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Abstract. Researchers struggle to manage vast amounts of data coming
from hundreds of sources in online repositories. To successfully conduct
research studies, researchers need to find, retrieve, filter, extract, inte-
grate, organize, and share information in a timely and high-precision
manner. We are building a system that implements active conceptual
modeling for learning as a way to give researchers the tools they need
to perform their tasks in a more efficient, user-friendly, and computer-
supported way. The system involves (1) creating “knowledge bundles”
(KBs), which are data representations that enable researchers to perform
their information extraction and organization work, and (2) providing a
“knowledge bundle builder” (KBB) to help researchers develop KBs in a
synergistic and incremental manner. The KBB can support both individ-
ual and team work, and can even help provide for larger-scale research
repositories to be shared widely among the research community.

1 Introduction

In many domains, the volume of data is enormous and increasing rapidly. Un-
fortunately, the information a researcher requires is often scattered in various
repositories and in the published literature. Researchers need a system that can
efficiently locate, extract, and organize available information so they can analyze
it and make informed decisions.

As a specific example, to do a recent study about associations between lung
cancer and TP53 polymorphism, bio-researchers needed to: (1) do a keyword-
based search on the SNP data repository for “TP53” within organism “homo
sapiens”; (2) open each returned page one by one and find those coding SNPs that
had a minor allele frequency greater than 1%; (3) for each qualifying SNP, record
the SNP ID and many properties of the SNP; (4) perform a keyword search
in PubMed and skim the hundreds of manuscripts found to determine which
manuscripts were related to the SNPs of interest and fit their search criteria;
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and (5) extract the information of interest (e.g., statistical information, patient
information, and treatment information) and organize it. Doing high-precision
information gathering for this cancer research study took a huge amount of time
and effort. 5 How can a system help do high-precision information gathering for
this kind of research study—indeed for any intelligence-gathering research in any
scientific, business, military, or government domain?

We address this challenge with the idea of a Knowledge Bundle (KB) and
a Knowledge-Bundle Builder (KBB). Active conceptual modeling for learning
(ACM-L) is at the core of our approach. As we explain below, a KB includes
an extraction ontology, which allows it to both identify and extract information
with respect to a custom-designed schema. (This constitutes the conceptual-
modeling part of ACM-L.) Construction of a KB itself can be a huge task—but
one that is mitigated by the KBB. Construction of the KB under the direction
of the KBB proceeds as a natural progression of the work a researcher does
to manually identify and gather information of interest. As a researcher begins
to work, the KBB immediately begins to synergistically assist the researcher
and quickly “learns” and is able to take over most of the tedious work. (This
constitutes the active-learning part of ACM-L.)

In describing our KBB approach to building KBs, we first give a bio-research
scenario to show how our KBB can help bio-researchers harvest and manage
data for a bio-research study (Section 2). We then explain how the KBB plays
its claimed role in the bio-research scenario (Section 3). Finally, we give the
status of our implementation and mention current and future work needed to
enhance KBs and the KBB (Section 4) and then draw conclusions (Section 5).

2 Bio-Research Scenario

Suppose a bio-researcher B wishes to study the association of TP53 polymor-
phism and lung-cancer. The objective is to find SNPs that may indicate a high
risk for lung cancer. To do this study, B wants information from NCBI dbSNP
about SNPs (chromosome location, SNP ID and build, gene location, codon,
and protein), about alleles (amino acids and nucleotides), and about the nomen-
clature for amino acid levels and nucleotide levels. B also needs data about
human subjects with lung cancer and needs to relate the SNP information to
human-subject information.

To gather information from dbSNP, B constructs the form in the left panel in
Figure 1. The form contains form fields for the data items B wishes to harvest. B
next finds a first SNP page in dbSNP from which to begin harvesting information.
B then fills in the form by cut-and-paste actions, copying data from the page in
the center panel in Figure 1 to the form in the left panel.

