadata in these documents has so far made these approaches less than ac-
curate, thus requiring significant human post-processing before the results can
be used. More closely related to our approach is the reverse engineering of rela-
tional database tables into conceptual models [1–3, 5, 11, 12, 14]. Relational ta-
bles, however, have far fewer degrees of freedom than unconstrained web tables
and reverse-engineering techniques for relational tables rely mainly on the regu-
larity and constraints of database schemas.

In an effort quite similar to our research with MOGO, Pivk et al. [13] have
implemented as a system called TARTAR, which takes ordinary tabular data as
the input and produces F-Logic frames as output. TARTAR focuses primarily on
using pattern-learning and statistical methods for string recognition and group-
ing to discover concepts and relationships in a table. Our approach makes use of
some similar pattern matching heuristics but also includes a strong emphasis on
heuristics employing linguistic clues and narrowly defined data-type recognizers
to discover concepts, relationships, and constraints in a table.

Our contribution in this paper is a tool, called MOGO, that can generate
mini-ontologies from canonicalized web tables of data. We provide the details
of our contribution as follow. In Section 2 we describe our implementation in-
cluding an architectural overview, as well as detailed explanations of each of the
heuristics MOGO uses to generate conceptual models from tables. In Section 3,
we give experimental results, which indicate the success of our approach, and we
make concluding remarks in Section 4.

2 Mini-Ontology Generation

MOGO takes as input canonicalized tables of data based on Wang notation [17].
This notation preserves the labels found in the source table as well as their
associated data values. The notation organizes label information in simple data
structures called dimensions. Each dimension corresponds to a different axis of
the table similar to the different axes of a multi-dimensional array. Combining



4 S. Lynn and D.W. Embley

Fig. 3. Graphical View of the Sample Table in Figure 1 in Canonical Form.

these dimensions allows every data cell to be referenced using an element from
each dimension. Because Wang notation can represent any set of tabular data
independent of layout, MOGO is agnostic to the data’s original form. To further
enhance MOGO’s ability to produce a useful mini-ontology, we enhance standard
Wang notation so that information beyond just row and column labels and data
values is preserved in a canonicalized form. These enhancements include the
identification of a table’s title, caption, and footnotes as well as row, column,
and value augmentations such as units of measure.2 We capture canonicalized
tables in XML documents.

Based on canonicalized input data, MOGO produces a mini-ontology that
conforms to the OSM data modeling language [8]. Thus the input to MOGO
is a canonicalized table in an XML document, and the output of MOGO is a
conceptual model in OSM. MOGO operates automatically and, after producing
an OSM model instance, allows a user to accept the mini-ontology as produced,
make adjustments to the mini-ontology using the OSM ontology editor, or man-
ually rebuild the mini-ontology with the OSM ontology editor.

We illustrate how MOGO works with the table of geopolitical data in Fig-
ure 1. We compiled a small amount of data from multiple tables to create a single
sample table that illustrates the various facets of MOGO’s processing abilities.
Figure 3 shows a graphical representation of the canonicalized table in Figure 1.
Each dimension of the table forms a tree. The second dimension in the canonical-
ized table has no label value, so we add a placeholder label, [Dimension2]. Data
values, at the bottom of the figure, connect to one node from each dimension
via a dashed line. The dotted line connecting the Population node and the value
2000 indicates that the 2000 is a value augmentation of the Population node.
The representation also includes the title of the table.

2 For the TANGO project, we are developing a canonicalizing tool [10]. We have also
developed TISP [15], which can successfully canonicalize tables on the hidden web,
where sibling tables are available in rich abundance.



Lecture Notes in Computer Science 5

2.1 Auxiliary Services

Many of the algorithms MOGO uses require access to external lexical informa-
tion. Rather than tie the system directly to a specific implementation of some
lexical resource, MOGO establishes an implementation independent lexical ser-
vice interface. Supported generic operations include term normalization, and
testing whether one word is a hypernym, hyponym, meronym, or holonym of
another word. Term normalization, for example, allows the system to treat dif-
ferent word forms such as “Iowa,” “Hawkeye State,” and “IA” as equivalent
words, and hypernym checking allows the system to recursively check for term
generalizations. In our current implementation, MOGO uses WordNet [9] as its
backend lexical resource.

