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Abstract

A major obstacle impeding progress on the “web of data” is content creation—a difficult, tedious, and time-
consuming task. How do we make human-scalable, user-friendly tools to enable the web of data? Content integrity is
also a major concern. How do we engender confidence in results returned from the web of data? Although seemingly
unrelated, we show in this paper that it is exactly their relationship that is the key to solving both problems. As we
show in this paper, we can semi-automatically derive both data and metadata from data-rich web pages to create
a web of data that we then superimpose over these data-rich web pages. We link the web of data to the current
web of pages, resulting in a higher-order “web of knowledge.” This web of knowledge provides provenance and thus
engenders the confidence necessary to raise the level of the web from “data” to “knowledge.” We focus mainly on two
prototype tools we have implemented: (1) TISP—a tool to automatically generate ontologies for data-rich, machine-
generated web pages and annotate these pages with respect to these generated ontologies and (2) FOCIH—a tool
to semi-automatically generate user-specified ontologies and annotate web pages with respect to these user-specified
ontologies. We also briefly survey a suite of tools we and others are creating that have the potential to further enable
this web of knowledge. As a measure of how successful these tools are and potentially can be, we summarize precision
and recall results, which indicate the degree of scalability we can hope to achieve in enabling a web of knowledge.

Key words: web of knowledge, web of data, semantic web, ontology generation, semantic annotation, information extraction,
information harvesting, table interpretation

1. Introduction

The current World Wide Web is a web of pages.
Users have to guess possible keywords that might
lead through search engines to the pages that con-
tain information of interest and browse potentially
many of the returned pages to obtain what they
want. This frustrating problem motivates an ap-
proach to turn the web of pages into a web of knowl-
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edge, so that web users can query the information
of interest directly.

Figure 1 shows an example of the Web of Knowl-
edge (the WoK ) we envision. The upper-left panel
shows a free-form query over the WoK. The WoK
query processor highlights in green the words it rec-
ognizes. It uses these recognized words along with an
OWL ontology to generate a SPARQL query over an
RDF file that contains the data for the OWL ontol-
ogy. The SPARQL query returns results in the lower-
left panel. The WoK interface then allows users to
click on individual results to retrieve the web page
from which the WoK originally extracted the result
and to display the page with the result highlighted.
Users can also check one or more selection boxes to
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Fig. 1. Screenshot of WoK Prototype

tell the WoK that they want several results high-
lighted. The panel on the right in Figure 1 displays
the the web page with requested results highlighted
(or if the requested results are in several web pages,
the panel contains a cascade of web pages, each with
highlighted results).

Achieving this vision requires that we address and
overcome some interesting challenges. (1) How does
the WoK get its ontologies? People could manu-
ally create them, but this is highly labor intensive
and does not scale to the size of the web. Creating
an ontology is non-trivial. It not only requires do-
main expertise, but also requires an understanding
of conceptual modeling and a specific ontology lan-
guage. In order to cover the vast amount of infor-
mation available online, we might need thousands of
domain ontologies. In addition, different users have
different views even for the same domain. Therefore,
they may want their data represented and queried
in different ways. To satisfy this desire, the WoK
should allow for user-specific ontologies, which fur-
ther multiplies the number of needed ontologies. All
of this makes the ontology creation process challeng-
ing and suggests that automatic techniques or semi-
automatic techniques with a high degree of automa-

tion are necessary.
(2) How do WoK ontologies get their data con-

tents? And (3) how do source web pages become an-
notated with respect to WoK ontologies? Or, equiva-
lently, how does the WoK get its provenance links to
source web pages? People could manually add data
for each concept in an ontology and establish rela-
tionships among the data items, and people could
manually link each data item in an ontology to a
data item in a source page. Clearly, however, an-
notating the millions of available data-rich source
pages is beyond the ability of any size group of ex-
pert knowledge engineers. Moreover, pages change
and are generated anew in large quantities, which
makes the annotation problem even more massive.

(4) How do users query the WoK? We cannot ex-
pect users with ordinary skills and without special-
ized training to write database queries in the syntax
of SQL or SPARQL or any other specialized query
language.

A way to automate both ontology creation and
semantic annotation appears to be necessary if the
vision of a web of knowledge is to become a reality.
This paper provides a step in this direction. Specifi-
cally, this paper describes our implementation of two

2



projects aimed at automating ontology creation and
semantic annotation, and it briefly describes some of
our other WoK-related projects under way including
free-form query specification. Others, besides our-
selves, are also working on ontology learning, infor-
mation extraction, and semantic annotation, and we
indicate how these efforts can also contribute to the
WoK.

The two projects on which we focus in this paper
are TISP (Table Interpretation for Sibling Pages)
and FOCIH (Form-based Ontology Creation and
Information Harvesting, pronounced foh·s̄i). TISP
interprets HTML tables by comparing tables in
“sibling pages”—machine-generated pages from the
same web site that display data in a similar way.
The Holt, Rinehart, and Winston (HRW) World
Atlas web site [25], for example, has country pages
like the one for Austria in Figure 1 for every country
in the world. The page for the Czech Republic in
Figure 2 is a sibling page of the page for Austria in
Figure 1. These sibling pages contain HTML tables
displaying data values for the category labels Coun-
try (long form), Capital, Total Area, etc. Tables in
sibling pages are “sibling tables.” To interpret a
table is to properly associate table category labels
with table data values. TISP compares sibling ta-
bles to identify and connect nonvarying components
(category labels) and varying components (data
values). More generally, TISP can identify sibling
tables, discover the table structure and layout of
sibling tables, interpret tables using structure and
layout patterns, and automatically adjust structure
and layout patterns as it processes a sequence of
machine-generated pages from the same web site.

With the ability to automatically interpret sibling
tables, the next step is to automatically generate on-
tologies from these tables and annotate the data in
these tables with respect to the generated ontologies.
An extended version of TISP, TISP++, generates
OWL ontologies from interpreted tables and then
annotates the information in the tables with respect
to the generated ontologies. Being able to interpret
tables leads immediately to a conceptualization of
the data in these interpreted tables and thus also
to a way to semantically annotate these interpreted
tables with respect to the ontological conceptualiza-
tion. Labels in table structures yield ontological con-
cepts and relationships among these concepts, and
associated data values become annotated informa-
tion. The semantically annotated data leads imme-
diately to queryable data in our envisioned WoK.

TISP and TISP++ provide a fully automatic

Fig. 2. A Sample Page from HRW World Atlas.

way to transform facts embedded within machine-
generated sibling tables into facts accessible by
standard query engines. However, the ontologies are
generated based on tables as specified in a web site’s
pages, and the information needs to be queried in
the way the tables represent it. Users do not have
control over the representation of the concepts,
relationships, and constraints of the generated on-
tologies. To facilitate user-oriented information
gathering and querying, we created FOCIH.

FOCIH provides for personalized information
harvesting—personalized in the sense that the user
can specify the ontology into which the information
is to be harvested. The “form-based” part of the
name emphasizes the means by which a user creates
an ontology—namely by creating a form to be filled
in by the system as it harvests information. FOCIH
allows users to create forms that describe the in-
formation they wish to harvest. Given a form, FO-
CIH can generate an ontology, semi-automatically
“learn” to match information in a web page with
the ontology, and, for machine-generated sibling
pages from a web site, harvest information and
annotate the pages of the web site with respect to
the ontology. In addition, as an aid to initiating
forms, FOCIH can reverse engineer existing tables
or ontologies into forms, use them directly, or al-
low users to make modifications until they have
their desired ontological view. By doing so, FOCIH
opens a door for harvesting data and annotating
information according to any view users want—
either user-created, or based on TISP-interpreted
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tables or on any existing ontology (currently, in our
implementation, only OWL ontologies).

We make the following contributions in this pa-
per. (1) We show how to superimpose a web of data
over a web of pages and thus show how to raise the
level of a web of data to the level of a web of knowl-
edge. (2) We describe implemented, automatic and
semi-automatic tools to create a web of knowledge
and thus provide scalable ways to create its con-
tent. (3) We blaze a path toward the development
of a suite of human-scalable, user-friendly tools to
enable a web of knowledge.

We present the details of these contributions in
this paper as follows. We first explain in Section 2
our underlying annotation framework—OWL files
for storing ontologies and RDF files to record the
annotation links between these OWL ontologies and
data in HTML pages. We then explain in Sections 3
and 4 how TISP and FOCIH work—how they are
able to either automatically or semi-automatically
generate OWL ontologies and record annotation in-
formation for HTML pages in RDF files. Building
on TISP and FOCIH as examples, we explore in Sec-
tion 5 how additional work we and others are do-
ing can contribute to the human-scalability issues
that currently impede WoK creation. In Section 6 we
provide some summary results to indicate the likely
success of these endeavors. Finally, in Section 7 we
summarize and consider future work.

2. Foundational Framework

To provide a foundational framework, we first say
what what we mean by “knowledge.” We then ex-
plain the essence of the foundation for a “Web of
Knowledge” (a “WoK”) followed by some details
about the particular implementation of our WoK
prototype.

