
Representing Generalization/Specialization
in XML Schema

Reema Al-Kamha1 David W. Embley1 Stephen W. Liddle2

1Computer Science Department
2Information Systems Department

Brigham Young University, Provo, Utah 84602, U.S.A.
reema@cs.byu.edu, embley@cs.byu.edu, liddle@byu.edu

Abstract: XML is an effective universal data-interchange format, and XML Schema
has become the preeminent mechanism for describing valid XML document structures.
Generalization/specialization and its constraints are fundamental concepts in system
modeling and design, but are difficult to express and enforce with XML Schema. This
mismatch leads to unnecessary complexity and uncertainty in XML-based models. In
this paper we describe how to translate various aspects of generalization/specialization
from a conceptual model into XML Schema. We also explore what needs to be added
to XML Schema to handle the other aspects of this fundamental modeling construct.
If XML Schema were to include our proposed constructs, it would be fully capable of
faithfully representing generalization/specialization, thus reducing the complexity of
the XML models that rely on generalization/specialization.

1 Introduction

The scientific community has long recognized the importance of generalization—and its
inverse, specialization—as a fundamental and highly useful modeling construct (see, for
example, [SS77]). Generalization/specialization is used broadly in conceptual models
such as UML [BRJ99], and EER [TYF86], and in description logics [BN03]. The main
idea in generalization/specialization, also called the is-a relationship, is that one set, class,
or concept is a subset of another. If A is a generalization of B (or equivalently, if B is a
specialization of A), we say that B is a subset of A (B is-a A). In general, concepts form
a hierarchy wherein a generalization may have many specializations, and a specialization
may have many generalizations. It is often useful, however, to define constraints over gen-
eralization/specialization hierarchies. For example, we can declare two specializations of
a common generalization to be mutually exclusive. We can also declare the specializa-
tions of a concept to be complete in the sense that their union contains all members of the
generalization. If both of these constraints are present (a common occurrence), the spe-
cializations partition the generalization space. A less common constraint is the situation
where a specialization constitutes the intersection of its multiple generalizations.

In this paper we illustrate our examples using Conceptual XML (C-XML) [ELAK04]

* A2A1

C2

C1

B2

B1

B C

A

Figure 1: Generalization/Specialization in C-XML.

which is a conceptual model consisting of object sets, relationship sets, and constraints
over these object and relationship sets.1 In C-XML, we represent object sets or concepts
by writing names inside rectangles, with a solid border indicating a nonlexical concept
and a dashed border indicating a lexical concept. In Figure 1, each nonlexical concept has
two related lexical concepts whose relationship sets are functional, indicated by arrows
(e.g., for each A, there is exactly one A1, but multiple A’s may have the same A1 value).
In C-XML, a triangle denotes generalization/specialization. For example, in Figure 1 the
set of objects in B is a subset of the set of objects in A. C-XML allows modelers to con-
strain generalizations by writing a constraint symbol in a triangle. A plus symbol (+) in
indicates that the specialization sets are mutually exclusive. A union symbol (∪), specifies
that the set of objects in the generalization is the union of the specialization object sets.
A plus and union together (]) specify that the specializations partition the generalization
since there is both a union and a mutual-exclusion constraint. An intersection symbol (∩)
indicates that the members of the specialization object set constitute the intersection of the
generalization object sets.

These simple definitions find many different, intricate, and complicating expressions in
conceptual models and schema description languages. For example, a typical object-
oriented “class” is a type rather than a mathematical set, and it uses the inheritance re-
lationship and the notion of substitutability in place of the more general concept of gen-
eralization/specialization and simple is-a semantics. This leads to a potential mismatch
between how we model the real world and how we implement information systems.2

XML Schema has rapidly become the method of choice for describing XML document
structures. Since XML is the de facto standard for modern data interchange, it is impor-
tant that we understand how to properly capture and enforce constraints on XML document
structures. Thus, a number of researchers have studied how to transform conceptual mod-
els into XML Schema. A chapter in [Car01] describes how to translate a UML model
instance into XML Schema. A chapter in [Dau03] presents Relax NG and introduces how
to translate from the Asset Oriented Modeling conceptual model into XML Schema. Yet
another study shows how to translate Object Role Modeling into XML Schema [BGH00].