Another service MOGO uses is a data-frame library. Data frames provide a
mechanism for recognizing different types of objects from strings of data repre-
sentations using regular-expression recognizers [7]. MOGO’s data frame library
service takes a string as input, iterates over a collection of data-frame recognizers
attempting to classify the string, and returns the data frame that matches that
string. To illustrate how this works, suppose the string 12-08-2007 needs to be
classified. In looking for a match MOGO’s data frame service discovers that the
Date data frame recognizes dates in the form MM-DD-YYYY. The data frame
service returns the specific object set (concept) to which the search terms match,
as well as any ontology fragment associated with the Date data frame.

The final general service MOGO provides is a name finding service available
at each step of the process for assigning names to unnamed concepts. Titles,
footnotes, captions, and augmentations can contain words that are helpful for
naming unnamed concepts. The combined set of words from these sources forms
a pool of possible concept names. Given an unnamed concept, MOGO uses the
lexical service to retrieve the inherited hypernym list of each value assigned to
an unnamed concept, compares the list with each of the words in the naming
pool, and assigns the concept a name if one of the words in the pool is a direct
match to a word in the hypernym list. If this search does not find any matches,
MOGO attempts to identify an appropriate label for an unnamed concept by
looking for the first common word in the inherited hypernym lists of a selection
of the concept’s data values. If a common word is found, MOGO assigns that
word as the concept’s name.

2.2 Concept/Value Recognition

MOGO extracts concepts from a canonicalized table using six concept-recognition
algorithms (CR#1 – CR#6 ) and appropriately assigns data values from the ta-
ble to those concepts. We execute each algorithm in the order given below until
each table label and table data value of the canonicalized table is recognized as
either a concept or a value for a concept. Note that table labels can either be
concepts or data values for a concept. In Figure 1, the label Delaware is a data
value for the concept State and Northwest is a data value for the concept Region,



6 S. Lynn and D.W. Embley

but the label Population is a concept containing population values. Unlike table
labels, table data values are always data values for some concept.

A concept is synonymous with an object set in the OSM data modeling lan-
guage. According to OSM an object set identifies a group of objects or values [8].
Object sets, either lexical or non-lexical, are the ontological elements represent-
ing the concepts found in a table. A lexical object set is one whose members are
displayable and represent themselves (e.g., telephone numbers, names of com-
panies). In OSM a lexical object set appears visually as a box with a dashed
border. A non-lexical object set’s members are object identifiers (e.g., identifiers
that stand for persons or companies). In OSM a non-lexical object set appears
visually as a box with a solid border.

CR#1. The first concept-recognition algorithm uses lexical clues to determine
to which dimension labels the tables data values belong. A data value is said
to belong to a label if the data value is a hyponym of at least one of the labels
senses, and is not a hyponym of any other dimension label associated with that
data value. If the majority of the data values belong to an associated label,
MOGO flags the label as a potential object set. After evaluating all the dimension
labels, if all the labels MOGO flags are part of the same dimension, then MOGO
marks all the labels in that dimension as lexical object sets and associates the
corresponding data values with those object sets. CR#1 fails for the table in
Figure 1 because the data values in the table are numbers and there is no way to
determine, using only lexical clues, if those numbers belong to their associated
labels. CR#1 would succeed, for example, for a table of cities (e.g., Salt Lake
City, Los Angeles, San Francisco) and states (e.g., Utah, California) whose labels
are City and State.

