
Automatic Hidden-Web Table Interpretation,

Conceptualization, and Semantic Annotation

Cui Tao∗and David W. Embley∗

Department of Computer Science
Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract

The longstanding problem of automatic table interpretation still eludes
us. Its solution would not only be an aid to table processing applications
such as large volume table conversion, but would also be an aid in solv-
ing related problems such as information extraction, semantic annotation,
and semi-structured data management. In this paper, we offer a solution
for the common special case in which so-called sibling pages are available.
The sibling pages we consider are pages on the hidden web, commonly gen-
erated from underlying databases. Our system compares them to identify
and connect nonvarying components (category labels) and varying compo-
nents (data values). We tested our solution using more than 2,000 tables
in source pages from three different domains — car advertisements, molec-
ular biology, and geopolitical information. Experimental results show that
the system can successfully identify sibling tables, generate structure pat-
terns, interpret tables using the generated patterns, and automatically
adjust the structure patterns as it processes a sequence of hidden-web
pages. For these activities, the system was able to achieve an overall
F-measure of 94.5%. Further, given that we can automatically interpret
tables, we next show that this leads immediately to a conceptualization
of the data in these interpreted tables and thus also to a way to seman-
tically annotate these interpreted tables with respect to the ontological
conceptualization. Labels in nested table structures yield ontological con-
cepts and interrelationships among these concepts, and associated data
values become annotated information. We further show that semantically
annotated data leads immediately to queriable data. Thus, the entire
process, which is fully automatic, transform facts embedded within tables
into facts accessible by standard query engines.

∗Supported in part by the National Science Foundation under Grant #0414644.

1

1 Introduction

The World Wide Web serves as a powerful resource for every community. Much

of this online information, indeed, the vast majority, is stored in databases on

the so-called hidden web.1 Hidden-web information is usually only accessible

to users through search forms and is typically presented to them in tables.

Automatically understanding these hidden-web pages and making their facts

externally accessible is a challenging task. In this paper, we introduce a domain

independent, web-site independent, unsupervised way to automatically interpret

tables from hidden-web pages. Once interpreted, we can automatically annotate

the information in these pages and make it available to standard query engines.

Tables present information in a simplified and compact way in rows and

columns. Data in one row/column usually belongs to the same category or

provides values for the same concept. The labels of a row/column describe this

category or concept.

Although a table with a simple row and column structure is common, tables

can be much more complex. Figure 1 shows an example. Tables may be nested

or conjoined as are the tables in Figure 1. Labels may span across several cells

to give a general description as does Identification and Location in Figure 1.

Sometimes tables are rearranged to fit the space available. Label-value pairs may

appear in multiple columns across a page or in multiple rows placed below one

another down a page. These complexities make automatic table interpretation

challenging.

To interpret a table is to properly associate table category labels with table

data values. Using Figure 1 as an example, we see that Identification, Location,

and Function are labels for the large rectangular table. Inside the right cell

of the first row is another table with headers IDs, NCBI KOGs, Species, etc.

Nested inside of this cell are two tables with labels CGC name, Sequence name,

Other name(s), WB Gene ID, Version, and Gene Model, Status, Nucleotides

1There are more than 500 billion hidden-web pages. The surface web, which is indexed by
common search engines only constitutes less than 1% of the World Wide Web. The hidden
web is several orders of magnitude larger than the surface web [23].

2

Figure 1: A Sample Table from WormBase [44].

(coding/transcript), Protein, and Amino Acids. Most of the rest of the text in

the large rectangular table comprises the data values. If we look more closely,

however, we may conclude that some category labels are interleaved in the text.

For example, via person appears to be a label under CGC name, as does Entrez

Genes and Ace View beside NCBI.

Once category labels and data values are found, we want to properly asso-

ciate them. For example, the associated label for the value F18H3.5 should be

the sequences of labels Identification, IDs, and Sequence name. Given the source

table in Figure 1, we match category labels with values as Figure 2 shows. We

3

(Identification.IDs.CGC name) �→
cdk-4-(Cyclin-Dependent Kinase family)
(via person: Michael Krause);

(Identification.IDs.Sequence name) �→ F18H3.5 ;
...
(Identification.Gene model(s).Amino Acids, 2) �→ 406 aa;
...

Figure 2: Interpretation for the Tables in Figure 1 (Partial).

associate one or more sequences of labels with each data value in a table. Bor-

rowing notation from Wang [41], the left hand side of the arrow is a sequence of

one or more table labels, and the right hand side of the arrow is a data value.

For the first two label-value pairs in Figure 2, there is only one label sequence.

The third, however, has two: Identification.Gene model(s).Amino Acids and

2. Each label sequence represents a dimension. In general, a table may have

one, two, three, or more dimensions. If a table has multiple records (usually

multiple rows) and if the records do not have labels, we add record numbers.

The table under Identification.Gene model(s), for example, has two records (two

rows), but no row labels. We therefore label records with sequence numbers—

the first record 1 and the second record 2. Thus, the label-value association

becomes (Identification.Gene model(s).Amino Acids, 2) �→ 406 aa where Iden-

tification.Gene model(s).Amino Acids is the label for the first dimension, and 2

is the row label for the second dimension.