1The particular choice of conceptual model is not critical to this paper, since the various conceptual models
and description logics typically have very similar underlying generalization/specialization constructs.

2Thus some developers adopt the rule of thumb that class derivation (inheritance) should only be used when
is-a also holds for the derivation relationship. But this rule is not applied universally.

In each case, the discussion is about translation in general, and does not focus specifically
on the problem of fully capturing all the semantics of generalization/specialization. In
this paper we deal with the full details of translating generalization/specialization and its
constraints into XML Schema.

The remainder of the paper proceeds as follows. In Section 2 we describe the mechanisms
available in XML Schema to represent generalization/specialization. In Section 3 we show
how to use those mechanisms to capture the semantics of certain forms of generalization/-
specialization and its constraints. Since XML Schema is incapable of fully representing
all of the necessary semantics, in Section 4 we describe a relatively small but important
set of augmentations that would allow XML Schema to do a complete job. We conclude
in Section 5.

2 Generalization/Specialization Mechanisms in XML Schema

There are several mechanisms in XML Schema that support generalization/specialization.
The foundational information construct in XML, of course, is the element, which together
with the attribute construct and element nesting is sufficient to represent all data structures.
So the starting point for any translation from a conceptual model to XML is to map “con-
cepts” to “elements.” Relationships typically map either to attributes or to nested elements.
There are significant complications when we consider finer points like object identity, but
the overall process of structure mapping is fairly clear-cut and generally intuitive.

However, once we have a basic structure encoded in XML, how can we capture general-
ization/specialization relationships and their constraints? We find three constructs in XML
Schema that support various aspects of generalization/specialization: (1) derived types, (2)
substitution groups, and (3) abstract elements. We consider each construct in turn.

2.1 Derived Types

In XML Schema, each element has a type that describes valid element content. Types come
in two broad categories: simple and complex. One simple type can be derived from another
by restriction. For example, string is a simple type, and we can specify a customized type,
GenericTLD, as the set of strings that correspond to the generic top-level internet domains
by restricting the string type as follows:

<xs:simpleType name=“GenericTLD”>
<xs:restriction base=“xs:string”>

<xs:enumeration value=“com” />
<xs:enumeration value=“edu” />
<xs:enumeration value=“gov” />
<xs:enumeration value=“net” />
<xs:enumeration value=“org” />

. . .
</xs:restriction>

</xs:simpleType>

Similarly, complex types may be derived by restriction from a base type. Valid restrictions
include those that increase the constraints on attributes or elements in the complex type
in a way that is compatible with the base type. For example, an optional element in the
base type may be required in the derived type. Thus, the derivation of both simple and
complex types by restriction results in a set of allowed values for the derived type that is a
subset of the allowed values for the base type. This notion is similar to the conceptual is-a
relationship.

Extension of complex types involves creating a derived complex type whose content model
is a superset of its base type’s content model. When we extend a complex type, we can add
to the derived type extra attributes or elements in addition to those found in the content
model of the base type as follows:

<xs:complexType name=“A”>
<xs:sequence>

<xs:element name=“A1” type=“xs:string” />
<xs:element name=“A2” type=“xs:string” />

</xs:sequence>
</xs:complexType>

<xs:complexType name=“B”>
<xs:complexContent>

<xs:extension base=“A”>
<xs:sequence>

<xs:element name=“B1” type=“xs:string” />
<xs:element name=“B2” type=“xs:string” />

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

In this case, type B is derived by extension from type A. In addition to including A1 and
A2 elements, B-type elements also include B1 and B2 elements.

The concept of complex type extension is a “reuse” mechanism similar in some aspects
to typical object-oriented inheritance mechanisms. It is distinct from the conceptual is-a
relationship, though extension does indeed form a type hierarchy that supports substitu-
tion of a more specialized type for a more general type. Some may argue that derivation
necessarily implies a form of generalization/specialization, but we see it as a convenience
mechanism for writing efficient code, not as a conceptual mechanism for defining gener-
alization/specialization hierarchies.