CR#2. The second concept-recognition algorithm also uses the lexical service,
but in this case the objective is to determine if a label is an instance of its parent
label. Each dimension has one label referred to as the root label. In Figure 3, for
example, Location is the root of the first dimension. Below the root, a dimension
can contain several levels of label nesting. A label is said to be an instance of
its parent label if the parent label is in the label’s inherited hypernym list. If
the majority of the labels at one level of label nesting are instances of that
level’s parent label, MOGO marks them all as values and assigns the values to a
lexical object set created to hold them. In dimensions with only one level of label
nesting, MOGO names the created object set with the dimension’s root label (if
present). When a dimension has several levels of nesting, MOGO uses the name
finding service to find appropriate names for object sets. For the sample table
in Figure 1, MOGO creates lexical object sets for the second and third level of
nesting for the Location dimension. The inherited hypernym list for Northeast
and Northwest contains Region, which also appears in the title of the table, so
Region becomes the label for the object set containing the values Northeast and
Northwest. Similarly, each of the inherited hypernym lists for the state values
contains the word State which is also a word in the title of the table, so State
becomes the label for the object set containing Delaware, Maine, Oregon, and
Washington.



Lecture Notes in Computer Science 7

2002 2003

Province Nr. of Deaths

Quebec 54,896 56,411

Ontario 83,410 84,155

Fig. 4. Table with a Label Spanning Multiple Columns.

CR#3. The third algorithm checks for labels at the same level of nesting
that have the same name. This is usually manifest in tables with labels that
span multiple columns or rows (which are replicated for each column or row in
canonicalized tables). In the table in Figure 4, for example, Nr. of Deaths spans
the two year columns and appears, canonicalized, as two labels with the same
name at the same level of nesting. If all the labels at one level of label nesting
are the same, MOGO creates a named object set using the common name of the
source labels and assigns all the values associated with those labels to the newly
created object set. For the sample table in Figure 4, MOGO creates the object
set Nr. of Deaths and assigns it all four numeric values.

CR#4. The fourth concept-recognition algorithm attempts to classify all the
data values in a row or column with a header label using MOGO’s data-frame
service. If separate data frames uniquely recognize data values in at least two
rows or columns for the same dimension, MOGO marks all the labels in the
dimension as lexical object sets and associates them with their corresponding
data values. Requiring at least two different data frames to recognize data values
in at least two different rows or columns prevents MOGO from misidentifying
object sets in a table uniformly populated by data of the same type such as
a table full of percentages or of currency values. Data frames for Latitude and
Longitude, for instance, could recognize the values in the last two columns of the
table in Figure 1. In which case, MOGO would correctly classify the latitude
and longitude values in the table and also the population values. For the sake of
continuing the example, however, we assume that data-frame recognizers fail to
make this classification (perhaps because there are no latitude and longitude data
frames, or perhaps because the numbers in the latitude and longitude columns
are written so generally that multiple data frames recognize them and thus the
latitude and longitude data frames fail to uniquely enough identify the columns).

CR#5. The fifth concept-recognition algorithm applies data-frame recogniz-
ers to sibling labels, such as the year labels in Figure 4. For each group of sibling
labels that have the same data-frame classification, MOGO accepts the labels as
values, creates a lexical object set, names the object set with the data-frame’s
concept name, and associates the sibling labels (as values) with the new object
set. Thus, for example, the year labels in Figure 4 would become year values for
an object set Year.

CR#6. If algorithms CR#1–#5 do not successfully classify all items in the
canonicalized table as either object sets or values for object sets, MOGO creates
lexical object sets from all the unclassified labels in any dimension whose root
node contains a placeholder label (e.g., [Dimension 2] in Figure 1) and assigns to
them any unassigned data values associated with those labels. For any unclassi-



8 S. Lynn and D.W. Embley

fied labels in the remaining dimensions, MOGO groups the labels that are at the
same level of nesting in each dimension, treats the labels as values, creates un-
named object sets for them, and uses the name finding service to name them. For
any remaining unassigned data values, MOGO creates a new unnamed object
set for these values. For the sample table in Figure 1, this concept-recognition
algorithm creates lexical object sets for each of the labels under [Dimension2]
and assigns them their associated data values—the values under them in the
three columns.

2.3 Relationship Discovery

With concepts identified and values assigned to those concepts, MOGO next
identifies the relationships that exist among the concepts. MOGO adds relation-
ship information to the object sets using five relationship discovery algorithms
(RD#1–RD#5 ). Unlike the concept-recognition algorithms, which only run until
all labels and values have been classified, all relationship recognition algorithms
run—each successively refines the results of the previous algorithm.