Following Meadow [29], we think of the atomic el-
ements of the WoK as symbols, which can be sub-
strings (proper or not) of some character string or
multimedia components such as images, sound bites,
or frame sequences. Data, according to Meadow,
is an attribute-value pair, which we generalize to
concept-name/element pairs. The page in Figure 1
is data-rich, containing, for example, (Capital, Vi-
enna) and (Flag, <the image of the Austrian flag>),
and much, much more. To become information, ac-
cording to Meadow, data requires context. We view
information as conceptualized data—data in a con-
ceptual model. Thus, in Figure 1 we not only have

(Capital, Vienna) but also (Country, Republic of
Austria) and the relationship between the two, giv-
ing the information that Vienna is the capital of
Austria. Knowledge is the same as information, ex-
cept, according to Meadow, that it carries with it
some community-certified agreement that it is cor-
rect. For the scale of the web, it does not seem fea-
sible to have committees of experts certify all facts
in the web of knowledge. Rather, we rely on the cur-
rent certification of facts on the web—namely, the
believability of pages as they stand as assertions of
more or less reputable creators of web content. Thus,
our vision of the WoK is one of information (con-
ceptualized data), extracted from web pages, with
links for every data item back to the elements from
which they are obtained.

Abstractly, we define the Web of Knowledge that
we envision as a 4-tuple (O, P , D, A) where O is a
set of ontologies, P is a set of web pages, D is a set
of data elements, and A is a set of annotations. For
our use here, we define an ontology for the WoK as
a triple (C, R, Σ) where C is a set of concepts, and
R is a set of n-ary relationships over concepts in C
(n ≥ 2), and Σ is a set of constraints. In first-order
logic, each constraint in C is a one-place predicate,
each n-ary relationship is an n-place predicate, and
each constraint in Σ is a well-formed, closed for-
mula. 2 We populate each ontology in the WoK with
elements from D. An annotation a ∈ A function-
ally maps a data element d ∈ D to a page element
p ∈ P , where p is an annotatable component of P
such as a string, an image, or a sound bite. We do
not require that an object d ∈ D have an associated
annotation; thus, the annotations constitute a par-
tial function f from the union of populated ontol-
ogy concepts to annotated elements in P . Further,
we do not require that f be injective; thus multiple
ontologies can annotate the same page element.

In our prototype implementation, we ground our
ontology language in OWL. One important differ-
ence between WoK ontologies and OWL ontologies
is that WoK ontologies have n-ary relationships
whereas OWL ontologies only allow binary relation-
ships. In the WoK, we want to be able to consider
n-ary relationships such as Country-Population-
Y ear(x, y, z) so that we can record in a straightfor-
ward way the fact that Austria’s 2001 population
estimate is 8,150,835, and its 2050 estimated popu-

2 We express ontologies in languages equivalent to
description-logics [5] and thus limit them for practicality
purposes.
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lation is 7,698,412, as Figure 1 asserts. Using a stan-
dard transformation, we convert n-ary to binary re-
lationships by introducing an additional concept to
represent the n-ary relationship itself along with n
functional, binary relationships. Thus, for our popu-
lation example, we let CountryPopulationY ear(x)
be a concept and establish the relationships

CountryPopulationYear -Country(x, y),
CountryPopulationYear -Population(x, y), and
CountryPopulationYear -Year(x, y).
As an example, Figure 3 shows a few of the 260

lines of an OWL ontology for the information about
countries contained in the HRW web site. The first
few lines of the ontology declare name spaces; then
beginning on Line 14, classes for the various con-
cepts in the ontology are defined. Observe that the
page itself (denoted by its site name Hrwworldatlas)
as well as each of the category labels (concepts) in
the table are OWL classes (Lines 14–18 in Figure 3).
Skipping down several lines, we find binary relation-
ships, declared in OWL as object properties. Each
has a domain and range as well as an inverse relation-
ship. Lines 50–56 show one of these binary relation-
ships. OWL datatype properties provide for links to
data values. Lines 180–183 show the declaration for
the country name. Given sibling pages such as the
ones in Figures 1 and 2, we can generate this OWL
ontology automatically. Section 3 explains how.

For annotations in our prototype implementa-
tion, we have an OWL ontology to define them. In
our annotation ontology, the top-level superclass is
AnnotatedThing. The subclasses of AnnotatedThing
describe the various kinds of things we can anno-
tate, e.g., the subclasses AnnotatedHTMLText for
HTML documents and AnnotatedImage for im-
ages. An object property of AnnotatedThing is a
CachedResource. In our WoK implementation we
cache all things we annotate—e.g., all HTML pages
and all images. This ensures that WoK annotations
cannot be foiled by changes in web pages, but it also
means that changed pages should be reannotated to
make their updated content part of the WoK. For
annotated HTML text, we record the character off-
set of an annotated substring as well as the substring
itself. For annotated images, we keep the upper-
left and lower-right coordinates of the rectangular
subimage being annotated. Because it is possible
for an annotated thing to have component parts,
we also provide for the possibility that we may need
to join these component parts together to form the
single thing being annotated. We may wish, for ex-
ample, to consider geographic coordinate as a single

longitude/latitude value. The longitude value and
the latitude value, however, may appear in some
HTML page in separate cells in a table or separated
in the source page in some other way. The ontol-
ogy, which calls for a single geographic coordinate
made up of a longitude-latitude pair, needs both
components to represent the single concept. Having
component parts of annotated things accommo-
dates this possibility. Besides annotating things
themselves, it is also possible to add a free-form
description and a free-form comment. Descriptions
should describe things, whereas comments may add
any additional information of interest.

To populate ontologies and link instances with an-
notations, we use RDF. Figure 4 shows some of the
565 lines that describe the data and annotations for
the ontology in Figure 3 for both the Austria page in
Figure 1 and the Czech Republic page in Figure 2.
Line 10 provides the default name-space for the on-
tology with respect to which we are annotating the
page, and Line 11 provides the name-space abbrevia-
tion “ann” for our annotation ontology. Lines 19–22
give the cached page for Austria an ID, resource65 ;
the cached page for the Czech Republic similarly
has an ID. Lines 31–64 contain the instances, some
of which we show in Figure 4. As we identify in-
stances for an OWL ontology class C, we simply la-
bel them Ci (literally, C i) as the ith instance for the
class. We associate instances with OWL classes by
giving explicit types for each instance. Lines 76-78
show that the instance Capital 1 represents a cap-
ital city. We relate instances in relationships with
RDF subject-predicate-object triples. Lines 206–370
give the relationship instances: Hrwworldatlas 1 re-
lates to Countrylongform 1, Capital 1, Totalarea 1,
etc. Lines 374–564 give the annotation declarations.
Countrylongform 1 is in resource65 beginning at
character location 9237, and its HTML text is “Re-
public of Austria”. In the ontology Hrwworldatlas
(Lines 225–227), its value is also “Republic of Aus-
tria”, since it is a string. 3 In the Hrwworldatlas
ontology, the ID Countrylongform 1 relates to the
value “Republic of Austria” through the Country-
longform-Hrwworldatlas relationship to the country
represented by the ID “#Hrwworldatlas 1”. In Sec-
tion 3, we explain how we generate this RDF file
automatically.

3 For other data types, the representations may be different,
e.g., the population string 7,698,412 as HTML text and its
integer value 7698412 in the ontology.
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...

014. <owl:Class rdf:ID="Hrwworldatlas"/>

015.

016. <owl:Class rdf:ID="Countrylongform"/>

017.

018. <owl:Class rdf:ID="Capital"/>

...

050. <owl:ObjectProperty rdf:ID="Hrwworldatlas-Countrylongform">

051. <rdfs:domain rdf:resource="#Hrwworldatlas"/>

052. <rdfs:range rdf:resource="#Countrylongform"/>

053. <owl:inverseOf>

054. <owl:ObjectProperty rdf:ID="Countrylongform-Hrwworldatlas"/>

055. </owl:inverseOf>

056. </owl:ObjectProperty>

...

180. <owl:DatatypeProperty rdf:ID="CountrylongformValue">

181. <rdfs:domain rdf:resource="#Countrylongform"/>

182. <rdfs:range rdf:resource="&xsd;string"/>

183. </owl:DatatypeProperty>

...

Fig. 3. Partial OWL Ontology for HRW World Atlas.

Sometimes it is necessary to annotate elements
with component parts of values that appear in mul-
tiple locations within a web page. Though unlikely
for FOCIH applications, components parts of val-
ues may even come from different web pages. An-
notating these more complex values in source doc-
uments requires a correspondingly more complex
annotation specification. We illustrate this process
with the example in Figure 5. The storage of all
concatenated values is similar. Suppose that in a
source file the information about GeographicCoordi-
nate appears as “49 45 N”, and “15 30 E” and comes
from different places in the web page. In the ontol-
ogy view, we want to show them as one single value
“49 45 N 15 30 E”. As Figure 5 shows, FOCIH stores
the concatenated value as GeographicalCoordinate 1
and then generates two objects, GeographicCoordi-
nateComponent 1 and GeographicCoordinateCom-
ponent 2, one for each component part of the value
and inserts them as hasComponent -properties of the
GeographicalCoordinate 1 declaration.

3. TISP

Automatic ontology generation is non-trivial.
Generation from arbitrary documents in the same
way humans are able to read, comprehend, and
formulate knowledge structures and facts, is virtu-
ally impossible, at least for the foreseeable future.
Data-rich, semi-structured documents, however,
may enable algorithmic solutions. As one line of
research, we investigate tables as a possible source
for automatic ontology generation. Online tables

provide valuable information about what people
think are reasonable ways to represent domains.