To harvest information from the numerous other dbSNP pages, B gives the
KBB a list of URLs, as the right panel in Figure 1 illustrates (although there
would likely be hundreds rather than just the six shown in Figure 1). The KBB

5 This took two domain experts more than one month just for one SNP for one disease.
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Fig. 1. Form Filled in with Information from an SNP Page.

automatically harvests the desired information from the dbSNP pages referenced
in the URL list. Since one of the challenges bio-researchers face is searching
through the pages to determine which ones contain the desired information, the
KBB provides a filtering mechanism. By adding constraints to form fields, bio-
researchers can cause the KBB harvester to gather information only from pages
that satisfy the constraints. B, for example, only wants coding SNP data with
a significant heterogeneity (i.e., minor allele frequency > 1%). Because of this
filtering mechanism, B can direct the KBB to search through a list of all pages
without having to first limit them to just those with relevant information.

For the research scenario, B may also wish to harvest information from other
sites such as GeneCard. B can use the KBB with the same form to harvest from
as many sites as desired. Interestingly, however, once the KBB harvests from
one site, it can use the knowledge it has already gathered to do some of the
initial cut-and-paste for B. In addition to just being a structured knowledge
repository, the KB being produced also becomes an extraction ontology capable
of recognizing items it has already seen. It can also recognize items it has not seen
but are like items it has seen. The numeric data values or DNA snippets need
not match precisely with those previously seen; they only need to be numeric
values in a proper range or valid DNA snippets.

Using KBs as extraction ontologies also lets bio-researchers search the lit-
erature. Suppose B wishes to find papers related to the information harvested
from the dbSNP pages. B can point the KBB to a repository of papers to search
to cull out those that are relevant to the study. Using the KB as an extraction
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Fig. 2. Paper Retrieved from PMID Using a Generated Extraction Ontology.

ontology provides a sophisticated query of the type used in information retrieval
resulting in high-precision document filtering. For example, the extraction on-
tology recognizes the highlighted words and phrases in the portion of the paper
in Figure 2. With the high density of not only keywords but also data values
and relationships all aligned with the ontological KB, the KBB designates this
paper as being relevant for B’s study.

For the human-subject information and to illustrate additional capabilities
of the KBB, we suppose that a database exists that contains the needed human-
subject information. The KBB can automatically reverse-engineer the database
to a KB, and present B with a form representing the schema of the database. B
can then modify the form, deleting fields not of interest and rearranging fields to
suit the needs of the study. Further, B can add constraints to the fields so that the
KBB only gathers data of interest from the database to place in its KB. Figure 3
shows an example of a form reverse-engineered from the INDIVO database and
altered to fit our research scenario.6

With all information harvested and organized into an ontology-based knowl-
edge bundle (the KB), B can now do some interesting queries and analysis with
the data. Figure 4, for example, shows a SPARQL query requesting the SNPs
associated with any one of four amino acids: Arg, Gly, Leu, or Trp. For our
example, we query based on information harvested from the six URLs listed
in Figure 1. The query finds three SNPs and for each, returns the dbSNP ID,
the gene location, and the protein residue it found. In our prototype, users may
click on any of the displayed values to display the page from which the value
was extracted and to highlight the value in the page. As Figure 4 shows, users
may alternatively click on one or more checkboxes to access and highlight all
the values in checked rows. The values rs55819519, TP53, and His Arg are all
highlighted in the page in the right panel of Figure 4.

3 KBs and the KBB

Having provided a scenario in which a bio-researcher can use KBs built syn-
ergistically through a KBB, we now explain exactly what a KB is and how

6 Since the INDIVO schema has more tables and attributes than B wants, B selects
only those tables and attributes relevant to the study before reverse engineering and
tailoring the form. In many similar instances, preselecting before reverse engineering
may be necessary to make the task of tailoring the resulting form reasonable.
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Fig. 3. Human Subject Information Reverse-Engineered from INDIVO (partial).

a KBB synergistically builds them. In doing so, we emphasize that although
our research-study scenario specifically targets bio-research, our definitions and
explanation here do not. Thus, KBs and KBB development of KBs can serve
researchers, investigators, and decision makers in all disciplines.

We define a knowledge bundle (KB) as a 6-tuple (O, R, C, I, A, F ).