RD#1. The first relationship-discovery algorithm obtains relationship infor-
mation from the dimension trees. For a dimension, MOGO creates relationship
sets between the object sets from the dimension anywhere an edge exists in the
dimension tree. When labels at one level of nesting have been merged into a
single object set, MOGO only creates one relationship set between the parent
object set and the child object set. If sibling object sets (object sets coming
from labels at the same level of label nesting) do not have any related object
sets higher in the tree, MOGO creates an object set of unknown type, labels
it with the dimension’s name (if there is one), and creates relationship sets be-
tween this new object set and each of the sibling object sets. Figure 5 shows the
relationship sets MOGO adds between the different object sets for our running
example beginning with Figure 1. MOGO associates the Region and State ob-
ject sets because they come from different levels of the same dimension—State
from the leaf level and Region from the intermediate level of the Location tree
in Figure 3. The Population, Latitude, and Longitude object sets are sibling ob-
ject sets whose parent object set is the placeholder [Dimension 2] meaning that
Population, Latitude, and Longitude have no identified conceptual parent object
set. In this case, MOGO creates an object set of unknown type, and associates
the sibling object sets with the newly created object set. We represent object
sets of unknown type visually as a shaded box with no border.

RD#2. The second relationship-discovery algorithm modifies the generated
ontology relationship sets using lexical clues. MOGO checks to see if the la-
bels or values indicate the presence of hypernyms, hyponyms, holonyms, and
meronyms. Hypernyms and hyponyms translate to generalization/specialization
relationships (represented by a triangle). Holonyms and meronyms translate to
aggregation relationships (represented by a filled-in triangle). If aggregations are
found between the object sets from one dimension, MOGO checks for general-
ization/specializations that might exist over the entire aggregation. Using its
lexical service, MOGO finds the inherited hypernym list of each object-set label



Lecture Notes in Computer Science 9

Fig. 5. Relationship Sets from Dimension Trees.

participating in the aggregation. If the dimension’s root label is in the inherited
hypernym lists of all the object sets in the aggregation, MOGO creates a new
lexical object set, labels it with the dimension’s root label, and associates this
new object set with each of the object sets that participate in the aggregation
using generalization/specialization. For our running example, Figure 6 shows
the results after MOGO modifies them using lexical clues. MOGO finds that
Delaware is an instance of an American State which is a hyponym of Region.
Thus, MOGO creates an aggregation constraint from the Region object set to
the State object set. Because the Region and State object sets come from the
same dimension, MOGO checks to see if the dimension’s root label is in the
inherited hypernym list of those object sets. MOGO successfully finds the root
label Location in the inherited hypernym lists, so it transforms the root object
set into a generalization and associates it with the aggregation object sets as
specializations.

Fig. 6. Relationship Sets after Linguistic Processing.

RD#3. The third relationship-discovery algorithm uses MOGO’s data-frame
service to find relationships between the object sets. MOGO applies data-frame
recognizers to match object sets with data frames. Then, if MOGO finds object
sets that match different concepts in the same ontology fragment, it replaces
these object sets with the discovered ontology fragment. In our running exam-
ple, MOGO discovers that the two object sets Latitude and Longitude in Fig-
ure 6 belong to the same ontology fragment—Geographic Coordinate. MOGO
therefore removes the existing Latitude and Longitude object sets, adds the Ge-
ographic Coordinate ontology fragment, and transfers the relationship sets pre-
viously connected to Latitude and Longitude to the primary object set of the
ontology fragment, which in this case is the Geographic Coordinate object set.
Figure 7 shows the result.



10 S. Lynn and D.W. Embley

Fig. 7. Relationship Sets after Data Frame Recognizers.