In our ontology-generation system, TISP, we fo-
cus on machine-generated HTML tables. Millions of
these tables come from the hidden web—so-called
because their data surfaces only in response to sub-
mitted queries. Because these tables are machine-
generated, those from the same site usually share
the same or similar structures. Pages from the same
web site that have the same or similar structure are
sibling pages, and the corresponding tables in these
pages are sibling tables—e.g., sibling tables in Fig-
ures 1 and 3. All the pages from the HRW web site
have the same basic structure—maps at the top,
flags on the right, and a list of category labels and
their values. The category labels have the same or-
der, always starting with Country (long form), fol-
lowed by Capital, Total Area, Population, etc. The
data values, however, vary considerably. Each coun-
try has a different name, a different capital city, etc.

To interpret machine-generated tables automat-
ically, TISP compares a pair of sibling tables and
looks for commonalities for labels and variations
for data values. Given matched and mismatched
strings in sibling tables, TISP looks for typical ta-
ble patterns—labels as column headers, labels as
row headers, or tables with both column and row
headers. In Figures 1 and 3, for example, labels are
row headers, which typically have a single column of
values, as do the country tables in these examples.
TISP also looks for combinations of these patterns
such as when lengthy label-value pair tables are for-
matted with the bottom half of the table displayed
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...

009. <rdf:RDF

010. xmlns ="http://dithers.cs.byu.edu/owl/ontologies/hrwworldatlas#"

011. xmlns:ann="http://dithers.cs.byu.edu/owl/ontologies/annotation#"

012. xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

...

019. <ann:CachedResource rdf:ID="resource65">

020. <ann:ResourceID>null</ann:ResourceID>

021. <ann:CachedURI>http://dithers.cs.byu.edu/wok/cache.php?action=get&amp;hash=

f3c4a774b5d8cc6d90e21deaa3639ed47dbc9b4d</ann:CachedURI>

022. </ann:CachedResource>

...

031. <owl:Thing rdf:ID="Hrwworldatlas_1"/>

032. <owl:Thing rdf:ID="Countrylongform_1"/>

033. <owl:Thing rdf:ID="Capital_1"/>

034. <owl:Thing rdf:ID="Totalarea_1"/>

035. <owl:Thing rdf:ID="Population_1"/>

...

063. <owl:Thing rdf:ID="Arableland_2"/>

064. <owl:Thing rdf:ID="Naturalresources_2"/>

...

076. <owl:Thing rdf:about="#Capital_1">

077. <rdf:type rdf:resource="&hrwworldatlas;Capital"/>

078. </owl:Thing>

...

206. <rdf:Description rdf:about="#Hrwworldatlas_1">

207. <Hrwworldatlas-Countrylongform rdf:resource="#Countrylongform_1"/>

208. <Hrwworldatlas-Capital rdf:resource="#Capital_1"/>

209. <Hrwworldatlas-Totalarea rdf:resource="#Totalarea_1"/>

210. <Hrwworldatlas-Population rdf:resource="#Population_1"/>

...

225. <rdf:Description rdf:about="#Countrylongform_1">

226. <CountrylongformValue rdf:datatype="&xsd;string">Republic of Austria</CountrylongformValue>

227. </rdf:Description>

...

374. <rdf:Description rdf:about="#Countrylongform_1">

375. <ann:inResource rdf:resource="#resource65"/>

376. <ann:OffsetOnHTMLPage rdf:datatype="&xsd;nonNegativeInteger">9237</ann:OffsetOnHTMLPage>

377. <ann:HTMLText rdf:datatype="&xsd;string">Republic of Austria</ann:HTMLText>

378. </rdf:Description>

...

Fig. 4. Annotation for Figure 2 for the Ontology in Figure 3.

adjacent to the top half of the table. TISP can also
process complex nested tables such as the nested ta-
ble in Figure 6 from the WormBase site [47]. 4

An extended version of TISP, TISP++, lever-
ages interpreted tables to generate ontologies that
describe the domain covered by these tables. La-
bels in tables yield ontological concepts, and ta-
ble structures yield relationships among ontological
concepts. Nested table structures like the ones gen-
erated from WormBase in Figure 6 are particularly
interesting. Since the structure of complex nested ta-
bles mirrors the structure of complex nested forms,

4 For an in-depth discussion about how TISP processes both
simple and complex sibling tables and sibling tables with
slight differences, see [40].

a good indication of how this works is in the next
section where we discuss FOCIH. Here, we explain
the process for the flat HRW country tables.

Figure 3 shows part of the generated ontology
for the sibling pages interpreted by TISP from the
HRW WORLD ATLAS repository [25]. As a de-
fault, TISP++ selects for the ontology name “HRW-
WORLDATLAS”, which is the site name (contents
of the HTML title tag) with all the spaces removed.
This name, albeit in mixed-case letters to conform
to conventions, becomes the name for the ontology.
In addition, and most important, this name pro-
vides an anchor class to which we attach ontological
concepts. Line 14 in Figure 3 shows the OWL class
“Hrwworldatlas”.
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<rdf:Description rdf:about="#GeographicCoordinate_1"> ...

<GeographicCoordinateValue rdf:datatype="&xsd;string">49 45 N 15 30 E</GeographicCoordinateValue>

</rdf:Description>

...

<rdf:Description rdf:about="#GeographicCoordinate_1"> ...

<ann:hasComponent rdf:resource="#GeographicCoordinateComponent_1"/>

<ann:hasComponent rdf:resource="#GeographicCoordinateComponent_2"/>

</rdf:Description>

...

<ann:AnnotatedHTMLText rdf:ID="GeographicCoordinateComponent_1"> ...

<ann:inResource rdf:resource="#resource3"/>

<ann:OffsetOnHTMLPage rdf:datatype="&xsd;string">487</ann:OffsetOnHTMLPage>

<ann:HTMLText rdf:datatype="&xsd;string">49 45 N</ann:HTMLText>

</ann:AnnotatedHTMLText>

...

<ann:AnnotatedHTMLText rdf:ID="GeographicCoordinateComponent_2"> ...

<ann:inResource rdf:resource="#resource3"/>

<ann:OffsetOnHTMLPage rdf:datatype="&xsd;string">530</ann:OffsetOnHTMLPage>

<ann:HTMLText rdf:datatype="&xsd;string">15 30 E</ann:HTMLText>

</ann:AnnotatedHTMLText>

Fig. 5. Sample RDF Annotation for Instance Concatenation

Fig. 6. A Sample Table from WormBase [47].

8



For each table label, TISP++ generates an OWL
class. The label name becomes the class name. To
satisfy the OWL syntax, however, TISP++ elides
characters such as spaces and parentheses. Thus
“Country (long form)” becomes “Countrylong-
form” as Line 16 in Figure 3 shows. The generated
ontology also represents the relationships among
the labels. For a binary relationship between two
classes A and B, TISP++ generates an OWL object
property: A-B and its inverse B-A. For the prop-
erty A-B, TISP++ defines A as the domain and B
as the range. For example, Lines 50–56 in Figure 3
show the OWL object property for Hrwworldatlas-
Countrylongform. If a label is paired with an actual
value, TISP++ generates an OWL data type prop-
erty for the OWL class associated with this label.
For example, data type property Countrylongform
describes the actual value for Countrylongform.
As Lines 180–183 in Figure 3 show, its domain is
Countrylongform and its range is string.

After TISP++ generates an ontology according
to the structure pattern of a web repository, it au-
tomatically annotates the pages from this reposi-
tory with respect to the generated ontology. Since
the interpretation declares the structure pattern, the
annotation is straightforward. TISP++ generates
an RDF file to record the information as Figure 4
shows. It knows the resources—the pages it pro-
cesses (e.g., Lines 19–22 in Figure 4), and it knows
where on each page it obtains values and thus the
character offset for each annotated value in each
page (e.g., Line 376 in Figure 4). It picks up each
value and makes it a Thing (e.g., Lines 31–64).Based
on discovered label-value pairs in the table struc-
ture, it knows the concept class in which to put
each value (e.g., Lines 76–78). The discovered rela-
tionships among label-value pairs in the table struc-
ture lead to knowing which relationship instances
to establish—e.g., the relationship Hrwworldatlas-
Countrylongform with the instance (Hrwworldat-
las 1, Countrylongform 1 ) in Lines 206–207. The
annotation in Lines 374-378, as an example, ties the
instance Countrylongform 1 to its lexical instance
value “Republic of Austria” which starts at charac-
ter position 9237 in resource65.

With the annotated data properly stored in an
RDF file (e.g. Figure 4), we can immediately query
the annotated data using SPARQL [37]. Although
possible to use the WoK in this way, most WoK users
will not learn SPARQL and, without some other
means to query the WoK, would find it unusable.
As Figure 1 shows, users can also query the WoK

with free-form queries. We explain how this works
in Section 5.

4. FOCIH

TISP++ provides an automatic solution for cre-
ating WoK content when sibling tables are available.
The generated ontologies, however, represent infor-
mation only in the same way as the original tables
present it and only for the information present in
machine-generated tables in sibling pages. How can
we provide scalable ways for users to annotate any
information they wish according to any view they
deem reasonable?

