
Automatic Creation and Simplified Querying of

Semantic Web Content: An Approach Based on
Information-Extraction Ontologies

Yihong Ding1�, David W. Embley1∗, and Stephen W. Liddle2��

1 Department of Computer Science,
2 Department of Information Systems,

Brigham Young Univeristy, Provo, Utah 84602, U.S.A.
{ding, embley}@cs.byu.edu, {liddle}@byu.edu

Abstract. The semantic web represents a major advance in web util-
ity, but it is currently difficult to create semantic-web content because
pages must be semantically annotated through processes that are mostly
manual and require a high degree of engineering skill. Furthermore, users
need an effective way to query the semantic web, but any burden placed
on users to learn a query language is unlikely to garner sufficient user sup-
port and interest. Unfortunately, both the creation and use of semantic-
web pages are difficult, and these are precisely the processes that must
be made simple in order for the semantic web to truly succeed. We
propose using information-extraction ontologies to handle both of these
challenges. In this paper we show how a successful ontology-based data-
extraction technique can (1) automatically generate semantic annota-
tions for ordinary web pages, and (2) support free-form, textual queries
that will be relatively simple for end users to write.

1 Introduction

The sheer volume of web content forces people to rely on machines to help
search for information. Search engines help, but by themselves are not enough.
Search engines do a good job ranking billions of web pages and identifying useful
candidates, often presenting the page a user wants within the first few search
results. The problem, however, is not what search engines do, but what they
cannot do. Keyword-based searching restricts the types of questions people can
ask. For example, users cannot make requests like, “Find me a red Nissan for
under $5000 – it should be a 1990 or newer and have less than 120K miles on it.”
The required information is out there on the web, but traditional search engines
cannot answer this type of request because they do not know how to match the
specified concepts in the request to data instances on the web.

� Supported by NSF grant #0414644.
�� Supported by the Kevin and Debra Rollins Center for eBusiness at Brigham Young

University under grant EB-05046.

2 Yihong Ding et al.

A solution to this problem is to design a new type of machine-understandable
web representation and develop web pages based on the new format, or in other
words develop the semantic web [2]. Semantic-web proponents propose making
web content machine understandable through the use of ontologies, which are
commonly shared, explicitly defined, generic conceptualizations [7]. But then
one of the immediate problems we face is how to deal with current web pages.
There are billions of pages on the current web, and it is impractical to ask web
developers to rewrite their pages according to some new, semantic-web standard,
especially if this would require tedious manual labeling of documents.

Web semantic annotation research attempts to resolve this problem. The
goal of web semantic annotation is to add comments to web content so that
it becomes machine understandable. Unlike an annotation in the normal sense,
which is an unrestricted note, a semantic annotation must be explicit, formal,
and unambiguous: explicit makes a semantic annotation publicly accessible, for-
mal makes a semantic annotation publicly agreeable, and unambiguous makes a
semantic annotation publicly identifiable. These three properties enable machine
understanding, and annotating with respect to an ontology makes this possible.
In this paper we show how to automatically annotate existing data-rich web
pages with respect to an ontology.

To clarify our intentions, we give an example. Figure 1 shows two ordinary,
human-readable web pages for selling cars. Our system can annotate these pages
automatically with respect to a given ontology about car advertisements and
thus can convert them to semantic web pages so that these pages also exist in
machine-readable form. We store these annotations in such a way that we can
directly query them using an available semantic web query language (SPARQL
[15] for our particular implementation). This entire process allows us to query
the content of web pages not originally designed for the semantic web, thus, a
request equivalent to “Find me a red Nissan for under $5000 – it should be a
1990 or newer and have less than 120K miles on it” over the pages in Figure 1
would yield results such as those in Figure 2. The results in Figure 2 are actual
answers to the query in a table whose header attributes are the concept names
from the given car-ads ontology, restricted to those concepts mentioned in the
query. In addition, there is always one additional attribute, Source, whose values
are links back into the original documents at the location where the information
is provided. When a user clicks on Car1 (the link in the first row in Figure 2),
for example, the document in Figure 1 from the Athens site appears, except it
would be scrolled to the right place and the information requested in the query
would be highlighted.