2.2 Substitution Groups

In XML Schema, global elements can be organized into a substitution group, wherein a
particular set of elements can be substituted for a named element, called the head ele-
ment. For example, if elements B and C were each declared to be substitutable for A by
including the attribute substitutionGroup=“A” in the declarations of elements B and C,
then the meaning is that B or C may appear anywhere that A is required. The presence of a
substitution group does not require use of the substitutable elements, nor does it preclude
the use of the head element. It simply establishes a way for a set of elements to be used
interchangeably.

The concept of a substitution group constitutes a form of generalization/specialization,
though it is not identical to the natural subset notion of generalization/specialization that
corresponds to the is-a relationship described in the introduction. Instead, a substitution
group defines an equivalence class of elements that can be used interchangeably. However,
substitution groups can form hierarchies similar to is-a hierarchies, and we can construe
them to denote a relationship much like is-a. Indeed, we argue that the use of a substitution
group implies conceptual generalization/specialization in the sense that one concept (a
substitutable element) is a special kind of another concept (the head element).

2.3 Abstract Elements and Types

It is possible to require the use of substitution for a particular element or type by declar-
ing it to be abstract. An element declared to be abstract cannot be used in an instance
document—a non-abstract substitutable element must be used instead. Thus, declaring an
element as abstract requires the specification of a substitution group. Similarly, declaring
a type to be abstract requires the use of concrete types that extend the abstract type. In
both cases, abstract elements are associated with concept hierarchies that are related to the
conceptual is-a relationship.

3 Representing Generalization/Specialization in XML Schema

Given the foundational XML Schema mechanisms described in Section 2, we now turn
our attention to how we can actually represent conceptual generalization/specialization in
XML Schema. There are two cases of conceptual generalization/specialization that we are
able to represent faithfully in XML Schema, two cases that are problematic, and two other
cases that are not possible (directly). When a generalization/specialization hierarchy does
not include multiple generalizations for any specialization (i.e., no concept has more than
one parent concept), we are able to represent generalization/specialization relationships
with partition and mutual-exclusion constraints in a straightforward manner as we show in
Sections 3.1.1 and 3.1.2. We are also able to represent union constraints and unconstrained
generalization/specialization relationships, but as we describe in Section 3.2, these cases

* A2A1

C2

C1

B2

B1

B C

A

Figure 2: Generalization/Specialization Partition Constraint in C-XML.

are more problematic. In Section 3.3 we discuss the cases that we cannot model reasonably
in XML Schema, namely generalization/specialization relationships involving multiple
generalizations.

3.1 Straightforward Cases

The two straightforward cases of generalization/specialization constraints are partition and
mutual-exclusion. In both cases, we start by translating concepts into elements and at-
tributes, and relationship sets into attributes and nested elements. The primary means for
representing generalization/specialization in XML Schema is captured by the notion of
substitution groups, so we have chosen to represent each generalization/specialization re-
lationship with an XML Schema substitution group. We now describe how to represent
partition and mutual-exclusion constraints in XML Schema.

3.1.1 Partition Constraints

Figure 2 shows a C-XML model instance where specialized concepts B and C form a
partition of the general A concept. In set terminology, we say that B ∪ C = A and B ∩ C
= {}. Figure 3 shows our XML Schema translation of this model instance.

The translation from C-XML in Figure 2 to XML Schema in Figure 3 proceeds as follows.
We begin by introducing Document as a root-level node that contains a sequence of A
elements. We declare A as an abstract type whose content is defined by the complex
type Atype (line 11). Since A is abstract, it cannot appear independently in an instance
document—either B or C must be substituted. This serves the purpose of covering the
union constraint (recall that partition is the combination of union and mutual exclusion),
since A must necessarily be defined as the union of the set of B’s and C’s that actually
appear in the instance document.