To enable these possibilities for the WoK, we pro-
vide users with a tool with which they can give their
view of a domain without knowledge of conceptual
modeling or ontology languages. We observe that
forms are a natural way for people to collect infor-
mation. As an everyday activity, people create forms
and ask others to fill them in. In this way, specified
information can be gathered. FOCIH mimics this ev-
eryday activity and allows users to generate a form
that describes the information they wish to harvest
and then provides a way for users to gather this in-
formation from HTML web pages. As information
is harvested, FOCIH also annotates it for the WoK.

Given a form, FOCIH generates a corresponding
ontology. Form labels become concepts in an ontol-
ogy. Based on the structure of form components,
FOCIH generates relationships and constraints. Af-
ter FOCIH generates an ontology from a given form,
a user can annotate and harvest information with
respect to the view represented by the form. Users
can harvest information from any arbitrary page,
but FOCIH is particularly designed to work with
machine-generated pages all from the same site. Af-
ter creating a form, a user can choose a sample page
from a web site of interest and highlight and fill in
the information of interest from the sample page
into the form. The user-entered values provide FO-
CIH with information about how to locate source
information in the sample document. Using loca-
tion patterns, FOCIH is able to harvest information
from other sibling pages from the same site auto-
matically. It can thus annotate all the information
in these pages with respect to the ontology.

The form-creation mode of operation provides
users with an intuitive method for defining different
kinds of form features. FOCIH has five basic form
elements from which users construct forms: single-
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Fig. 7. A Sample Form.

label/single-value element, single-label/multiple-
value element, multiple-label/multiple-value ele-
ment, mutually-exclusive choice element, and non-
exclusive choice element. Users can also choose to
nest forms inside any of the form elements and
can thus represent complex, nested hierarchies of
information.

Figure 7 shows an example of form creation. Sup-
pose we are interested in basic information about
countries (their names, locations, populations, etc.).
We begin with a blank form with an empty title
and edit the title, making Country the base-form
title. To add form elements, users click on a cho-
sen form-element icon. Since these form elements
appear at the form’s top level and also nested in
every form element, users can add form elements
in sequence or can create forms nested inside other
form elements. Continuing with our example, we
want each country to have one name, one capital,
and one central geographic coordinate. We thus add
three single-label/single-value elements to the form
and label them Name, Capital, and Geographic Co-
ordinate as Figure 7 shows. Since we know there
might be one or more religions in a country, we
choose to use a single-label/multiple-value form el-
ement and label it Religion. We want to keep track
of the population of a Country for each of several
years for which it might be available. Therefore,
we create a multiple-label/multiple-entry field—

Population-Year pairs for the country, as Figure 7
shows. (Although not needed for our example here,
users can append additional columns by clicking on
the plus icon.) We are also interested in the life ex-
pectancy for people in each country depending on
gender. Since the same life-expectancy values can
be for either gender, we use a non-exclusive choice
form element under Life Expectancy and make the
choices be Male Life Expectancy and Female Life
Expectancy. Land, Water, and Total Area are also
of interest. Each Country has an Area, and the
areas of interest are: Land, Water, and Total. We
thus nest each kind as a single-label/single-value el-
ement within the single-label/single-value element
for Area as Figure 7 shows.

In the form-filling mode of operation, we annotate
a page from a web site with respect to a created form
by (simply) filling in the form. FOCIH provides users
with an interface in which they can (1) open a web
page from which they want to collect information,
(2) highlight the value or values of interest for each
form field, and (3) copy and paste those values into
created forms.

Figure 8 shows an example of annotating values
using a form. The left-hand side shows the filled-
in form for the sample web page on the right-hand
side. To annotate the string “Prague” for the form
field “Capital”, for example, we highlight the string
“Prague” by dragging the mouse over it and then
click on the pencil icon in the single-entry Capital
field. For multiple-entry fields, FOCIH allows users
to copy several values into the form field. Religions
and population estimates in Figure 8 are examples.
For population values, users are responsible to copy
values appropriately in rows—10,264,212 and 2001
in the same row and 8,015,315 and 2050 in the same
row as Figure 8 shows. Users can also concatenate
two or more highlighted values when filling a form by
clicking on the plus icon. For example, suppose a web
site presents Geographic Coordinate information by
listing longitude and latitude separately, perhaps in
two different cells of a table. A user can first highlight
the longitude value and then click on the pencil icon
and then concatenate the latitude value with the
longitude value to form a single (compound) value
by clicking on the plus icon.

From a created form, FOCIH can generate an
OWL ontology inferred from the form. FOCIH first
generates a WoK ontology, the ontology defined as
a 4-tuple Section 2. It then converts the ontology to
OWL. Among other advantages of an intermediate
WoK ontology is the direct correspondence between
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Fig. 8. A Filled-in Form for a Source Data Page.

form elements and WoK ontologies for such features
as n-ary relationships and nested forms. Figure 9
graphically shows the result of converting the form
in Figure 7 and its filled-in version in Figure 8 to an
intermediate WoK ontology.

Every label in the form represents a concept in the
WoK ontology—the label becomes the name for the
concept. In the graphical representation for a WoK
ontology, named boxes represent concepts—dashed
boxes for lexical concepts and solid boxes for non-
lexical concepts. Lexical concepts are for form-fields
with data values, and non-lexical concepts are for
form-fields of concepts with nested forms, including
the base-form framework in which the top-level form
is nested. Thus, Country and Area are non-lexical
concepts in our example, whereas Name, Capital,
and all the rest are lexical concepts. In WoK on-
tologies the instances in both lexical and non-lexical
concepts are object identifiers, but lexical identifiers
reference lexical values while non-lexical concepts do
not.

How FOCIH generates relationships among the
concepts depends on the choice of form elements and
their layout with respect to each other. In the graph-
ical representaiton of WoK ontologies, lines repre-
sent relationships. Lines with arrowheads are func-
tional from tail concept to head concept. A small
letter “o” (“o” for optional) near the connection be-

Area

Country

Year

Population

Religion

Female Life ExpectancyMale Life Expectancy

Life Expectancy

Total

Land

Water

Geographic Coordinate

Capital

Name

Fig. 9. Graphical View of the Generated Ontology

tween a concept C and a relationship R denotes that
the participation in relationship R of instances in C
is optional.
– Between each form element E and a single-

label/single-value form element S nested within
E, FOCIH generates a functional, binary rela-
tionship from E to S. Thus, since all top-level
form elements are nested inside the form’s ti-
tled framework, FOCIH generates functional,
binary relationships from Country to Name, from
Country to Capital, from Country to Geograph-

11



ical Coordinate, and from Country to Area as
Figure 9 shows. For the elements nested inside
Area FOCIH also generates functional, binary
relationships.

– Between each concept C and each single-
label/multiple-value form element S nested in-
side C, FOCIH generates a non-functional binary
relationship between C and S. Thus FOCIH
accommodates the possibly many Religions for
each Country as Figure 9 shows.

– Between each concept C and each multiple-
label/multiple-value form element M nested
inside C, FOCIH generates either an n-ary rela-
tionship or a set of binary relationships. If M is
not the only form element in the form, FOCIH
generates an n-ary relationship, otherwise it gen-
erates a set of binary relationships. Thus, FOCIH
generates an n-ary relationship among Country,
Population, and Year. 5

– Between each concept C and each choice form
element E nested inside C, FOCIH generates a
non-functional binary relationship between C and
E. Thus FOCIH generates a non-functional bi-
nary relationship between Country and Life Ex-
pectancy as Figure 9 shows.

– For both mutually-exclusive and non-exclusive
choice elements, FOCIH generates a generaliza-
tion/specialization relationship with the header
label as the generalization concept and each of the
labels on the selection list as specialization con-
cepts. A triangle denotes a WoK ontology gener-
alization/specialization with the apex connected
to the generalization and the opposite base con-
nected to the specializations. For exclusive choice
elements, a plus symbol appears in the triangle,
and imposes a pair-wise-disjoint constraint on the
specialization concepts. For the example in Fig-
ure 8, FOCIH generates a non-exclusive choice
element for the generalization/specialization with
Life Expectancy as the generalization and Male
Life Expectancy and Female Life Expectancy as
specializations. Nesting choice form elements in-

5 Our example does not illustrate the case of a multiple-
label form element by itself with no other form elements. As
an example, consider a form that has a multiple-label form
element by itself nested inside a form framework whose title is
Country. The labels could be Name, Capital, and Population,
and the rows in the multiple-label field would be various
country names along with their capitals and populations.
In this case, FOCIH would generate these functional binary
relationships: from Country to Name, Country to Capital,
and Country to Population.

side of choice specification elements extends the
generalization/specialization hierarchy. Header
labels of nested generalizations must match
upper-level specialization labels.
Although FOCIH is able to generate all concepts,

all relationships among concepts, and all generaliza-
tion/specialization hierarchies, it can generate only
some of the constraints that might be desirable.
FOCIH knows, for example, that relationship con-
straints from parent concept to child concept should
be functional when the child concept is a single-
label/single-value form element. From a form speci-
fication alone, however, FOCIH is not able to deter-
mine whether the inverse relationship is functional.
Names of countries, for example, might be unique
and therefore functionally determine countries. In
these cases, FOCIH initially imposes no constraints.
Thus, in Figure 9, the Name-Country relationship
is not bijective. FOCIH, however, can later modify
constraints based on observations as FOCIH har-
vests information from source documents. The op-
tional specifications on the three relationships in
Figure 9 appear initially because FOCIH observes
that the first page from which it harvests informa-
tion (i.e., the page in Figure 8) has no Geographic
Coordinate, no Water area, and no Land area.