Our automated semantic annotation approach employs a unique ontology-
based data recognizer that uses information-extraction (IE) ontologies. A unique
characteristic of this approach is the use of instance recognition semantics inside
ontologies to help specify annotation domains and perform data recognition. Our
approach solves a common annotation problem of requiring “a set of heuristics
for post-processing and mapping of the IE results to an ontology” [9].

Lecture Notes in Computer Science 3

Fig. 1. Sample Car Ads from Salt Lake City Weekly and Athens Banner-Herald Sites.

We give the details3 of our contribution of automatically creating seman-
tic web content so that we can directly query it as follows. Section 2 describes
information-extraction ontologies, which are the basis for our automated semantic-
web annotation tool. Section 3 describes our prototype work on automatically
annotating existing web pages so that they can be used for the semantic web,
and Section 4 shows how we can directly query pages annotated for the seman-
tic web. Section 5 provides experimental evidence about the accuracy of our
annotation system as well as pragmatic consideration. We conclude in Section 6.

3 Since this paper gives a full, broad vision of our approach to both the creation and
use of semantic-web pages, our presentation is necessarily high level. We provide as
much detail as space allows and refer the interested reader to additional papers that
augment ideas and results presented here.

4 Yihong Ding et al.

Color Make Price Year Mileage Source

Nissan $4,500 1993 117,000 Car1
...
red Nissan $900 1993 Car13
...

Fig. 2. Query Results.

2 Ontologies for Semantic Annotation

In semantic web applications, ontologies describe formal semantics for applica-
tions, and thus make information sharable and machine-understandable. The
work of semantic annotation is, however, more than just knowledge represen-
tation. Semantic annotation applications must also establish mappings between
ontology concepts and data instances within documents so that these data in-
stances become sharable and machine-understandable. In this section, we intro-
duce information-extraction ontologies and show that they are useful both for
representing knowledge and for establishing mappings between ontology concepts
and document data instances.

2.1 Information Extraction Ontologies

We have described information-extraction ontologies elsewhere [6], but to make
our paper self-contained, we briefly reintroduce them here.4 An extraction on-
tology specifies named sets of objects, which we call object sets or concepts, and
named sets of relationships among object sets, which we call relationship sets.
Figure 3 shows a graphical rendition of an extraction ontology for car adver-
tisements. The extraction ontology has two types of concepts: lexical concepts
(enclosed in dashed rectangles) and nonlexical concepts (enclosed in solid rect-
angles). A concept is lexical if its instances are indistinguishable from their
representations. Mileage is an example of a lexical concept because its instances
(e.g. “117K” and “5,700”) represent themselves. A concept is nonlexical if its
instances are object identifiers, which represent real-world objects. Car is an
example of a nonlexical concept because its instances are identifiers such as, say,
“Car1”, which represents a particular car in the real world. An extraction on-
tology also provides for explicit concept instances (denoted as large black dots).
We designate the main concept in an extraction ontology by marking it with
“->•” in the upper right corner, which denotes that the object set Car becomes
(“->”) an object instance (“•”) for a single car ad.

Figure 3 also shows relationship sets among concepts, represented by con-
necting lines, such as the connecting line between Car and Year. The numbers
near the connections between relationship sets and object sets are participation

4 We mention, in passing, that the ontological basis for our extraction ontologies has
been fully formalized in terms of predicate calculus. (See Appendix A of [5].)