RD#4. The fourth relationship-discovery algorithm processes any augmenta-
tions that exist in the canonicalized table. For each row and column augmenta-
tion that is a value (not a unit, footnote, or a parenthetical remark) as indicated
in the canonicalized table, MOGO creates a singleton object for the value and
forms an n-ary relationship set among the singleton object and the object sets
associated with the augmentation. For example, Figures 1 and 3 show that Pop-
ulation has the value 2000 as an augmentation. Thus, as Figure 8 shows, MOGO
creates a singleton object whose value is 2000 and creates a ternary relationship
set among the object of value 2000, the Population object set, and the unnamed
object set already related to the Population object set.

Fig. 8. Relationship Sets after Processing Augmentations.

RD#5. The final relationship-discovery algorithm joins the ontology frag-
ments for each of the tables n dimensions into a single mini-ontology. MOGO
joins the fragments by creating an n-ary relationship set among the fragment
link-in points. An ontology fragment’s link-in point is the object set in the frag-
ment that comes from the highest level in the dimension—typically the object
set associated with the dimension’s root label. If one of the link-in points is a
placeholder object set and there is only one other ontology fragment, MOGO
merges the placeholder object set with the link-in object set of the other ontol-
ogy fragment. Figure 9 shows the result of merging the two ontology fragments
in Figure 8.



Lecture Notes in Computer Science 11

Fig. 9. Mini-ontology Results from Fragment Merge.

2.4 Constraint Discovery

MOGO has four constraint-discovery algorithms (CD#1–CD#4 ). Each checks
for a single kind of constraint; if an algorithm finds that the constraint holds,
MOGO adds the constraint to the mini-ontology being created.

CD#1. The first constraint-discovery algorithm adds constraints to gener-
alization/specialization relationships. It considers generalization/specialization
relationships identified by step RD#2 along with the values in the table that
have been assigned to object sets by steps CR#1–6. MOGO constrains a gener-
alization/specialization relationship to have a union constraint (represented by
a triangle containing a ∪) if all values in the generalization object set are also
in at least one of the specialization object sets. MOGO constrains a general-
ization/specialization to have a mutual-exclusion constraint (represented by a
triangle containing a +) if there is no overlap in the values in the specialization
object sets. When the generalization/specialization is constrained by both union
and mutual exclusion, MOGO assigns a partition constraint (represented by a
triangle containing a �, the symbol with both a ∪ and a +) to the relationship.
The � in Figure 2 appears as a result of running this algorithm. MOGO adds
the � because it determines that every value assigned to the Location object set
is also assigned to the either the Region object set or the State object set, and
further that the intersection of the values in the Region and State object sets is
empty.

CD#2. The second constraint-discovery algorithm looks for computed values
in a table. Tables often include columns or rows that contain the summation,
average, or other aggregates of values in the table. MOGO examines the val-
ues indexed by non-leaf nodes in the dimensions such as 2,122,869 which is
indexed by Northeast as Figure 3 shows. By computing aggregates of values
from related object sets and comparing them to these values to test whether
the aggregates hold, MOGO captures these constraints and adds them as to the
mini-ontology. Looking for possible aggregate values, MOGO determines that the
Population values for the Region values are the summation of the Population



12 S. Lynn and D.W. Embley

values for the State values. MOGO thus ads the constraint Region.Population =
sum(Population); Region3 to the mini-ontology as Figure 2 shows.

CD#3. The third constraint-discovery algorithm looks for functional relation-
ships. Each of the table’s original data values is functionally determined by the
dimension labels that index those values. Thus, MOGO identifies the object sets
that contain the table’s data values and marks the relationship sets coming into
those object sets as functional. In Figure 2, the arrowheads on the relationship
set coming from Location into Population and on the relationship set coming
from Location into Geographic Coordinate appear as a result of running this
algorithm—Location functionally determines Geographic Coordinate and, along
with the year, functionally determines Population. MOGO processes object sets
assigned values from table labels differently—it evaluates each of these object
sets to see if the values assigned to the object set functionally map to values
assigned to any related object sets (i.e., it checks each domain value or combi-
nation of domain values to see if there is at most one range value). If so, MOGO
marks the relationship set as functional. Since the Region and State object sets
contain values from dimension labels, and since the values assigned to the State
object set functionally map to the values assigned to the Region object set (i.e.,
there is only one region for each state), MOGO marks the relationship set from
State to the aggregation connecting it to Region as functional as Figure 2 shows.