From the generated, 4-tuple WoK ontology, we
can generate an OWL ontology. Figure 10 shows
part of the 228-line generated OWL ontology for the
form in Figure 7. Every concept in the WoK ontol-
ogy becomes an OWL class. In Figure 10, Lines 14–
46 include all these declarations. All specialization
concepts in the WoK ontology become subclasses.
Lines 24–28 in Figure 10 show the declaration for
the specialization MaleLifeExpectancy. All relation-
ships in the WoK ontology resolve into object prop-
erties. The binary relationships have a domain and
range and an inverse as Lines 50–56 in Figure 10
show. A functional declaration (e.g., Line 58) ac-
companies those relationships that are functional.
Each n-ary relationship (n ≥ 3) yields a new con-
cept and n functional binary relationships. Line 46
in Figure 10 shows the new concept CountryPopu-
lationYear, and Lines 98–106 show one of the func-
tional binary relationships—the one for Country. Fi-
nally, all lexical concepts have a datatype property
for their values. Lines 223–226 show the datatype
property for the country-name value. The name for
a datatype property is the concept name concate-
nated with “Value”. Line 223 in Figure 10 shows
that the name of the value for the Name concept is
NameValue.
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...

014. <owl:Class rdf:ID="Country"/>

015.

016. <owl:Class rdf:ID="Area"/>

...

024. <owl:Class rdf:ID="LifeExpectancy"/>

025.

026. <owl:Class rdf:ID="MaleLifeExpectancy">

027. <rdfs:subClassOf rdf:resource="#LifeExpectancy"/>

028. </owl:Class>

...

046. <owl:Class rdf:ID="CountryPopulationYear"/>

...

050. <owl:ObjectProperty rdf:ID="Country-Area">

051. <rdfs:domain rdf:resource="#Country"/>

052. <rdfs:range rdf:resource="#Area"/>

053. <owl:inverseOf>

054. <owl:ObjectProperty rdf:ID="Area-Country"/>

055. </owl:inverseOf>

056. </owl:ObjectProperty>

057.

058. <owl:FunctionalProperty rdf:about="#Area-Country"/>

...

098. <owl:ObjectProperty rdf:ID="CountryPopulationYear-Country">

099. <rdfs:domain rdf:resource="#CountryPopulationYear"/>

100. <rdfs:range rdf:resource="#Country"/>

101. <owl:inverseOf>

102. <owl:ObjectProperty rdf:ID="Country-CountryPopulationYear"/>

103. </owl:inverseOf>

104. </owl:ObjectProperty>

105.

106. <owl:FunctionalProperty rdf:about="#CountryPopulationYear-Country"/>

...

223. <owl:DatatypeProperty rdf:ID="NameValue">

224. <rdfs:domain rdf:resource="#Name"/>

225. <rdfs:range rdf:resource="&xsd;string"/>

226. </owl:DatatypeProperty>

Fig. 10. Partial Generated OWL Ontology for the Form in Figure 7.

Harvesting information for a single hand-
annotated page is immediate. FOCIH simply puts
the values and relationships among values in the
filled-in form into the generated WoK ontology. As
an example, Figure 11 shows several of the 304 lines
of the generated RDF for the HRW web page in
Figure 2. Transforming values from filled-in FOCIH
forms into RDF is straightforward. Concept values
become owl:Things (e.g., Lines 29–30 in Figure 2).
Each value is also associated with an OWL ontol-
ogy class corresponding to the concept (e.g., Lines
59-67). Instances in specializations also appear in
their generalizations since the meaning of a spe-
cialization is that its instance set is a subset of its
generalization instance set. Observe therefore that
the life-expectancy things declared in Lines 29–30
are both in the LifeExpectancy class (Lines 61 and
66), which is the generalization, as well as in the
specialization classes—MaleLifeExpectancy (Line

60) and FemaleLifeExpectancy (Line 65). Also in a
straightforward way, relationship instances become
relationship instances in a generated RDF file. Lines
123–126 show some relationship instances. Lines
146–148 show a relationship between MaleLifeEx-
pectancy 1 and its typed value. Finally, adding the
annotation information for lexical values is also
straightforward. Lines 226–230 record the informa-
tion for the annotation of MaleLifeExpectancy 1 : its
cached web page (resource49 ), its HTML text string
(71.23 ), and its character offset on this cached page
(9624 ), which is known as a result of having been
highlighted, copied, and pasted into the form.

More interesting than just storing hand-annotated
information, and more useful in terms of scalability,
is FOCIH’s ability to recognize patterns for har-
vesting information from an annotated page and
thus to be able to automatically harvest the same
kind of information from machine-generated sibling
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...

029. <owl:Thing rdf:ID="MaleLifeExpectancy_1"/>

030. <owl:Thing rdf:ID="FemaleLifeExpectancy_1"/>

...

059. <owl:Thing rdf:about="#MaleLifeExpectancy_1">

060. <rdf:type rdf:resource="&country;MaleLifeExpectancy"/>

061. <rdf:type rdf:resource="&country;LifeExpectancy"/>

062. </owl:Thing>

063.

064. <owl:Thing rdf:about="#FemaleLifeExpectancy_1">

065. <rdf:type rdf:resource="&country;FemaleLifeExpectancy"/>

066. <rdf:type rdf:resource="&country;LifeExpectancy"/>

067. </owl:Thing>

...

123. <rdf:Description rdf:about="#Country_1">

124. <Country-Area rdf:resource="#Area_1"/>

125. <Country-LifeExpectancy rdf:resource="#MaleLifeExpectancy_1"/>

126. <Country-LifeExpectancy rdf:resource="#FemaleLifeExpectancy_1"/>

...

146. <rdf:Description rdf:about="#MaleLifeExpectancy_1">

147. <MaleLifeExpectancyValue rdf:datatype="&xsd;string">71.23</MaleLifeExpectancyValue>

148. </rdf:Description>

...

226. <rdf:Description rdf:about="#MaleLifeExpectancy_1">

227. <ann:inResource rdf:resource="#resource49"/>

228. <ann:OffsetOnHTMLPage rdf:datatype="&xsd;string">9624</ann:OffsetOnHTMLPage>

229. <ann:HTMLText rdf:datatype="&xsd;string">71.23</ann:HTMLText>

230. </rdf:Description>

...

Fig. 11. RDF Annotation for Generalization/Specialization

pages for a site. FOCIH accomplishes this task by
recognizing both paths to instances within HTML
DOM trees and the instances themselves. Path
recognition requires FOCIH to be able to identify
the path in the HTML DOM-tree leading to the
node that contains each highlighted string. Instance
recognition requires FOCIH to be able to identify
the substrings in one or more DOM-tree nodes that
constitute the instance values.

A user-highlighted value can be the entire DOM-
tree node (e.g., “Prague” in Figure 8) or a proper
subpart of the string that constitutes the DOM-tree
node (e.g., just the populated value in Figure 8). 6

In the latter case, FOCIH needs to know how to
find the right subpart within the DOM-tree node.
Moreover, since a value can be composed of one or
more highlighted values from one or more DOM-
tree nodes (e.g., when longitude and latitude are in
separate DOM-tree nodes), FOCIH needs to know
how to compose values from different substrings of
different nodes from the source page.

6 If an identified DOM-tree node is not already a string with
no internal formatting tags, FOCIH removes the tags and
converts the DOM-tree node to a simple string.

Considering these possibilities, we observe that
there are two kinds of patterns: (1) individual pat-
terns for entire strings, proper substrings, and string
components and (2) list patterns. Particularly, for
list patterns, but also as context for individual pat-
terns, FOCIH has a default list of delimiters: “,”,
“;”, “|”, “ /”, “\”, “(”, “)”, “[”, “]”, “{”, “}”, sos
(start of string) and eos (end of string). FOCIH
also has a library of regular-expression recogniz-
ers for values in common formats, such as num-
bers, numbers with commas, decimal numbers, pos-
itive/negative integers, percentages, dates, times,
and currencies [15,18]. An individual pattern has left
and right contexts and a regular-expression instance
recognizer. For example, for the highlighted area
value “78,866.00”, the left context can be “\b” (word
boundary) and the right context can be “sq km”, the
regular-expression recognizer can be decimal num-
ber, and the appearance number can be 2 (the sec-
ond decimal number in the string). A list pattern has
a left context, a right context, a regular-expression
recognizer, and a delimiter. The list of agriculture
products in Figure 8 has as its left context sos, as
its right context eos, as its regular-expression recog-
nizer “.*” (any string), and as its delimiter “([,;]\s*)”
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(either comma/space or semicolon/space).
To determine patterns, FOCIH first determines

whether a pattern is an individual pattern or a list
pattern. If only one highlighted value from a DOM-
tree node goes to a form entry, FOCIH recognizes
it as an individual pattern; and if there are many
highlighted values that go to a form entry, FOCIH
recognizes it as a list pattern. For both individual
and list patterns, FOCIH next determines the con-
text information and the regular-expression pattern
of the substrings of interest. To determine the left or
the right context of a highlighted value in a DOM-
tree node, FOCIH takes the substring that is on the
left or on the right of the highlighted substring until
it reaches other highlighted values or the beginning
or the end of the DOM-tree node. If FOCIH recog-
nizes some of the context as an instance of one of the
regular-expression recognizers in its library of recog-
nizers, FOCIH substitutes the recognized substring
in the context by the recognizer. If a highlighted sub-
string can be recognized by a regular-expression rec-
ognizer in its library, FOCIH uses it as the regular-
expression recognizer for the pattern. If not, then the
instance recognizer is an expression that recognizes
any string. In this case, proper recognition depends
on the left and right context, and for individual val-
ues, perhaps also the appearance number, and for
lists also the delimiter.