Lecture Notes in Computer Science 5

Car

Color

Feature

Accessory

BodyType

Engine

Transmission

Mileage

ModelTrim

TrimModel

Year

Make

Price

PhoneNr

0:1

1:*

0:1
1:*

 1

1:*
0:1

1:*

0:1

1:*

0:1

1:*

0:1

1:*

0:1

1:*

0:* 1:*

0:*

1:*

->
Car

Color

Feature

Accessory

BodyType

Engine

Transmission

Mileage

ModelTrim

TrimModel

Year

Make

Price

PhoneNr

0:1

1:*

0:1
1:*

 1

1:*
0:1

1:*

0:1

1:*

0:1

1:*

0:1

1:*

0:1

1:*

0:* 1:*

0:*

1:*

->

Fig. 3. Graphical Component of an Extraction Ontology

constraints. Participation constraints give the minimum and maximum partici-
pation of an object in an object set with respect to the connected relationship
set. For example, the 0:1 participation constraint on Car in the Car-Mileage
relationship set denotes that a car need not have a mileage in a car ad, but if
it does, it has only one. A white triangle defines a generalization/specialization
relationship, with the generalization concept connected to the apex of the trian-
gle and one or more specialization concepts connected to its base. In Figure 3,
for example, Feature is a generalization of Engine and BodyType, among others.
The white triangle can, of course, appear repeatedly, and thus we can have large
ISA hierarchies in an extraction ontology. A black triangle defines an aggrega-
tion with the super-part concept connected to the apex of the triangle and the
component-part concepts connected to its base. In Figure 3, for example, Mod-
elTrim is an aggregation of Model and Trim. Like ISA hierarchies, large PartOf
hierarchies are also possible.

As a key feature of extraction ontologies, the concepts each have an asso-
ciated data frame. A data frame describes information about a concept—its
external and internal representations, its contextual keywords or phrases that
may indicate the presence of an instance of the concept, operations that convert
between internal and external representations, and other manipulation opera-
tions that can apply to instances of the concept along with contextual keywords
or phrases that indicate the applicability of an operation. Figure 4 shows sam-
ple (partial) data frames for the concepts Price and Make in our ontology for
car advertisements. As Figure 4 shows, we use regular expressions to capture
external representations. The Price data frame, for example, captures instances

6 Yihong Ding et al.

Price
internal representation: Integer
external representation: \$?(\d+ | \d?\d?\d,\d\d\d)
context keywords: price | asking | obo | neg(\.|otiable) | ...
...
LessThan(p1: Price, p2: Price) returns (Boolean)
context keywords: less than | < | or less | fewer | ...
...

end

Make
external representation: CarMake.lexicon
...

end

Fig. 4. Sample data frames for car ads ontology.

of this concept such as “$4500” and “17,900”. A data frame’s context keywords
are also regular expressions. The Price data frame in Figure 4, for example,
includes context keywords such as “asking” and “negotiable”. In the context of
one of these keywords in a car ad, if a number appears, it is likely that this
number is a price. The operations of a data frame can manipulate a concept’s
instances. For example, the Price data frame includes the operation LessThan
that takes two instances of Price and returns a Boolean. The context keywords
of an operation indicate an operation’s applicability; context keywords such as
“less than” and “<”, for example, apply to the LessThan operation. Sometimes
external representations are best described by lexicons or other reference sets.
These lexicons or reference sets are also regular expressions, often simple lists of
possible external representations, and can be used in place of or in combination
with regular expressions. In Figure 4, CarMake.lexicon is a lexicon of car makes,
which would include, for example, “Toyota”, “Honda”, and “Nissan” and poten-
tially also misspellings (e.g. “Volkswagon”) and abbreviations (e.g. “Chev” and
“Chevy”).

We can apply an extraction ontology to obtain a structured representation
of the unstructured information in a relevant document. For example, given the
car-ads extraction ontology and one of the Nissan ads in Figure 1:

’93 NISSAN Model XE, $900, Air Conditioning, new tires, sweet cherry red.
For listings call 1-800-749-8104 ext. V896.

we can extract “’93” as the Year, “NISSAN” as the Make, “XE” as the Model,
“$900” as the Price, “red” as the Color, both “Air Conditioning” and “new tires”
as Features with “Air Conditioning” also being an Accessory, and “1-800-749-
8104” as the PhoneNr. As part of the extraction, the conversion routines in the
data frames convert these extracted values to canonical internal representations,
so that, for example, “’93” becomes the integer 1993 and “$900” becomes the
integer 900.

Lecture Notes in Computer Science 7

2.2 Annotation through Instance Recognition Semantics

Information-extraction ontologies are well positioned to satisfy the requirements
of semantic annotation. Not only do they provide the intentional-level seman-
tics found in typical ontologies, but they also provide the instance recognition
semantics needed to connect individual data items found in ordinary web pages
with the typical intentional-level semantics.

Figure 4 exemplifies the fundamental idea. The external representations de-
scribe textual instantiation patterns of a concept. Added to these instantiation
patterns, we provide regular expressions for context and keyword phrases, which
aid in correctly classifying instantiation patterns that may be similar in several
different data frames.