Atype declares that the content model of A includes exactly one A1 element and exactly
one A2 element (lines 12-16). Furthermore, we define an object identifier attribute OID of
type ID (line 17) that serves as a unique identifier for each A. XML Schema defines the
special ID type to be unique across an entire document instance. Since B and C must be

1: <?xml version="1.0" encoding="UTF-8"?>
2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3: elementFormDefault="qualified" attributeFormDefault="unqualified">
4: <xs:element name="Document">
5: <xs:complexType>
6: <xs:sequence minOccurs="0" maxOccurs="unbounded">
7: <xs:element ref="A" />
8: </xs:sequence>
9: </xs:complexType>

10: </xs:element>
11: <xs:element name="A" type="Atype" abstract="true" />
12: <xs:complexType name="Atype">
13: <xs:sequence>
14: <xs:element name="A1" minOccurs="1" maxOccurs="1" />
15: <xs:element name="A2" minOccurs="1" maxOccurs="1" />
16: </xs:sequence>
17: <xs:attribute name="OID" type="xs:ID" use="required" />
18: </xs:complexType>
19: <xs:element name="B" type="Btype" substitutionGroup="A" />
20: <xs:complexType name="Btype">
21: <xs:complexContent>
22: <xs:extension base="Atype">
23: <xs:sequence>
24: <xs:element name="B1" type="xs:string" minOccurs="1" maxOccurs="1" />
25: <xs:element name="B2" type="xs:string" minOccurs="1" maxOccurs="1" />
26: </xs:sequence>
27: </xs:extension>
28: </xs:complexContent>
29: </xs:complexType>
30: <xs:element name="C" type="Ctype" substitutionGroup="A" />
31: <xs:complexType name="Ctype">
32: <xs:complexContent>
33: <xs:extension base="Atype">
34: <xs:sequence>
35: <xs:element name="C1" type="xs:string" minOccurs="1" maxOccurs="1" />
36: <xs:element name="C2" type="xs:string" minOccurs="1" maxOccurs="1" />
37: </xs:sequence>
38: </xs:extension>
39: </xs:complexContent>
40: </xs:complexType>
41: </xs:schema>

Figure 3: XML Schema Translation of C-XML in Figure 2.

mutually exclusive, we can ensure that the sets are disjoint simply by providing a unique
surrogate identifier for each element. A key point here is how we deal with the issue of
object identity. How do we know whether a B element and a C element represent the same
A object? Since A, B, and C are all nonlexical, we need to associate object identifiers
with them. Attribute OID serves this purpose, and because OID must be unique across all
elements, we are guaranteed that no B element will have the same OID value as some C
element. Hence we know that B and C are mutually exclusive (even if a B object and a C
object share the same A1 and A2 values).

The remainder of Figure 3 accounts for the specialized structure of B and C, each with its
own pair of related concepts. Elements B and C are members of the substitution group
whose head element is A (lines 19 and 30). Both elements B and C derive their content
models by extension from the base Atype (lines 20-29 and 31-40 respectively).

* A2A1

C2

C1

B2

B1

B C

A

Figure 4: Generalization/Specialization Mutual-Exclusion Constraint in C-XML.

3.1.2 Mutual-Exclusion Constraints

Figure 4 shows a C-XML model instance that is similar to the model instance in Fig-
ure 2, except that the partition constraint is replaced with the weaker mutual-exclusion
constraint. The translation of the model instance to XML Schema is identical to the
partition-constraint case with one exception. Since the C-XML model instance in Fig-
ure 4 does not force A to be the union of B and C, there may be A’s present that are in
neither B nor C. That is, we still have B ∩ C = {}, but we no longer have B ∪ C = A.
Instead, we merely know that B ∪ C ⊆ A. Thus we must allow instances of the A element
to be directly present in the XML document instance. We accomplish this by repeating
the same translation as before except we declare element A not to be abstract. The only
thing that changes from Figure 3 is that on line 11 we write abstract=“false” instead of
abstract=“true”.

Partition and mutual-exclusion constraints on generalization/specialization relationships
are fairly straightforward to represent in XML Schema without introducing many artifacts.
The two additional information-carrying elements in the XML Schema translation are the
Document element, since XML requires a single root-level container element, and the OID
attribute, which is necessary to capture object identity semantics. We now proceed to the
more difficult union constraint and unconstrained generalization/specialization.

3.2 Problematic Cases in XML Schema

In contrast with the straightforward translation of partition and mutual-exclusion con-
straints from C-XML to XML Schema, unconstrained generalization/specialization and
generalization/specialization with only a union constraint are more difficult to handle, and
the mapping approach is not entirely satisfactory.