For delimiters in list patterns, FOCIH compares
the substrings between highlighted values. Looking
particularly for delimiters in our list of delimiters,
FOCIH attempts to identify a simple delimiter-
separated list. It then constructs a regular expres-
sion for the delimiter. The agriculture list in Fig-
ure 8 is an example. For this list FOCIH creates the
delimiter expression “[,;]”. For more complex cases
such as the religions list in Figure 8, the list separa-
tor is not merely a simple delimiter. In the religions
list a percentage plus a comma separate the names
of the religions, and the delimiter expression should
be “\s*\d[1-2](.\d∗)?%,\s*”. FOCIH generates this
delimiter expression by (1) discovering that the per-
centage recognizer in the library recognizes part of
every substring between highlighted values, (2) ob-
serving that a comma follows every percentage, and
(3) noticing that the combination of the percentage
and the comma covers the substrings. In general,
FOCIH checks substrings for library instance recog-
nizers and standard delimiters as illustrated in the
religions example; when this is insufficient to cover
all of the substrings, FOCIH adds general character
recognizers, as necessary, to cover the substrings.

With path recognition and instance recognition,
FOCIH can locate the information of interest from
all the sibling pages for a site and store it in an
RDF file. Assuming FOCIH has harvested infor-
mation from a number of HRW web pages, we can
then query the resulting RDF file with a SPARQL
query like the one in Figure 12, that asks for the life
expectancy of males in the Czech Republic. In this
example, the filter expression finds all instances of
NameValue that contain the string “Czech”. Then
through the property NameValue, SPARQL can lo-
cate all the Name instances we are looking for, in our
example, #Name 1. Further through the property
Country-Name, SPARQL locates #Country 1. Fi-
nally through the propertyCountry-LifeExpectancy,
SPARQL can find the instances #FemaleLife-
Expectancy 1 and #MaleLifeExpectancy 1. Then
following the property MaleLifeExpectancyValue,
SPARQL finds the value we are looking for.

In order to display query results within the con-
text of the underlying original source web pages, the
WoK system can rewrite the SPARQL query to in-
clude annotation information. Figure 13 shows the
rewritten query. The original query only retrieves
values for male life expectancy and country name.
The rewritten query also retrieves offset, annotated
string, and source-document URI fields for both
male life expectancy and country name. Using this
information, our query tool can present the source
document side by side with the SPARQL query and
its results, as Figure 14 shows. The example in Fig-
ure 14 shows only two columns of results (MaleLife-
ExpectancyValue and NameValue) because the
query tool automatically hides annotation-layer
output fields. Note that the tool uses the annotation-
layer information to create hyperlinks from result
data to the corresponding original source pages. In
Figure 14, the user has clicked on the male life ex-
pectancy result, which caused the tool not only to
highlight that result (71.23), but also to display the
cached source page from which the result came; the
annotated value is also highlighted in the web page.
Clicking on a checkbox next to a results row causes
the tool to highlight all corresponding result values
in the source page(s).

5. A Suite of WoK-Creation Tools

In this section we explore additional work we and
others are doing that can contribute to the WoK,
and, in particular, how the work can contribute to
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PREFIX country:<http://dithers.cs.byu.edu/owl/ontologies/country#>

SELECT ?MaleLifeExpectancyValue ?NameValue

WHERE {

?Country country:Country-LifeExpectancy ?MaleLifeExpectancy ;

country:Country-Name ?Name .

?MaleLifeExpectancy country:MaleLifeExpectancyValue ?MaleLifeExpectancyValue .

?Name country:NameValue ?NameValue .

FILTER regex (?NameValue, "czech", "i")

}

Fig. 12. Sample SPARQL Query

PREFIX country:<http://dithers.cs.byu.edu/owl/ontologies/country#>

PREFIX ann: <http://dithers.cs.byu.edu/owl/ontologies/annotation#>

SELECT ?MaleLifeExpectancyValue ?MaleLifeExpectancyAnnOffset ?MaleLifeExpectancyAnnText

?MaleLifeExpectancyAnnURI ?NameValue ?NameAnnOffset ?NameAnnText ?NameAnnURI

WHERE {

?Country country:Country-LifeExpectancy ?MaleLifeExpectancy ;

country:Country-Name ?Name .

?MaleLifeExpectancy country:MaleLifeExpectancyValue ?MaleLifeExpectancyValue;

ann:OffsetOnHTMLPage ?MaleLifeExpectancyAnnOffset ;

ann:HTMLText ?MaleLifeExpectancyAnnText ;

ann:inResource ?MaleLifeExpectancyAnnResource .

?MaleLifeExpectancyAnnResource

ann:CachedURI ?MaleLifeExpectancyAnnURI .

?Name country:NameValue ?NameValue;

ann:OffsetOnHTMLPage ?NameAnnOffset ;

ann:HTMLText ?NameAnnText ;

ann:inResource ?NameAnnResource .

?NameAnnResource

ann:CachedURI ?NameAnnURI .

FILTER regex (?NameValue, "czech", "i")

}

Fig. 13. Rewritten SPARQL Query

the human-scalability issues surrounding the WoK.
Analyzing the human activities involved in FOCIH,
we ask how each can be automated, or at least im-
proved so as to mitigate the human effort involved.
We briefly explore:
– Automatic adjustment to paths and to list and

context patterns during information harvesting
(Subsection 5.1);

– Automatic initial form generation (Subsec-
tion 5.2); and

– Automatic initial form filling (Subsection 5.3).
Each of these efforts involves significant develop-
ment work and significant work to integrate it into
the WoK. Surprisingly, these efforts also lead to a
direction for user-friendly WoK query specification.
We therefore briefly explore these opportunities in
Subsection 5.4. Finally, in Subsection 5.5 we briefly
explain how related work, mostly from other re-
searchers, can contribute to the WoK vision.

5.1. Automating Harvesting Adjustments

Even though machine-generated, sibling pages are
not as uniform as might be expected. For example,
the list of religions for Israel is

Jewish 80.1%, Muslim 14.6% (mostly Sunni Mus-
lim), Christian 2.1%, other 3.2% (1996 est.)

where, in addition to percentage-comma separators,
the list also includes parenthetical remarks. Expect-
ing only percentage-comma separators, FOCIH does
not harvest information properly from this list.

To address this and similar problems, we run FO-
CIH in three different modes of operation. (1) Har-
vest from pages, one-by-one: FOCIH displays each
page and fills in the form the best it can; then, a
user can either confirm that FOCIH has done so cor-
rectly, or can alter the annotation by deleting any
values FOCIH filled incorrectly and adding any val-
ues FOCIH may have missed and thus fix any prob-
lems that arise. (2) Harvest, stopping only when FO-
CIH recognizes that it fails to properly extract some
information for some page: again, a user can fix any
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Fig. 14. Sample Query and Results for FOCIH.

incorrect annotation. (3) Harvest without stopping:
FOCIH does the best it can, but may make mistakes.

To help with scalability, FOCIH can learn from
the corrections a user makes. It can adjust context
expressions and delimiter expressions for lists. For
our example of religions in Israel, the delimiter
expression should not only be percentage/comma
delimiters but also percentage/parenthetical-
remark/comma delimiters. FOCIH should adjust
its context-recognition expressions and its list-
delimiter expressions as it harvests information.

5.2. Automating Form Generation

For many applications, ontologies already exist.
If we could generate forms automatically from these
ontologies, we could then use FOCIH to do the an-
notation and information harvesting. FOCIH users
could either use the generated forms directly, or they
could modify them starting from a given base to suit
their needs.

We have designed and implemented algorithms to
reverse-engineer WoK ontologies into XML-schema
specifications [1,30]. Since XML nests information
like FOCIH does for forms, we can immediately gen-
erate nested form specifications. Thus, whenever we
can reverse-engineer ontology specifications into a
WoK ontology, we can generate a FOCIH form cor-

responding to the ontology. In our current prototype
implementation we can reverse-engineer sibling ta-
bles via TISP into WoK ontologies. We also have
a prototype implementation that transforms OWL
ontologies into WoK ontologies. We have not yet in-
tegrated our code for all these systems together, but
doing so would let us initialize FOCIH forms given
either TISP-resolvable sibling pages such as the one
in Figure 6 or from the many available OWL ontolo-
gies [33].

5.3. Automating Initial Form Filling

The problem of manual labeling for the first (or
first and only) web page is a barrier to scalability.
Is there a way we can get the system to do the ini-
tial labeling for us? Yes, with extraction ontologies,
but at a cost—the cost of building these extraction
ontologies.