This approach stands in stark contrast to a typical automated semantic anno-
tation paradigm (e.g., the approaches in [1], [4], [8], [9], [12], and [16]), which do
not use extraction ontologies. Although results are encouraging for these auto-
mated semantic annotators, there are problems in these annotation paradigms. A
complete annotation process using typical non-ontology-based IE tools contains
three basic procedures: (1) extraction, (2) alignment, and (3) annotation. Al-
though researchers have neither fully resolved the issues with the first procedure
nor decided on the best solution for the third procedure, it is the second proce-
dure that has become the most critical for those attempting to adapt IE tools to
annotate current web pages for the semantic web. It is nontrivial to align extrac-
tion categories in an IE wrapper with concepts defined in semantic-web ontolo-
gies. Sheth and Ramakrishnan believe this “concept disambiguation” problem
is a major issue for the semantic annotation [14]. Furthermore, Kiryakov et al.
think that this requirement of post-extraction alignment is the “main drawback”
of current automated annotation approaches [9]. They suggest that we need to
integrate domain ontologies with extraction engines to solve the problem and
proposes this as a direction for future work [9]. Indeed, this is the approach
we take. Since information-extraction ontologies represent extraction categories
with ontologies, we can combine the problems of data recognition and concept
disambiguation and simplify the structure of the semantic annotation problem.

3 IE-Based Semantic Web Annotation

Generally speaking, there are two ways to represent annotated data instances:
explicit annotation, which adds special tags that bind tagged instances in a web
page to an externally specified ontology, and implicit annotation, which adds
nothing explicit to the document, but instead extracts instance position infor-
mation as well as the data instances and stores them in an externally specified
knowledge base. In our prototype, we have implemented both explicit and im-
plicit annotation.

Using explicit annotation, we have created an online demonstration [3] of
our semantic annotation tool. Figure 5 is a screen shot showing that our sys-
tem has extracted specific information from a web site containing car ads and

8 Yihong Ding et al.

Fig. 5. Page Annotation Demo: Car Ads from Athens Site (Hovering on 117K).

has, in addition, annotated the web page so that we can highlight extracted
information with the hover feature of CSS. The hover feature is only for the
demonstration. For the annotation itself, we include a four-tuple in each tag
for every recognized data instance x. This four-tuple uniquely identifies (1) the
ontology used for annotation (in case there are several for the same document),
(2) the concept within the ontology to which x belongs, (3) the record num-
ber for x so that the system knows which values relate together to form a
record, and (4) a value number within the record in case more than one in-
stance of the concept can appear within a record, as happens in our ontology for
car ads, for example, with Feature, which can have multiple values in a single
record. Thus, for example, we annotate the value 117K in Figure 5 by 117K. Here CarAds is the ontology,
Mileage is the concept, 13 is the record number, and 0 is the value number.
Span annotations along with a URL specifying an OWL ontology [13] allow
the system to create the equivalent of a populated semantic ontology for each
annotated page.

For implicit annotation, we start by generating an OWL ontology from an
extraction ontology. Then we create an RDF data file to store annotated data
instances based on the domain declaration defined in the OWL ontology. Fig-
ure 6 shows a portion of an implicit annotation for the Athens web page in
Figure 1. When we do implicit annotation, we also cache a copy of the web page
so that we can guarantee that the instance position information is correct. In

Lecture Notes in Computer Science 9

<rdf:RDF ... xmlns:ontos=“http://www.deg.byu.edu/ontology/ontosBasic#”
xmlns:carad=“http://www.deg.byu.edu/ontology/carad#”
xmlns:webpage=“http://www.deg.byu.edu/demos/...” ... >

...
<rdf:Description rdf:about=“&webpage;CarIns13”>

<carad:Mileage>117000</carad:Mileage>
<carad:Price>4500</carad:Price>
<carad:Make>Nissan</carad:Make>
<carad:Year>1993</carad:Year>
...