– O is a set of object sets—sometimes called concepts or classes; they may also
play the role of properties or attributes. (Examples: Person, Amino Acid,
Country, Color.)

– R is a set of relationship sets among the object sets. (Examples: Person(x)
is citizen of Country(y), Sample(x) taken on Date(y).)

– C is a set of constraints that constrain the objects and relationships in O
and R. (Example: ∀x(Sample(x) ⇒ ∃1y(Sample(x) taken on Date(y)))

– I is a set of object and relationship instances embedded in O and R that sat-
isfy C. (Examples: Color(“green”), Sample(“SMP9671”) taken on Date(2009-
03-25).)

– A is a set of annotations for object instances in O; specifically, each object
o in O may link to one or more appearances of o in one or more documents.

– F is a set of data frames [Emb80]. Data frames include recognizers for object
and relationship instances as they appear in documents, instance converters
to and from internal representations, operations over internal representa-
tions, and recognizers for operation instantiations as they appear in docu-
ments and free-form user queries.
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Fig. 4. Screenshot of our Current Web of Knowledge Prototype System.

The triple (O, R, C) is an ontology.7 In our implementation, we use OWL to
represent ontologies and RDF for storing instances with respect to OWL ontolo-
gies. Because a KB is a populated ontology, it is also a database and thus can be
queried and mined for knowledge nuggets. Because a KB includes annotations,
usually for each object instance, it provides a simple type of provenance—a link
back to documents from which object instances are extracted. And because a
KB includes data frames for object and relationship sets, it is an extraction
ontology—an ontology that can recognize object and relationship instances in
structured, semi-structured, and unstructured documents.

A KB-Builder (KBB) is a tool used to build KBs—more specifically, it is a
tool to largely automate the building of KBs. The KBB has the capability to
fully and automatically build a KB by reverse-engineering structured and semi-
structured information sources into KBs. Perhaps more often than not, however,
users need custom-built KBs. Using the KBB, a user U can start from scratch and
build a KB from the ground up. U can specify a form and show how to fill in the
form. The KBB watches and learns what U wants. Often, after only being shown
how to harvest a handful of instances from machine-generated documents, the

7 Researchers disagree about the definition of an ontology, but we adopt the view that
an ontology is a formal theory and a specification of a shared conceptualization,
both of which can be captured in a model-theoretic view of data within a formal-
ized conceptual model. Since the elaboration of our triple (O, R, C) is a predicate-
calculus-based formalized conceptual model [EKW92], we call it an ontology.
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KBB can harvest and organize instances from hundreds of additional machine-
generated, sibling, source documents. Further, as it collects more knowledge into
its knowledge bundle, the KBB can create or identify domain-specific instance
recognizers and use them to extract knowledge from as-yet-unseen, non-sibling,
and even non-machine-generated source documents. Thus, the KBB can also
do high-precision filtering to find additional relevant documents for the study.
The KBB is synergistic, with as much of the burden shifted to the machine as
possible. It allows users to check and fix any mistakes it makes, and it learns to
do better as it is corrected. We now explain each major component of the KBB.

Form-based Ontology Creation. While we do not assume that bio-researchers
and other decision-making researchers are expert users of ontology languages, we
do assume that they can create ordinary forms for information gathering. The
KBB interface lets users create forms by adding various form elements. Clickable
icons in the data and label fields of the forms in Figures 1 and 3 let users
control form creation. Users can specify any and all concepts needed for a study,
can specify relationships and constraints among the concepts, and can nest,
customize, and organize their data any way they wish. From a form specification,
the KBB generates a formal ontological structure, (O, R, C). Each label in a
form becomes a concept of O. The form layout determines the relationship sets
in R among the concepts and determines the constraints in C over the concepts
and relationship sets.