A WoK ontology augmented with instance recog-
nizers is an extraction ontology. Instance recogniz-
ers contain regular expressions for each lexical con-
cept that recognize common textual items such as
dates, times, prices, and numbers. They also contain
lexicons that match with items such as countries,
cities, and protein names and functions. In addition
they make use of context keywords, units, left and
right context information, and expected cardinal-
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ity distributions to aid in recognizing instances for
ontological concepts. Much can and has been said
about how to build and use these instance recog-
nizers embedded within extraction ontologies (e.g.,
[13,16] among several others).

Building instance recognizers is laborious. We
have four answers to this legitimate observation.
(1) We can build an extensive library of common
instance recognizers that can be used directly or
specialized for use in some domain. (2) We need
not have perfect recognizers because we can aug-
ment extraction ontologies with pattern-based
extractors—once a few values have been recognized,
pattern-based extractors can determine the pattern
of a semi-structured page and thereby correctly
recognize values beyond those observed directly by
instance recognizers. (3) We can automatically up-
date lexicon recognizers by adding additional values
found by pattern-based extractors. And (4) we can
bootstrap our way up by using FOCIH to help
build instance recognizers and lexicons by letting
users provide a few sample mappings from a page
to an ontology, and from these sample mappings,
generate pattern-based annotators and then update
recognizers with the newly found information.

5.4. WoK Query Specification

As argued earlier, users should not be asked to
learn SPARQL in order to be able to query the
WoK. Instead, we should provide for free-form query
specification as Figure 1 shows. The key to making
free-form queries work is not natural-language pro-
cessing (at least not in the usual sense of natural-
language processing), but rather is the application
of extraction ontologies to the queries themselves.
The essence of the idea is to (1) use an extraction on-
tology to identify constants, keywords, and keyword
phrases in a free-form query; (2) find the ontology
that matches best; and (3) embed the query in the
implicit hypergraph of the ontology yielding (3a) a
join over the relationship paths connecting identi-
fied concepts, (3b) a selection on identified constants
modified by identified operators, and (3c) a projec-
tion on mentioned concepts. (See [3] for a complete
explanation about mapping free-form queries to for-
mal database query languages.)

In Figure 1 “countries” is a keyword identifying
the country concept in the generated ontology. It is
also a keyword identifying the country-name con-
cept in the generated ontology. “Speak” is a keyword

for the language concept in the ontology, and “Ger-
man” is a constant value in the lexicon that lists
languages.

Thus, our WoK prototype is able to generate the
SPARQL query in Figure 15. Observe that the query
in Figure 15 is the augmented SPARQL query. Thus,
when this query executes, it produces results as Fig-
ure 1 shows. When users click on results, the system
intercepts the request, uses the information to find
and highlight requested information in cached pages
and displays them to users as Figure 1 shows.

Anyone can readily pose free-form queries. To be
successful, however, a user does have to guess which
keywords, values, and constraint expressions might
be available in an extraction ontology for the do-
main of interest. This is similar to users having to
guess keywords and values for current search-engine
queries. Since arbitrary free-form queries may not
always be successful, we also plan to provide a form-
based query language. Based on the ontology and
our ability to generate FOCIH forms, we can in-
stead generate ordinary HTML forms typically used
to pose queries on the web. In this way the system
can guide users in formulating queries for a domain.

5.5. Related Work

Developing the WoK we envision is a huge task. Its
framework allows for the inclusion of related work
on many topics: sibling-page comparison, table in-
terpretation, ontology generation, and automatic se-
mantic annotation. Much more can be done to en-
hance the human-scalability of the envisioned WoK.

Sibling Page Comparison. Besides our own work,
several researchers have also tried to take advan-
tage of sibling pages. RoadRunner [11] compares
two HTML pages from one web site and analyzes
the similarities and dissimilarities between them in
order to generate extraction wrappers. It discovers
data fields by string mismatches and discovers it-
erators and optionals by tag mismatches. EXALG
[4] uses equivalence classes (sets of items that oc-
cur with the same frequency in sibling pages) to
generate extraction templates for the sibling pages.
DEPTA [49] compares different records in a page
(sibling records) instead of sibling pages and tries
to find the extraction template for the record. The
approach in [27] compares sibling pages to filter out
general headers and footers and other constant non-
data areas of a page. It then makes various compar-
isons among main pages and linked pages to find
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PREFIX country:<http://dithers.cs.byu.edu/owl/ontologies/country#>

PREFIX ann: <http://dithers.cs.byu.edu/owl/ontologies/annotation#>

SELECT ?CountrylongformValue ?CountrylongformAnnOffset ?CountrylongformAnnText ?CountrylongformAnnURI

?LanguagesValue ?LanguagesAnnOffset ?LanguagesAnnText ?LanguagesAnnURI

WHERE {

?Country country:Country-Countrylongform ?Countrylongform ;

country:Country-Languages ?Languages .

?Countrylongform country:CountrylongformValue ?CountrylongformValue;

ann:OffsetOnHTMLPage ?CountrylongformAnnOffset ;

ann:HTMLText ?CountrylongformAnnText ;

ann:inResource ?CountrylongformAnnResource .

?CountrylongformAnnResource

ann:CachedURI ?CountrylongformAnnURI .

?Languages country:LanguagesValue ?LanguagesValue;

ann:OffsetOnHTMLPage ?LanguagesAnnOffset ;

ann:HTMLText ?LanguagesAnnText ;

ann:inResource ?LanguagesAnnResource .

?LanguagesAnnResource

ann:CachedURI ?LanguagesAnnURI .

FILTER regex (?LanguagesValue, "german", "i")

}

Fig. 15. Generated SPARQL Query

record segmentations.
Table Interpretation. Not to slight the vast

amount of work on table processing [17,48], we
mention here only work on HTML table interpre-
tation. Several researchers try to differentiate data
tables from tables for layout [7,10,21,45]. They
use machine-learning methods [10,45], visual level
features [21,22], and linguistic features [7]. Other
papers [7,19,20,24,28] discuss the HTML table in-
terpretation problem based on simple assumptions
and heuristics. The approach in [35] presents a table
interpretation system for automatic generation of
F-logic frames for tables. It considers many linguis-
tic features in a table such as alphabetic features,
numeric features, number ranges, and data formats.
It calculates differences among different regions of a
table to detect the orientation of a table and to lo-
cate label cells and value cells. The technique in [41]
learns lexical variants from training examples and
uses a vector space model to deal with non-exact
matches among labels. It also uses a few heuristics
to find the association among labels and values.
The approach in [22] uses visual boxes instead of
HTML tags to interpret HTML tables.

Ontology Generation. In recent years, many re-
searchers have tried to facilitate ontology genera-
tion. Excellent editing tools such as Protégé [32]
and OntoWeb [38] have been developed to help
users create and edit ontologies. Because of the
expertise required and the difficulties involved in
manual creation, researchers have turned to semi-
automatic ontology generation tools. Most efforts

so far have been devoted to automatic generation of
ontologies from text files. Tools such as OntoLT [6],
Text2Onto [9], OntoLearn [31], and KASO [46] use
machine-learning methods to generate an ontology
from arbitrary text files. These tools usually require
a large training corpus and use various natural-
language processing algorithms to derive features to
learn ontologies. To date, the results have not been
very satisfactory [34]. Tools such as TANGO [42],
and the one developed by Pivk [34] use structured
information (HTML tables) as a source for learning
ontologies. Structured information makes it easier
to interpret new items and relations. The approach
in [34] tries to discover semantic labels for table
regions and generate an ontology based on a table’s
structure.

Automatic Semantic Annotation. Existing seman-
tic annotation systems can be classified into pattern-
based systems and machine-learning-based systems.
Pattern-based systems such PANKOW [8] and Ar-
madillo [14] find entities by discovering patterns.
The patterns are either discovered manually or in-
duced semi-automatically with a set of initial man-
ually tagged seed patterns. Systems such as Sem-
Tag [12], AeroDAML [26], and KIM [36] use a set of
pre-defined rules to locate information of interest.
Systems such as S-CREAM [23] and MnM [43] use
machine-learning algorithms and natural-language
processing methods to locate semantic entities.
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6. Scalability

To indicate the likely success of these endeavors
to increase human-scalability, we provide some sum-
mary results. Details of these results are in [39] for
TISP and FOCIH, in [16] for extraction ontologies,
and in [3,44] for free-form queries.

We tested TISP in three domains: geopolitical in-
formation, molecular biology, and car sales. We con-
sidered more than 2,000 tables found in 275 sib-
ling pages across 35 web sites. In its table recogni-
tion step, TISP correctly discarded 155 of 158 lay-
out tables and discarded no data tables. It therefore
achieved an F-measure of 99.0% (98.1% recall and
100% precision). TISP later discarded these three
layout tables in its pattern generation step, but it
also rejected two data tables, being unable to find
any pattern for them. It thus achieved an F-measure
of 99.4% (100% recall and 98.8% precision). For ta-
ble interpretation, TISP correctly recognized 69 of
74 structure patterns. It therefore achieved a recall
of 93.2%. Of the 72 structure patterns it detected,
69 were correct. It therefore achieved a precision of
95.8%. Overall the F-measure for table interpreta-
tion was 94.5% for the sites we tested.