</rdf:Description>
<rdf:Description rdf:about=“&webpage;Mileage13”>

<ontos:ValueInText>117K</ontos:ValueInText>
<ontos:CanonicalValue>117000</ontos:CanonicalValue>
<ontos:CanonicalDataType>xsd:integer</ontos:CanonicalDataype>
<ontos:CanonicalDisplayValue>117,000</ontos:CanonicalDisplayValue>
<ontos:Offset> 37733 </ontos:Offset>

</rdf:Description>
...
</rdf:RDF>

Fig. 6. Implicit Annotation for Car Ads Web Page.

Figure 6, we first declare several namespaces of referenced ontologies and web
pages. Specifically, we include an ontos namespace, which provides general sys-
tem information, a namespace referencing the ontology we use for annotation
(here carad), and a webpage namespace for the annotated web pages. For each
car, we store its canonical data values with their respective attribute names.
For a lexical concept, such as mileage in Figure 6, we store its original value in
the source text (117K), its canonical internal value (117000) and type (inte-
ger), and its canonical display value (117,000). We use canonical internal values
(together with type information) in SPARQL queries and use canonical display
values when returning results to users (as in Figure 2). We also store offset values
in the cached web page (e.g. 37733 is the actual offset of the extracted instance
“117K”). The RDF document in Figure 6 fully annotates the Athens web page
in Figure 1.

4 Querying Annotated Semantic Web Pages

Given an implicit annotation in an RDF file, we can query the file and thus query
the annotated web page. Because we store information in an RDF file, we can use
SPARQL to query the information directly, as we explain in Section 4.1. Ordinary
users, however, will not be able to write queries in SPARQL. We therefore argue
in Section 4.2 that a more user-friendly mechanism is needed and further show
that information-extraction ontologies may give us a reasonable way to provide
the needed user-friendly mechanism.

10 Yihong Ding et al.

PREFIX carad: <http://www.deg.byu.edu/ontology/carad#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?make ?color ?price ?year ?mileage
WHERE { ?x carad:Make ?make . FILTER (?make = “Nissan”) .

OPTIONAL {?x carad:Color ?color} . FILTER (?color = “red”) .
OPTIONAL {?x carad:Price ?price} . FILTER (xsd:integer(?price) < 5000) .
OPTIONAL {?x carad:Year ?year} . FILTER (xsd:integer(?year) >= 1990) .
OPTIONAL {?x carad:Mileage ?mileage} .

FILTER (xsd:integer(?mileage) < 120000) }

Fig. 7. SPARQL Query to Search an Annotated Web Page.

4.1 SPARQL for Implicitly Annotated Semantic Web Pages

Figure 7 shows a SPARQL rendition of our sample query, “Find me a red Nis-
san for under $5000 – it should be a 1990 or newer and have less than 120K
miles on it.” The query is written over the RDF file in Figure 6 that anno-
tates the web page. The PREFIX clause associates a prefix label with an IRI
(a generalization of URIs that is fully compatible with URIs and URLs). The
prefix label becomes a local namespace abbreviation for the address specified
by the IRI. The SELECT clause names the result variables. The first clause in
the WHERE clause requires the car bound to x to have Make equal to NIS-
SAN. Each OPTIONAL clause checks whether a corresponding extracted value
satisfies certain constraints. The keyword OPTIONAL allows the content to be
unbound. Otherwise, however, any bound value must satisfy the constraints in
the corresponding FILTER clause. To perform semantic web searches, we apply
this query to all documents that are applicable to the given domain, collect the
results, and display them to the user in a tabular format as Figure 2 shows.

The reason we make our conditions OPTIONAL is that optional elements
might not be present in some of the records. Thus, as is the case with the ordi-
nary web, our semantic web queries may return irrelevant results. For example,
suppose a car ad does not list the car’s color, but otherwise satisfies the user’s
constraints. Rather than miss a potential object of interest, we allow optional
elements to be missing, and we return the partial record with the query results.
It would not be hard to allow users to override this behavior and require the
presence of all concepts in each of the query results.

4.2 IE-Based Semantic Web Queries

For researchers and developers, SPARQL is a fine choice as a query language
for the semantic web. On the other hand, few end users will have the ability,
patience, or interest to learn to write SPARQL queries. A practical semantic web
query solution must be sufficiently expressive while also being easy to use. We
believe that, like current web search engines, semantic web searches will migrate
to free-form text. Because it is impossible to execute free-form queries directly,
mapping from free-form queries to executable queries is necessary.