CD#4. The final constraint-discovery algorithm determines whether objects
in an object set participate mandatorily or optionally in associated relationship
sets. Optional participation is represented in OSM by the symbol o (an “o”
for optional) placed near the object set’s connection point to a relationship-set
line. MOGO identifies object sets whose objects have optional participation in
relationship sets by considering empty value cells in the canonicalized table.
MOGO determines where these non-existing values are in the mini-ontology and
marks participation in any relationship sets adjoining these relationship sets as
optional. Figure 2 shows that MOGO discovers that Location optionally par-
ticipates with Geographic Coordinate because some locations, namely Northeast
and Northwest have no associated latitude and longitude values.

3 Experimental Evaluation

We evaluated MOGO using a test set of tables found on the Internet by a
third-party participant. We asked the participant to capture the URL of twenty
different web pages that contain tables. Because tables can vary drastically in
form and complexity, we asked that the test tables meet the following criteria: the
tables should come from at least three distinct sites; the tables should contain a
mix of simple tables (one dimensional with no label nesting) and complex tables
(multi-dimensional with or without label nesting); and the tables should all be
from the geopolitical domain. For each test URL gathered by the participant, we
3 The notation here means that a region’s population is the sum of the population

values grouped by Region; it is adapted from [6], which defines computational ex-
pressions over conceptual models.



Lecture Notes in Computer Science 13

saved a local copy of the page’s source HTML and used the tools created in the
first component of the TANGO project [10] to canonicalize the tables. MOGO
processed each of the twenty canonicalized tables and saved the resulting mini-
ontologies for evaluation. We evaluate each mini-ontology in three different areas:
concept/value recognition, relationship discovery, and constraint discovery.4

Concept/Value Recognition. Every table has a fixed number of concepts to
which the data values belong. We observe how many concepts MOGO correctly
identifies, how many it misses, and how many concepts it identifies that are not
really concepts. In addition, each concept has a label. We observe how many
labels MOGO correctly assigns and how many it incorrectly assigns. We also
observe how many data-value groups (i.e., data rows, data columns, label-data
groups) are assigned to a correct concept and how many are incorrectly assigned.
We compute precision values for concept/value recognition by dividing the total
number of correct concepts, labels, and data-value groups MOGO finds by the
total number of actual concepts, labels, and data-value groups combined with
the total number of incorrect concepts, labels, and data-value groups MOGO
finds. We compute recall values for concept/value recognition by dividing the
total number of correct concepts, labels, and data-value groups MOGO finds
by the total number of actual concepts, labels, and data-value groups in the
canonicalized table.

Relationship Discovery. We evaluate relationship discovery by observing how
many valid relationship sets MOGO discovers, how many relationship sets it
discovers that are invalid, and how many valid relationship sets MOGO does
not discover. Additionally, we observe how many aggregations and generaliza-
tion/specializations MOGO discovers, how many it discovers that are invalid,
and how many it does not discover. In cases where a relationship set, aggrega-
tion, or generalization/specialization should exist but does not because MOGO
does not correctly identify a concept, we count the missing relationship set, ag-
gregation, or generalization/specialization as one that MOGO does not discover.
We compute precision values for relationship discovery by dividing the total num-
ber of correct relationship sets, aggregations, and generalization/specializations
MOGO finds by the total number of actual relationship sets, aggregations, and
generalization/specializations combined with the total number of incorrect rela-
tionship sets, aggregations, and generalization/specializations MOGO finds. We
compute recall values for relationship discovery by dividing the total number of
relationship sets, aggregations, and generalization/specializations MOGO finds
by the total number of actual relationship sets, aggregations, and generaliza-
tion/specializations in the canonicalized table.