3.2.1 Generalization/Specialization without any Constraint

Figure 1 shows an unconstrained generalization/specialization relationship, where A is the
general concept and B and C are specializations of A. In set notation we write B ⊆ A

1: <?xml version="1.0" encoding="UTF-8"?>
2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3: elementFormDefault="qualified" attributeFormDefault="unqualified">
4: <xs:element name="Document">
5: <xs:complexType>
6: <xs:sequence minOccurs="0" maxOccurs="unbounded">
7: <xs:element ref="A" />
8: </xs:sequence>
9: </xs:complexType>

10: </xs:element>
11: <xs:element name="A" type="Atype" abstract="false" />
12: <xs:complexType name="Atype">
13: <xs:sequence>
14: <xs:element name="A1" minOccurs="1" maxOccurs="1" />
15: <xs:element name="A2" minOccurs="1" maxOccurs="1" />
16: </xs:sequence>
17: <xs:attribute name="OID" type="xs:string" use="required" />
18: </xs:complexType>
19: <xs:element name="B" type="Btype" substitutionGroup="A" />
20: <xs:complexType name="Btype">
21: <xs:complexContent>
22: <xs:extension base="Atype">
23: <xs:sequence>
24: <xs:element name="B1" type="xs:string" minOccurs="1" maxOccurs="1" />
25: <xs:element name="B2" type="xs:string" minOccurs="1" maxOccurs="1" />
26: </xs:sequence>
27: </xs:extension>
28: </xs:complexContent>
29: </xs:complexType>
30: <xs:element name="C" type="Ctype" substitutionGroup="A" />
31: <xs:complexType name="Ctype">
32: <xs:complexContent>
33: <xs:extension base="Atype">
34: <xs:sequence>
35: <xs:element name="C1" type="xs:string" minOccurs="1" maxOccurs="1" />
36: <xs:element name="C2" type="xs:string" minOccurs="1" maxOccurs="1" />
37: </xs:sequence>
38: </xs:extension>
39: </xs:complexContent>
40: </xs:complexType>
41: </xs:schema>

Figure 5: XML Schema Translation of C-XML in Figure 1.

and C ⊆ A. In particular, this allows for the possibility that the intersection of B and C
could be non-empty. And that is where the chief difficulty arises—how do we enforce
object identity when B ∩ C 6= {}? Figure 5 shows the best we can do with the available
mechanisms in XML Schema to represent this case.

The differences between Figure 5 and Figure 3 are (1) element A is not abstract, thus
relaxing the union constraint, and (2) the object identifier attribute OID is not of type ID,
and so we do not enforce uniqueness, thus relaxing the mutual-exclusion constraint.

A, B, and C are still nonlexical concepts, and so they should have an identity in the corre-
sponding XML Schema translation. We can argue that two elements in an XML document
instance with the exact same values still have distinct identities because they are written
separately in the XML document. Thus we can distinguish between the element instance
written first in the document and the element instance written second. However, consider
the case where an object is a member of both B and C. Since we have no combined type to
represent a B/C element, we must write the element first as a B, and then using the same

* A2A1

C2

C1

B2

B1

B C

A

Figure 6: Generalization/Specialization Union Constraint in C-XML.

values for OID, A1, and A2, we must write the element as a C. Now the conceptual object
that is a member of B and C is represented as two separate XML elements tied together by
a common OID value. Besides introducing an update anomaly over A1 and A2, we are in
the unsatisfying position of not being able to enforce uniqueness of OID.

The alternative is even less satisfying. We could include a combined B/C type, but there
would still be two major problems. First, there would be an exponential explosion of
potential combinations (imagine having just 10 or 20 specializations of one general con-
cept—the XML Schema would be unwieldy to say the least). Second, we would break the
nice correspondence between substitution groups and generalization/specialization. So,
for example, a combined B/C element would let us create B elements that do not directly
relate to the B element which represents the B concept in our conceptual model. Iterating
over the set of B elements would become needlessly difficult.

The advantages of our chosen approach are that it aligns more closely with the conceptual
model structure, and we can enforce the appropriate constraints by post-processing outside
of the ordinary XML Schema constraint enforcement mechanisms. Nonetheless, as we
explore in Section 4, a fully satisfactory approach requires extensions to XML Schema.