Information Harvesting. How well the KBB harvests information from a par-
ticular site depends on how regular the pages are. Most pages are uniform enough
that the KBB can harvest information without user intervention.8 For each item
to be harvested from an HTML page, the KBB generates an xpath to the node in
the DOM tree in which the item is located. For data items within the node, the
KBB automatically infers the left and right context information it needs as well
as delimiter information for list patterns. When the pages are not as uniform as
might be expected, the KBB works interactively with a user U , allowing U to
cut and paste any data items missed or mistakenly entered in its automated har-
vesting mode. The KBB learns from these corrections and makes adjustments
as it continues to harvest from additional pages in the site. While harvesting
information, the KBB builds the I and A components of a KB. Since the KBB
harvests concept value instances and relationship instances with respect to the
defined ontology, it is able to immediately populate the ontology with these har-
vested values and thus build the I component of the KB. Constructing the A
component is a matter of keeping links to the pages and locations within the
pages from which the value instances are extracted. The KBB records the xpath
to the node in which the value appears and the offset within the node.9

8 In preliminary evaluations we have conducted, the system has often been able to
achieve 100% precision and recall [Tao08].

9 Because web pages can change, we cache pages when we harvest them. This ensures
that provenance links remain valid. It also means, however, that the KBB may need
to reharvest information from the page when its content changes.
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Extraction-Ontology Creation. Building the F component of a KB turns the
populated ontology into an extraction ontology. Ontologies augmented with in-
stance recognizers are called extraction ontologies. Instance recognizers, con-
tained in data frames, are regular expressions that recognize common textual
items such as dates, email addresses, and DNA sequences. They can also con-
tain lexicons that match with items such as car makes and models and company
names.10 To build an extraction ontology and thus the F component of a KB, the
KBB needs to be able to create instance recognizers. The KBB creates instance
recognizers in two ways as it harvests information: (1) by creating lexicons and
(2) by identifying and specializing data frames in a data-frame library. Lexicons
are lists of identifiable entities—e.g., lists of country names. As the KBB harvests
country names or any other named entity, it stores the unique names in a lexicon.
Thus, when the KBB encounters the name again, it can recognize and classify it.
For data-frame recognizers, we initialize a data-frame library with data frames
for common items we expect to encounter—e.g., all types of numbers, currencies,
postal codes, and telephone numbers, among many others. When recognizers in
these data frames recognize harvested items, they can classify the items with
respect to these data frames and associate the data frames with concepts in the
ontology. Some automatic specializations are possible, such as numbers with as-
yet-unrecognized units. For more complex pattern recognition, experts can add
domain-specific recognizers as needed.

Reverse-Engineering Structured Data to KBB Forms. Structured repositories
(e.g., relational databases, OWL/RDF triple stores, XML document repositories,
HTML tables) may contain much of the information needed for a research study.
A reverse-engineering process can turn these structured repositories into knowl-
edge bundles. Figure 3 shows an example of a generated KB form resulting from
a reverse-engineering process. Researchers can custom-tailor reverse-engineered
KBs by restructuring the generated forms to become the (O, R, C)-ontologies
they want. They can also limit the data extracted from the database to the
I-values they want, and they can employ the techniques mentioned in the previ-
ous paragraph to produce F -component lexicons and data frames for extraction
ontologies from data in the database.

KB Usage for Analysis and Decision Making. As the KBB harvests infor-
mation, it stores harvested information in its KB, which is a knowledge base.11

Users can query and mine the KB in standard ways. Query results, however, have
an additional feature beyond standard query results—each result data value v
is “clickable” yielding the page with v highlighted as Figure 4 shows.

10 Much has been said about extraction ontologies, including experimental results that
generally show that for many applications, precision and recall is high—over 90%
for many concepts and data values (e.g., [ECJ+99]).

11 Note that KB, the acronym for a knowledge bundle, is the same as the acronym
for a knowledge base. This is intentional—a knowledge bundle includes a knowledge
base, usually personalized for some specific research agenda.
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4 Implementation Status and Future Work

We have implemented an initial prototype of our KBB as part of our web-of-
knowledge project [ELL+08]. Currently, as Figure 1 shows, users can create
ontologies via our forms interface, fill in the form from a machine-generated web
page from a hidden-web site, and harvest information from the remaining sibling
pages of the hidden-web site [Tao08]. Also, as Figure 3 illustrates, we can reverse-
engineer machine-generated sibling tables from hidden-web sites into forms, and
we can automatically establish the beginnings of an extraction ontology embed-
ded within a KB [Tao08]. Using extraction ontologies coded by hand, we have
successfully been able to do high-precision filtering of semi-structured web doc-
uments [XE08], but we have not yet brought this up to the level we need for
high-precision document retrieval for free-running text as indicated in Figure 2.
Our current implementation also allows users to access and query the data in a
KB as the screenshot of our working prototype in Figure 4 shows.