Lecture Notes in Computer Science 11

Our approach can be characterized as an information-extraction, ontology-
based, natural-language-like approach. The essence of the idea is to (1) extract
constants, keywords, and keyword phrases in a free-form query; (2) find the
ontology that matches best; and (3) embed the query in the ontology yielding
(3a) a join over the relationship-set paths connecting identified concepts, (3b)
a selection on identified constants modified by identified operators, and (3c) a
projection on mentioned concepts.5,6

Consider our running example, where the user specifies, “Find me a red
Nissan for under $5000 – it should be a 1990 or newer and have less than 120K
miles on it.” The extraction ontology from our library that best matches this
query is the car-ads ontology. When we apply our car-ads extraction ontology
to this sentence, we discover that the desired object has restrictions on five
concepts: color, make, price, year, and mileage. For string-valued concepts (color
and make), we can test equality (either equal or not equal). Since there are
no keyword phrases in the query that indicate negation, we search for objects
where Color=red and Make=Nissan. For numeric concepts (price, year, and
mileage), we can test ranges. Associated with each operator in a data frame
are keywords or phrases that indicate when the operator applies. In this case,
“under” indicates < (a less-than comparison), “or newer” indicates ≥, and “less
than” indicates <. So in our example, we must search for Price < 5000, Year
≥ 1990, and Mileage < 120000. Recall, from our discussion in Section 2, that
our data frames specify operators that convert a string to a canonical internal
representation and to a canonical representation for display. Thus, for example,
“120K” becomes the integer 120000 as its canonical internal representation and
the string “120,000” as its canonical display value. We therefore are able to
apply standard conditions and FILTER clauses to compose a SPARQL query.
Because web data is stored using an open world assumption, we should not
reject an answer when a data value is not present. Hence, by default we add
OPTIONAL before each generated condition. There is, however, another factor
that decides the OPTIONAL before a generated condition. When a minimum
participation constraint in the extraction ontology is “1”, the corresponding
generated condition becomes mandatory instead of optional. For example, in
Figure 3, each Car must have one and only one Make. We therefore remove the
default OPTIONAL from the generated condition of Make. Figure 8 shows the
particular concept conditions for our example. Given a set of concept conditions,
we can readily generate, rather than manually write, the SPARQL query in
Figure 7.

5 See [17] for a full explanation.
6 The theoretical underpinnings of this approach are found in the “window functions”

explained in [11].

12 Yihong Ding et al.

Name Operator Value Optional

Color = red true
Make = Nissan false
Price < 5000 true
Year ≥ 1990 true
Mileage < 120000 true

Fig. 8. Filters Extracted from Natural-Language User Query.

5 Evaluation

We provide two types of evaluation—an objective evaluation of annotation accu-
racy and a subjective evaluation giving our view of what it would take to make
our prototype system viable and practical.

5.1 Accuracy Evaluation

We are interested, of course, in how accurately an annotation system binds real-
world data to the concepts defined in annotation ontologies. Since our annotation
results depend, and only depend, on our ability to correctly extract information,
we can apply the traditional information extraction (IE) evaluation metrics,
precision and recall, to evaluate performance accuracy. We point out, however,
that this is not the case for a traditional non-ontology-based IE process. For non-
ontology-based IE annotators, calculations of precision and recall are according
to either self-defined or machine-learned extraction categories. But for semantic
annotation, we need to compute precision and recall with respect to the concepts
defined in a domain ontology. Therefore, for systems that use a non-ontology-
based IE engine, there are two precision and recall metrics. One evaluates the
performance of the IE process itself, and the other evaluates how well the system
maps these extraction categories to the concepts defined in an ontology. The final
precision and recall values are the products of the two respective precision and
recall values. This is not required for annotation systems that use ontology-
based IE engines, such as ours. Because of the integration of ontologies into the
extraction process itself, the evaluation of precision and recall for the semantic
annotation system is the same as the evaluation of precision and recall for the
original ontology-based IE tool.

Although the study of semantic annotation is still a new research topic,
researchers have studied information extraction for more than a decade, and so
have we. Over the course of many years, we have developed our ontology-based
IE tool and have tested it on various domains, each with dozens of real-world web
pages. Among them, there are some simple, unified domains like automobile sales
and apartment rentals, and there are complicated or loosely unified domains like
genealogy and obituaries.