Constraint Discovery. We evaluate constraint discovery by observing how
many valid constraints MOGO discovers, how many invalid constraints it discov-
ers, and how many valid constraints MOGO does not discover. Observations are

4 It is necessary to point out that when building ontologies, there is often no “right”
answer. For most tables there can be multiple ontologies that are valid conceptual-
izations of the data. Our manual evaluation permitted only valid conceptualizations,
but did allow for reasonable alternatives.



14 S. Lynn and D.W. Embley

Precision Recall F-measure

Concept Recognition 87% 94% 90%
Relationship Discovery 73% 81% 77%
Constraint Discovery 89% 91% 90%

Table 1. Precision, Recall, and F-measure for Experimental Evaluation.

made for each of the following types of constraints: generalization/specialization
constraints, functional dependencies, computed values, and optional participa-
tion of objects in associated relationship sets. In cases where constraints should
exist but do not because MOGO does not correctly identify a concept or re-
lationship set, we count the missing constraint as one that MOGO does not
discover. We compute precision values for constraint discovery by dividing the
total number of correct constraints MOGO finds by the total number of actual
constraints combined with the total number of incorrect constraints MOGO
finds. We compute recall values for constraint discovery by dividing the total
number of constraints MOGO finds by the total number of actual constraints in
the canonicalized table.

Table 1 shows the precision and recall values for each evaluation. For the
experimental test, MOGO achieved 87% precision and 94% recall for the concept-
recognition task, 73% precision and 81% recall for the relationship-discovery
task, and 89% precision and 91% recall for the constraint-discovery task. As
a combined measure of precision and recall, we add F-measures to Table 1.
Concept recognition and constraint discovery both have an F-measure of 90%
while relationship discovery has an F-measure of 77%.

Unfortunately, a direct comparison of MOGOs results with results achieved
by TARTAR [13]—the only other similar system for converting tables to concep-
tual models we know about—is not possible. TARTAR’s maximum F-measure
of 74.18% should not be construed to indicate that TARTAR has worse perfor-
mance than MOGO. Not only are TARTAR’s results measured in a different
way, but TARTAR’s results also take into account both the table canonicaliza-
tion process as well as the conversion to a conceptual model. MOGOs results,
on the other hand, are based on a set of canonicalized tables that were checked
for accuracy before being processed by MOGO. For some tables, in particular
sibling tables found in hidden-web pages, we can automatically canonicalize in
preparation for running MOGO with F-measures running as high as 94.5% [15].
Hidden-web pages, however, are not arbitrary pages and their characteristics
simplify the general canonicalization problem and thus render comparison with
TARTAR’s results problematic even when we run our hidden-web-page can-
nonicalizer in series with MOGO. As a hypothesis for further work, we believe
that a combination of TARTAR’s pattern-learning and statistical methods and
MOGO’s linguistic/type-recognition/spatial-layout methods would result in an
enhancement of both TARTAR and MOGO.

As a result of our experimental evaluation, we observed a number of issues,
which we report here.



Lecture Notes in Computer Science 15

Duplicate Concepts. Some tables have multiple columns that corresponded to
the same concept. For example, a table about mountain peaks can contain two
columns labeled height—in one column the height appears in meters and in the
other column the height appears in feet. MOGO is currently unable to correctly
merge these concepts into one.

Concept Labeling. Sometimes a valid label for the concept does not exist in
the table. Many tables assume that the reader can infer the correct label based on
the context in which the table occurs. In some cases, such as a table containing
an unlabeled column of country names, MOGO is able to successfully identify a
valid label using its lexical service. In other cases, such as an unlabeled column
of numbers (perhaps under discussion in the text surrounding the table), MOGO
cannot identify a label for the concept that contains these values.

Aggregates and Generalization/Specializations. MOGO only looks for aggre-
gate and generalization/specialization constructs when there is label nesting
present in a dimension. MOGO’s heuristics, for example, do not currently check
for aggregates in cases such as when a table has a column of county names and
another column of state names.

Functional Constraints. Canonicalized table values sometimes contain lists
of values instead of a single value. Currently, MOGO incorrectly treats these
lists of values as singleton objects and usually discovers that lists are unique and
thus that relationship sets connecting to object sets containing these lists are
functional.