3.2.2 Union Constraint

Figure 6 shows a C-XML model instance similar to the previous case except with a union
constraint on the generalization/specialization relationship. For this case, our translation
approach is similar to the unconstrained case in Figure 5 except we declare the element
A to be abstract so that it cannot be instantiated directly in a document instance. With a
union constraint, we know that B ∪ C = A, and so we must prevent the situation where an
A exists that is neither in B nor C. Specifying abstract=“true” for A accomplishes this.

Unfortunately, our solution in this case suffers from the same problems we describe in
Section 3.2.1, and so we are not fully satisfied with the outcome. Nonetheless, it is possible
to faithfully represent the conceptual structures of our C-XML model instances in all these
cases, even though we sometimes cannot enforce the constraints fully in XML Schema.
The unifying mechanism of our C-XML-to-XML Schema translation of generalization/-
specialization is that we use substitution groups to represent the generalization/specializa-
tion hierarchy.

B

C

A B

C

A

Figure 7: Multiple Generalizations in C-XML.

3.3 The Problem of Multiple Generalizations

The correspondence between generalization/specialization and substitution groups breaks
down when we consider multiple generalizations. Figure 7 shows a simple C-XML model
instance where concept C is a specialization of both A and B, so that C ⊆ A and C ⊆ B.
When we specify an intersection constraint on the generalization/specialization, we further
require that A ∩ B = C. As with the unconstrained generalization/specialization case, we
must be able to handle the situation where an object is a member of more than one concept.
Thus we will rely on the same OID mechanism as before.

However, for these cases, we simply have no way of specifying in XML Schema that
an element is a member of two substitution groups. The philosophy of XML Schema
1.0 was to implement single inheritance only. Five years ago, one of the editors of the
XML Schema standard acknowledged that this is a problem and that the working group
might consider adding support for multiple inheritance in the future [DL00]. However,
since inheritance combines the is-a construct with a code-reuse mechanism, it is not clear
that simply adding multiple inheritance will resolve the problem of supporting conceptual
generalization/specialization appropriately. We agree that extension from multiple types
would be useful, but conceptually what we need even more is the ability for an element to
participate in multiple substitution groups. (See [Das01] for ideas on this topic generated
in a different but related context.)

4 Resolving the Conceptual Modeling Issues

There are two general approaches we can take to resolve the issues we have raised with
respect to capturing conceptual generalization/specialization constructs in XML Schema.
First, we could implement constraint-checking external to XML Schema to enforce the
meaning of the conceptual model within corresponding XML documents. Alternatively,
we could augment XML Schema with a few modest extensions that will support concep-
tual generalization/specialization directly.

4.1 Post-Processing to Enforce Constraints

Section 3.2 describes a somewhat unsatisfactory approach to mapping unconstrained and
union-constrained generalization/specialization to XML Schema. What is missing in these
cases is appropriate enforcement of object identity uniqueness. Consider the C-XML
model instance in Figure 1 and its translation to XML Schema in Figure 5. If we were
to add pragmas to the XML Schema instance to indicate that B ⊆ A and C ⊆ A, a post-
processor could examine the corresponding document instance and determine whether the
object identities are all appropriate. The post-processor would need to verify the follow-
ing: (1) OID is vertically unique across the generalization/specialization hierarchy (so, for
example, there is no B element whose OID value is identical to some A element), and (2)
when two OID values are the same in two sibling classes, they also share the same A1 and
A2 values.

To implement multiple generalizations, we would need to take a somewhat different ap-
proach to laying out the C-XML concepts as XML elements. Instead of relying on sub-
stitution groups to map one-to-one with generalization/specialization, we would need to
write pragmas to indicate the structure of the conceptual generalization/specialization re-
lationships. So we might write in a specially-formatted comment, for example, that C is
a specialization of both A and B, and if an intersection constraint were present we would
also note that. A post-processor could readily parse the pragmas and check whether the
specified constraints hold. However, since XML Schema would have no way of tying C
directly to A and B, we would need to rewrite the schema so that any reference to A or B
could be replaced by a C element instead. In general, we could use this strategy to handle
all generalization/specialization relationships and constraints.

Certainly the post-processor methodology has significant drawbacks; we now explore a
cleaner approach.