Based on approximately 20 domains with which we have experimented we
summarize our experience as follows. In simple, unified domains we typically

Lecture Notes in Computer Science 13

achieve close to 100% precision and recall in almost all fields, while in more
complicated or loosely unified domains, the precision and recall for some fields
falls off dramatically. For obituaries, for example, we were only able to achieve
about 74% precision for relatives of the deceased and only about 82% recall for
recognizing funeral addresses. In general, within nearly 20 domains that contain
in total over 200 different object sets, our extraction engine typically achieves at
least 80% accuracy for both precision and recall values on most fields. For over
half of the domains, the precision and recall values were above 90%.

We have recently been able to obtain some initial results for IE-based query
conversion [17]. Four subjects each provided five queries on five domains (car
ads, real estate, countries, movies, and diamonds) for a total of 100 queries. The
recall for identifying concept values to be returned was 89% and for correctly
generating conditions was 75% while the corresponding precision values were
respectively 89% and 88%. Overall, the system interpreted 47% of the queries
with perfect accuracy while interpreting an additional 49% with partial accuracy.

5.2 Practical Considerations

Beyond accuracy, there are several criteria that a practical semantic annotation
system should satisfy, such as generality, resiliency, and conformance to stan-
dards. In contrast with precision and recall measures, it is harder to establish
objective metrics for these practical considerations. We cannot, however, ignore
these important criteria, since the success of a semantic annotation system de-
pends on them.

Our first practical consideration is generality of the semantic annotation ap-
proach. In other words, what is the range of pages for which the annotation
system is effective? Because we use an ontology-based IE engine, our prototype
system targets data-rich web pages that each have a relatively narrow domain
[6]. There is no particular restriction that limits applicability, but as the domain
of a page broadens, our approach becomes less accurate because the instance
recognition semantics overlap more and become harder to segment. This issue
is not unique with our approach (see, for example, [12]). Fortunately, narrow-
domain, data-rich pages are quite common on the web (consider shopping, news,
and product portals, for example).

Within an application domain, our semantic annotation approach works best
on semi-structured web pages containing multiple records that are laid out in a
straightforward way. A multi-record collection lets our system cross-validate the
correctness of recognized data instances. The approach, however, also works on
single-record web pages and complex web pages with complicated table struc-
tures. Although our method is also applicable to fully unstructured natural-
language text, our experiments show that performance is usually lower for these
types of pages. Unlike other semantic annotators (such as [8] and [9]), there are no
typical natural-language-processing (NLP) techniques encoded in our ontology-
based data-recognition program. A question we expect to explore in the future
is whether a hybrid system that also uses NLP techniques will increase the gen-
erality of our approach.

14 Yihong Ding et al.

Another practical consideration is the resiliency of an annotation system.
Web pages change often, both in terms of current content and physical layout.
If such changes break the underlying automatic annotator, someone will have to
work to maintain the annotation system, and such an approach will ultimately
fail to scale. Our approach is resilient to web page layout changes, and thus we
minimize the need for wrapper maintenance in the information-extraction layer
of the system [10]. A trade-off for resiliency is that our current system sacri-
fices some execution speed (and possibly even some accuracy). To address this
problem, we have proposed—and are working to develop—a two-layer semantic
annotation architecture that will divide the work more efficiently into an upper-
layer set of structural annotators and base-layer conceptual annotators. Each
layer will be optimized for its particular task.

Another practical consideration is adherence to accepted standards. The rea-
son we annotate pages in the semantic web is so we can use them. Any system
that does not conform to semantic web standards will not be interoperable,
and thus will not be used. Thus, we convert our proprietary OSMX ontologies
to standard OWL ontologies [13] when we generate annotations. Most recent
semantic annotation approaches adopt a similar strategy. Researchers using im-
plicit annotation (where annotations are stored separately from source pages)
typically use either RDF [9] or DAML+OIL [8].