The performance of TISP++ depends on the per-
formance of TISP. Given that TISP can interpret ta-
bles correctly, TISP++ can automatically generate
ontologies and annotate information in interpreted
tables correctly. Disagreements may arise, however,
about how to reverse-engineer some table structures
into ontologies. There is more than one reasonable
way, for example, to map tables with both row and
column headers into WoK ontologies.

FOCIH can always correctly generate ontologies
according to user-created forms. Here, as with TISP,
users may disagree among the possible, reasonable
mappings. For both TISP and FOCIH, default
choices are likely to suffice, but options should be
available for users who might prefer alternate views.

How well FOCIH can automatically harvest in-
formation from sibling pages depends on how uni-
form the pages are. As an indication of what might
be expected, we tested FOCIH’s ability to do in-
stance recognition by considering a number of differ-
ent web pages. In these web pages, we encountered
71 instance-recognition situations. FOCIH was able
to recognize all 25 full-string matches it encoun-
tered. It successfully recognized 29 of 38 partial-
string matches and 6 of 8 list patterns. In these tri-
als, the overall accuracy of instance recognition was

84.5%.
Extraction ontologies can likely help with human-

scalability issues, but only if they can perform
reasonably well. Over the course of many years,
we have developed our ontology-based information-
extraction tool and have tested it on various do-
mains, each with dozens of real-world web pages.
Based on approximately 20 domains with which we
have experimented we summarize our experience
as follows. In simple, unified domains we typically
achieve close to 100% precision and recall for almost
all fields, while in more complicated or loosely uni-
fied domains, the precision and recall for some fields
falls off dramatically. For example, we have worked
on a genealogical application in which we wanted to
extract information from obituaries as they appear
in standard newspapers. For this complex domain,
our information-extraction engine was only able to
achieve about 74% precision for identifying relatives
of a deceased person and only about 82% recall for
recognizing funeral addresses. In general, however,
in nearly 20 domains that contain in total over
200 different class concepts, our extraction engine
typically achieves at least 80% accuracy for both
precision and recall values on most fields. For over
half of the domains, the precision and recall values
were above 90%.

For free-form query processing, we have been able
to gather some results to indicate how well this part
of the WoK might perform. In [44], we describe an
experiment in which four subjects each provided
five queries on five domains (car ads, real estate,
countries, movies, and diamonds) for a total of 100
queries. The recall for identifying concept values to
be returned was 89% and for correctly generating
conditional operatorswas 75% while the correspond-
ing precision values were respectively 89% and 88%.
Overall, the system interpreted 47% of the queries
with perfect accuracy while interpreting an addi-
tional 49% with partial accuracy for a total of 96%
with some reasonable accuracy.

In another experiment with a more advanced free-
form query processor, we gathered additional re-
sults [3]. Testing for system performance in finding
the predicates of a formal representation for free-
form service requests and values for predicate ar-
guments, we considered service requests belonging
to the following domains: scheduling appointments
with medical doctors, purchasing cars, and renting
apartments. We asked subjects to make free-form,
natural-language-like service requests belonging to
these domains using their own words, but to only
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ask conjunctive queries with positive literals. 7 We
received a total of 31 requests, which included 548
constraints and 170 constant values. Overall, recall
results averaged 98% for predicates and 95% for
arguments of predicates, and precision results ap-
proached 100% for both predicates and arguments.
When the system selects the right ontology for a
service request, the system almost cannot select ir-
relevant predicates and arguments for an ontology
that is narrowly focused on the service and thus has
little in the way of alternative choices that may be
ambiguous.

7. Summary

In this paper, we explained our vision of a web of
knowledge—a web of data superimposed over a web
of pages. To actually realize this vision, human scal-
ability issues are at the forefront. We cannot expect
web content providers to annotate pages they cre-
ate or cause to be generated without assistance. We
therefore strive to create tools for semi-automatic
ontology generation and semi-automatic annotation
of page content with respect to generated ontolo-
gies. Our desire is to make these semi-automatic pro-
cesses as automatic as possible, thereby shifting the
burden as much as possible away from human ef-
fort in tedious and time-consuming work. For WoK
users, we also address human scalability issues, re-
alizing that the effort required to learn formal query
languages is beyond the time, patience, and exper-
tise most users of the WoK have.

We focused particularly on TISP and FOCIH,
two systems directed specifically at mitigating the
problems of WoK realization. We also explained
how our previous work on extraction ontologies
plays an interesting role in helping to make the
WoK realizable. TISP provides a solution to auto-
matic interpretation for sibling tables as typically
found in many machine-generated web pages. Based
on TISP, TISP++ offers a way to automate on-
tology generation given an interpreted table and
enables automatic semantic annotation for inter-
preted tables. FOCIH supports personalized ontol-
ogy creation and information harvesting. It gives
users a way, without knowing ontology languages,

7 These are the common kinds of queries asked by typical
web users. To avoid technical terms (e.g. “conjunctive” and
“positive literals”), we provided users with illustrative ex-
amples of what not to ask (e.g. not “at 10:00 am or after
3:00 pm” and not “not at 9:00 am”).

to create an ontology, and it can also harvest infor-
mation with respect to a user-created ontological
view. Automated initial form generation from ex-
isting ontologies and extraction ontologies that can
automatically initialize annotation specification
can further enhance FOCIH and shift the bur-
den of ontology creation and web-page annotation
even further toward full automation. Extraction
ontologies also offer a key that opens the way for
free-form query specification, which thus opens the
door to WoK usage by ordinary people, untrained
in sophisticated, technical query languages.

Results from preliminary scalability experimenta-
tion are encouraging. If with 90% accuracy or bet-
ter, TISP-like systems can interpret tables and turn
them into ontologies, FOCIH-like systems can allow
users to harvest information with respect to per-
sonalized ontological views, and extraction ontolo-
gies can recognize and extract instances in free-form
queries and in data-rich web pages, WoK creation
and usage may be feasible. Moreover, as a commu-
nity, encouraging results can bolster further devel-
opment and spur us on to create the kinds of tools
necessary to enable the WoK.

As for our own future work, several items are im-
mediately on the horizon. (1) Currently, TISP only
works with information stored in sibling tables. We
would like to extend our work to automatically har-
vest and semantically annotate information stored,
not only in tables but also in sibling pages in general.
(2) So that we can draw from the large numbers of
existing ontologies, we intend to integrate our var-
ious projects regarding reverse-engineering ontolo-
gies to forms. This would provide a way for FOCIH
to harvest and annotate information with respect
to existing ontologies. (3) We see the possibility of
being able to semi-automatically convert generated
ontologies into extraction ontologies. Based on the
information that FOCIH harvests for each concept
in an ontology, we can create the beginnings of a
lexicon for these instance recognizers or recognize
common data items and thus automatically select
instance recognizers for concepts. By adding these
instance recognizers to each concept in a generated
ontology, the ontology becomes an extraction ontol-
ogy. How well it operates depends on how good the
instance recognizers are. As additional information
is harvested, it should be possible to automatically
enhance these instance recognizers. (4) Finally, we
must also worry about making the WoK itself per-
form reliably and in real-time for end users. We have
defined semantic indexing [2], with which we can
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quickly find applicable ontologies for user queries,
and we have considered large-scale caching, follow-
ing the lead of modern search engines. But more is
required to make the WoK work well.

There is a great deal left to do, both in our work
and along many other lines of research as well. But
we are optimistic that given the results we report in
this paper, together with results coming from many
other researchers, the Web of Knowledge can indeed
be realized.
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[24] W. Holzinger, B. Krüpl, M. Herzoge, Using ontologies
for extracting product features from web pages, in:

22



Proceedings of the Fifth International Semantic Web
Conference (ISWC’06), Athens, Georgia, 2006.

[25] HOLT, RINENART and WINSTON world atlas,
http://go.hrw.com/atlas/norm htm/world.htm.

[26] P. Kogut, W. Holmes, AeroDAML:
Applying information extraction to generate DAML
annotations from web pages, in: Proceedings of the
of the First International Conference on Knowledge
Capture (K-CAP’01) Workshop on Knowledge Markup
and Semantic Annotation, Victoria, British Columbia,
2001.

[27] K. Lerman, L. Getoor, S. Minton, C. Knoblock, Using
the structure of web sites for automatic segmentation
of tables, in: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’04), Paris, France, 2004.

[28] S. Lim, Y. Ng, An automated approach for retrieving
heirarchical data from HTML tables, in: Proceedings
of the Eighth International Conference on Informaiton
and Knowledge management (CIKM’99), Kansas City,
Missouri, 1999.

[29] C. Meadow, Text Information Retrieval Systems,
Academic Press, San Diego, California, 1992.

[30] W. Mok, D. Embley, Generating compact redundancy-
free XML documents from concptual-
model hypergraphs, IEEE Transactions on Knowledge
and Data Engineering 18 (8) (2006) 1082–1096.

[31] R. Navigli, P. Velardi, A. Cucchiarelli, F. Neri,
Quantitative and qualitative evaluation of the
OntoLearn ontology learning system, in: Proceedings
of the 20th International Conference on Computational
Linguistics, Geneva, Switzerland, 2004.

[32] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson,
M. Musen, Creating semantic web contents with
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