4.2 Proposed Extensions to XML Schema

Perhaps the best way to implement conceptual generalization/specialization in XML Sche-
ma is to augment XML Schema with a few extensions. For multiple generalizations, it
would be straightforward to extend the substitutionGroup attribute on a substitutable el-
ement so that it admits a list of multiple head elements. For example, to capture the
generalization/specialization hierarchy of Figure 7, we could write the following:

<xs:element name=“C” substitutionGroup=“A,B” />

And if there were an intersection constraint present, we could note it with a distinguished
keyword, for example:

<xs:element name=“C” intersectionGroup=“A,B” />

To capture the concept of union-constrained generalization/specialization, we need to
mark head elements with the appropriate constraints. For example, we could mark the
union constraint of Figure 6 in this manner:

<xs:element name=“A” union=“B,C” />

Similarly, mutual-exclusion and partition constraints could replace the word union with
mutex and partition, respectively.

Finally, to cover the aforementioned cases and to handle unconstrained generalization/-
specialization, we would need to attach unique object identifiers uniformly to all elements
in all substitution groups. We could do this by modifying XML Schema to automatically
assert the existence of an OID attribute for all elements in a substitution group, including
the head element(s) and all substitutable elements.

5 Conclusion

Generalization/specialization is an important structure in conceptual modeling, but it is
often difficult to implement faithfully in XML Schema. This leads to XML Schema in-
stances that are unnecessarily complex or that misrepresent the original semantics of a
conceptual model. To compound the problem, it is often the case that inheritance com-
bines the properties of the conceptual is-a relationship with the notion of code reuse. This
can sometimes cause awkward structures that are implemented efficiently but do not cor-
respond to a natural conceptual model.

The contributions of this paper include the following:

• We have characterized the nature of conceptual generalization/specialization and
have shown how it corresponds to structures in XML Schema.

• We have identified a small set of constructs that could augment XML Schema so
that it would fully support conceptual generalization/specialization.

If our proposal were adopted, it would result in better alignment between conceptual mod-
els and corresponding XML Schema instances, and the resulting schemas would have the
added benefit of being substantially less complex than the alternatives. Given the inherent
complexity of enterprise application modeling and development, these advantages could
be significant.

Acknowledgements

This work is supported in part by the National Science Foundation under grant number
IIS-0083127 and by the Kevin and Debra Rollins Center for eBusiness at Brigham Young
University under grant EB-05046.

References

[BGH00] L. Bird, A. Goodchild, and T. Halpin. Object Role Modelling and XML-Schema. In Pro-
ceedings of the Ninteenth International Conference on Conceptual Modeling (ER2000),
pages 309–322, Salt Lake City, Utah, October 2000.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Description Logic Hand-
book, chapter 2, pages 43–95. Cambridge University Press, Cambridge, UK, 2003.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, Reading, Massachusetts, 1999.

[Car01] David Carlson. Modeling XML Applications with UML: Practical e-Business Applica-
tions. Addison Wesley, Menlo Park, California, 2001.

[Das01] E. M. Dashofy. Issues in Generating Data Bindings for an XML Schema-Based Lan-
guage. In Proceedings of the of the Workshop on XML Technologies and Software En-
gineering (XSE2001), Toronto, ONT, Canada, May 2001.

[Dau03] Berthold Daum. Modeling Business Objects with XML Schema. Morgan Kaufmann,
San Francisco, California, 2003.

[DL00] Dodds, L. Reconstructing DTD Best Practice, June 2000. http://www.xml.com/pub/a/-
2000/06/xmleurope/schemas.html.

[ELAK04] David W. Embley, Stephen W. Liddle, and Reema Al-Kamha. Enterprise Modeling with
Conceptual XML. In Proceedings of the 23rd International Conference on Conceptual
Modeling(ER2004), pages 150–165, Shanghai, China, November 2004.

[SS77] John Miles Smith and Diane C. P. Smith. Database Abstractions: Aggregation and
Generalization. ACM Trans. Database Syst., 2(2):105–133, 1977.

[TYF86] T.J. Teorey, D. Yang, and J.P. Fry. A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model. ACM Computing Surveys,
18(2):197–222, June 1986.