Totals not Associated with Aggregates. When a column or row only contains
values that are the computed sums or averages of the other values in the table,
MOGO does not correctly identify these computed values. Currently, only when
the row or column represents a conceptual aggregation, such as a state population
containing the computed sum of the populations of the counties in that state,
does MOGO correctly identify the computed value.

Cascading Errors. Errors in earlier phases of mini-ontology generation have
a cascading effect on errors in later parts of the process.

4 Concluding Remarks

We have created a system called MOGO that automates the acquisition (i.e.,
the generation) of mini-ontologies from canonicalized tables of data. MOGO
uses a novel approach to ontology generation by combining spatial observations,
linguistic clues, and narrowly defined data-instance recognizers (data frames) for
generating conceptual models. Experimental results show that MOGO is able to
automatically identify the concepts, relationships, and constraints that exist in
arbitrary tables with a relatively high level of accuracy—with F-measures of 90%,
77%, and 90% respectively for concept/value recognition, relationship discovery,
and constraint discovery in web tables selected from the geopolitical domain.



16 S. Lynn and D.W. Embley

References

1. R. Alhajj. Extracting the extended entity-relationship model from a legacy rela-
tional database. Information Systems, 28(6):597–618, 2003.

2. S.M. Benslimane, D. Benslimane, and M. Malki. Acquiring OWL ontologies from
data-intensive web sites. In Proceedings of the 6th International Conference on
Web Engineering, pages 361–368, Palo Alto, California, July 2006.

3. R.H.L. Chiang, T.M. Barron, and V.C. Storey. Reverse engineering of relational
databases: Extraction of an EER model from a relational database. Data and
Knolwedge Engineering, 12(1):107–142, 1994.

4. P. Cimiano. Ontology Learning and Population from Text: Algorithm, Evaluation
and Applications. Springer Verlag, New York, New York, 2006.

5. I. Comyn-Wattiau and J. Akoka. Reverse engineering of relational database phys-
ical schema. In Proceedings of the 15th International Conference on Conceptual
Modeling, pages 372–391, Cottbus, Germany, October 1996.

6. B. Czejdo and D.W. Embley. An approach to computation specification for an
entity-relationship query language. In Proceedings of the 6th Entity-Relationship
Conference, pages 307–321, New York, New York, November 1987.

7. D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith. Conceptual-model-based data extraction from multiple-record
web pages. Data & Knowledge Engineering, 31(3):227–251, November 1999.

8. D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Analysis:
A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

9. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
Massachussets, 1998.

10. P. Jha. Interactive wang notation tool for web tables. Technical report,
Rensselaer Polytechnic Insititue, Troy, New York, May 2007. Available at:
http://tango.byu.edu/.

11. P. Johannesson. A method for transforming relational schemas into conceptual
schemas. In Proceedings of the 10th International Conference on Data Engineering,
pages 190–201, Houston, Texas, February 1994.

12. N. Lammari, I. Comyn-Wattiau, and J. Akoka. Extracting generalization hierar-
chies from relational databases: A reverse engineering approach. Data & Knowledge
Engineering, 63(2):568–589, 2007.

13. A. Pivk, Y. Sure, P. Cimiano, M. Gams, V. Rajkovič, and R. Studer. Transforming
arbitrary tables into logical form with TARTAR. Data & Knowledge Engineering,
60:567–595, 2007.

14. W. Premerlani and M. Blaha. An approach to reverse engineering of relational
databases. Communications of the ACM, 37(5):42–49, May 1994.

15. C. Tao and D.W. Embley. Automatic hidden-web table interpretation by sibling
page comparison. In Proceedings of the 26th International Conference on Concep-
tual Modeling, pages 556–581, Auckland, New Zealand, November 2007.

16. Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy. Toward
ontology generation from tables. World Wide Web: Internet and Web Information
Systems, 8(3):261–285, September 2005.

17. X. Wang. Tabular Abstraction, Editing, and Formatting. PhD thesis, University
of Waterloo, 1996.