Although some of our work is complete, we still have much to do to solidify
and enhance what we have already implemented and to extend it to be a viable
research-study tool. We plan to further our research as follows.

– Relationships. We have defined and implemented data frames for concepts
corresponding to nouns and adjectives. To accommodate relationships ex-
plicitly, rather than implicitly as we do now, we plan to define data frames
for relationships in connection with verbs and prepositions. We may also
need to adapt techniques from natural language processing and probabilistic
grammars.

– Boundary relaxation for free-running text. Our current system expects source
documents divided into distinct records. This has been useful in dealing
with tables and computer-generated output. However, in order to extract
selected information from free-running text, we need to relax the boundary
constraints, and eventually to be able to recognize a record of interest, and
its extent, without any boundary information.

– Reverse engineering of structured data. Our reverse-engineering efforts have
proven to be successful for XML [AKEL08] and machine-generated sibling
tables [Tao08], and we have done some reverse-engineering work for relational
databases and OWL ontologies. We should, however, take these approaches
even further, for instance, by inferring schemas from general semi-structured
data, and then reverse-engineering those schemas to KBs. Specifically, we
would like to be able to reverse-engineer machine-generated web pages with
a mixture of tables, lists, and and other semi-structured information such as
the dbSNP page in Figure 1.

– Specialized information gathering. Besides adding constraints to limit the po-
tentially overwhelming amount information to be harvested, the KBB should
support more sophisticated kinds of specialized information gathering. Can
we add features to KBs to do hypothesis testing? Extending KBs with hy-
pothesis declarations and rules and reasoning capabilities could give it the
ability to locate and extract evidence to substantiate or refute hypotheses.
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– Quality assurance. How do we guarantee that our KB is correct? As currently
implemented, our only guarantee is a provenance link to the original pages
from which information is taken. Issues of integration, record linkage, data
cleaning, and data fusion each play a role in quality assurance. Having had
some experience with these issues (e.g., [XE06]), we know that the many
problems are varied and tough. As KBs come to be relied upon as knowledge
sources, however, we must find ways to guarantee their quality.

5 Concluding Remarks

Several related fields of research are at the heart of our work: information ex-
traction [Sar08], information integration [ES07], ontology learning [Cim06], and
database reverse engineering [MH08].12 Our contribution is in drawing from each
of these fields, mostly from our own research work, those components that to-
gether establish the basis for KBs and KBBs. The KB/KBB approach discussed
here is a unique, synergistic blend of techniques resulting in a tool to efficiently
locate, extract, and organize information for research studies. (1) It supports
directed, custom harvesting of high-precision technical information. (2) Its semi-
automatic mode of operation largely shifts the burden for information harvesting
to the machine. (3) Its synergistic mode of operation allows research users to do
their work without intrusive overhead. The KB/KBB tool is a helpful assistant
that “learns as it goes” and “improves with experience.”

We note that KBs are not for everyone’s information-finding needs. Although
semi-automatic with much of the burden being shouldered by the KBB, the
overhead in establishing KBs from scratch may outweigh the advantages gained.
Individuals just wanting a quick answer to a question would not, indeed should
not, use the KBB to build a KB from scratch to answer their question. On the
other hand, it is not hard to envision a web of thousands of KBs already built,
interlinked on identical data items, and publicly available. In this case, the web of
KBs would directly support question answering—returning answers to questions
and links to pages to verify answers. Indeed, as explained elsewhere [AME07],
users can successfully pose free-form questions in an interface to a web of KBs.
We further note that when building a KB is appropriate, none of the overhead is
wasted. Users simply start harvesting and organizing the information they need
under the “watchful eye” of the KBB, which takes on ever more of the task.
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