6 Concluding Remarks

We have presented an approach to semantic web-page annotation that is based
on the use of data-extraction ontologies. We have argued that ontology-based
information-extraction engines can provide a solid foundation for an automated
semantic-web annotation tool. Ontology-based IE engines provide two funda-
mental advantages: (1) they include declared instance recognition semantics,
and (2) they extract information directly into an annotation ontology. In our
experiments, both precision and recall are running at roughly 85% to 90% for
each of the individual lexical concepts in an extraction ontology. Our prototype
implementation supports both internal and external annotation. We can directly
query our external annotation with SPARQL. We can also generate SPARQL
queries from free-form text input, and we therefore provide a way for ordinary
users to query annotated semantic web pages. In initial experiments with the
query generator, 47% of the queries submitted by subjects returned fully correct
results, and all but 4% returned some useful results. We are currently working
to improve the quality of these generated queries.

The future of the semantic web is bright, but delivering on its vision will
not be easy. Effective deployment of the semantic web requires some way to
automatically accommodate the huge quantity of existing data-rich web pages on
the ordinary web, and some way to handle ordinary user requests. Our approach
addresses these challenges.

Lecture Notes in Computer Science 15

References

1. L. Arlotta, V. Crescenzi, G. Mecca, and P. Merialdo, “Automatic annotation of
data extracted from large web sites,” Proc. Sixth International Workshop on the
Web and Databases (WebDB 2003), pp. 7-12, San Diego, California, June 2003.

2. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific Amer-
ican, vol. 36, no. 25, pp. 34-43, May 2001.

3. Homepage, BYU Data Extraction Group, URL: http://www.deg.byu.edu.
4. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S.

McCurley, S. Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zien, “A Case for
Automated Large Scale Semantic Annotations,” Journal of Web Semantics, vol.
1, no. 1, pp. 115–132, December 2003.

5. D.W. Embley and B.D. Kurtz and S.N. Woodfield, Object-oriented Systems Analy-
sis: A Model-Driven Approach, Prentice Hall, Englewood Cliffs, New Jersey, 1992.

6. D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith, “Conceptual-model-based data extraction from multiple-record
web pages,” Data & Knowledge Engineering, vol. 31, no. 3, pp. 227-251, November
1999.

7. T.R. Gruber, “A translation approach to portable ontology specifications,” Knowl-
edge Acquisition, vol. 5, no. 2, pp. 199-220, 1993.

8. S. Handschuh, S. Staab, and F. Ciravegna, “S-CREAM Semi-automatic CREAtion
of Metadata,” Proc. European Conference on Knowledge Acquisition and Manage-
ment (EKAW-2002), pp. 358–372, Madrid, Spain, October, 2002.

9. A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic An-
notation, Indexing, and Retrieval,” Journal of Web Semantics, vol. 2, no. 1, pp.
49–79, December 2004.

10. K. Lerman, S. N. Minton, and C. A. Knoblock, “Wrapper maintenance: A machine
learning approach,” Journal of Artificial Intelligence Research, vol. 18, pp.149–181,
2003.

11. D. Maier, The Theory of Relational Databases, Computer Science Press, Inc.,
Rockville, Maryland, 1983.

12. S. Mukherjee, G. Yang, and I.V. Ramakrishnan, “Automatic Annotation of
Content-Rich HTML Documents: Structural and Semantic Analysis,” Proc. Sec-
ond International Semantic Web Conference (ISWC 2003), pp. 533–549, Sanibel
Island, Florida, October, 2003.

13. W3C (World Wide Web Consortium) OWL Web Ontology Language Reference,
http://www.w3.org/TR/owl-ref/.

14. A. Sheth and C. Ramakrishnan, “Semantic (Web) technology in action: Ontol-
ogy driven information systems for search, integration and analysis,” IEEE Data
Engineering Bulletin, vol. 26, no. 4, pp. 40-48, December 2003.

15. W3C (World Wide Web Consortium), SPARQL Query Language for RDF, Febru-
ary 2006. URL: http://www.w3.org/TR/rdf-sparql-query/.

16. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna,
“MnM: Ontology Driven Tool for Semantic Markup,” Proc. Workshop Semantic
Authoring, Annotation & Knowledge Markup (SAAKM 2002), pp. 43–47, Lyon,
France, July, 2002.

17. M. Vickers, “Ontology-Based Free-Form Query Processing for the Semantic Web,”
Masters Thesis, Brigham Young University, Provo, Utah, June 2006.