Although automatic table interpretation can be complex, if we have another

page, such as the one in Figure 3, that has essentially the same structure, the

system might be able to obtain enough information about the structure to make

automatic interpretation possible. We call pages that are from the same web site

and have similar structures sibling pages.2 The two pages in Figures 1 and 3 are

sibling pages. They have the same basic structure, with the same top banners

that appear in all the pages from this web site, with the same table title (Gene

Summary for some particular gene), and a table that contains information about

2Hidden-web pages are usually generated dynamically from a pre-defined templates in
response to submitted queries, therefore they are usually sibling pages

4

Figure 3: A Second Sample Table from WormBase.

the gene. Corresponding tables in sibling pages are called sibling tables. If we

compare the two large tables in the main part of the sibling pages, we can see

that the first columns of each table are exactly the same. If we look at the cells

under the Identification label in the two tables, both contain another table with

two columns. In both cases, the first column contains identical labels IDs, NCBI

KOGs, ..., Putative ortholog(s). Further, the tables under Identification.IDs also

have identical header rows. The data rows, however, vary considerably. General

speaking, we can look for commonalities to find labels and look for variations

5

to find data values.

Given that we can find most of the label and data cells in this way, our

next task is to infer the general structure pattern of the web site and of the

individual tables embedded within pages of the web site.3 With respect to

identified labels, we look below or to the right for value associations; we may also

need to look above or to the left. In Figure 1, the values for Identification.Gene

Model(s).Gene Model are below, and the values for Identification.Species are to

the right.

Although we look for commonalities to find labels and look for variations to

find data values, we must be careful about being too strict. Sometimes there

are additional or missing label-value pairs. The two nested tables whose first

column header is Gene Model in Figures 1 and 3 do not share exactly the same

structure. The table in Figure 1 has five columns and three rows, while the table

in Figure 3 has six columns and two rows. Although they have these differences,

we can still identify the structure pattern by comparing them. The top rows

in the two tables are very similar. Observe that the table in Figure 3 only has

an additional Swissprot column inserted between the Protein and Amino Acids

columns. It is still not difficult, however, to tell that the top rows are rows for

labels.

In addition to discovering the structure pattern for a web site, we can also

dynamically adjust the pattern if the system encounters a table that varies from

the pattern. If there is an additional or missing label, the system can change

the pattern by either adding the new label and marking it optional or marking

the missing label optional. For example, if we had not seen the extra Swissprot

column in our initial pair of sibling pages, the system can add Swissprot as a

new label and mark it as optional. The basic label-value association pattern is

still the same.

We call our table-interpretation system TISP (Table Interpretation with Sib-

ling Pages) [36]. Given that we can interpret a table, we can immediately con-
3“Structure patterns” are the pattern expressions (path expressions and regular expres-

sions) we use to identify the location of tables within an HTML page and to associate table
labels with table values.

6

ceptualize it and add semantic annotation to it. We augmented TISP by adding

two new functions: conceptualization and annotation. We call the new system

TISP++. Given a structure pattern, TISP++ can automatically generate an

OWL ontology that conceptualizes the pattern. TISP++ uses an OWL class

to represent a table, an OWL object property to represent the nesting between

two tables, and an OWL data type property to represent a label. The ontology

also declares constraints such as optional and functional if applicable. After

the OWL ontology is generated, TISP++ can also automatically annotate all

the sibling pages with respect to this ontology. The annotated information is

available to any SPARQL query platform, so that users can query and locate

information of interest. By doing so, TISP++ makes hidden web information

visible to users from outside specialized hand-built GUIs.

We present the details of TISP and our contribution to table interpretation

by sibling page comparison, and the details of TISP++ and our contribution

to ontology generation and semantic annotation in the remainder of the paper

as follows. Section 2 provides the details about how TISP analyzes a source

page to recognize all HTML tables and how it decomposes nested tables, if any.

Section 3 introduces the matching algorithms we use. Section 4 describes how

we interpreted various matching results and find data tables. Section 5 explains

how TISP infers the general structure patterns of a web site and therefore how

it interprets the tables from the site. Section 5 also explains how to automat-

ically adjust the generated patterns when variations are encountered. Since in

Sections 2, 3, 4, and 5 we present our algorithm somewhat informally, using

more exposition and examples than formalism, we also provide in an Appendix

a complete and more formal description of the entire process. In Section 6, we

report the results of experiments we conducted involving sites for car advertise-

ments, molecular biology, and geopolitical information, which we found on the

hidden web. Section 7 explains how TISP++ generates an OWL ontology de-

pending on a structure pattern, and Section 8 explains how TISP++ annotates

information automatically. Section 9 discusses related work. In Section 10, we

draw conclusions and mention some possibilities for future work.

7

2 Initial Table Processing

The tags <table> and </table> delimit HTML tables in a web document. In

each HTML table, there may be tags that specify the structure of the table. The

tag <th> is designed to declare a header, <tr> is designed to declare a row,

and <td> is designed to declare a data entry. Unfortunately, we cannot count

on users to consistently apply these tags as they were originally intended. Most

table designers simply use the <td> tag for every table entry without regard

to whether it is a header or a data value. In addition, a web page designer

might (1) use table tags for layout (i.e. to line up columns and rows of symbols,

or values, or statements with no thought of table headers, values. and their

associations), or (2) not use HTML tags to represent a table (i.e. use verbatim

layout of symbols, values, and statements to form a table). For the first case,

TISP needs to determine that the object delimited by HTML table tags is not

a table. For the second case, the solution requires techniques beyond those

discussed in this paper. We consider this to be interesting future research, and

proceed with our discussion of HTML tables.

After obtaining a source document, TISP first parses the source code and

locates all HTML components enclosed by <table> and </table> tags (tagged

tables). When tagged tables are nested inside of one another, TISP finds them

and unnests them. In Figure 1, there are several levels of nesting in the large

rectangular table. The first level is a table with two columns. The first column

contains Identification, Location, and Function, and the second column contains

some complex structures. Figure 1 shows only the first three rows of this table

— one row for Identification, one for Location, and one for Function. (For the

purpose of being explicit in this paper, we assume that these three rows are the

only rows in this table.) The second column of the large rectangular table in

Figure 1 contains three second level nested tables, the first starting with IDs,

the second with Genetic Position, and the third with Mutant Phenotype. In the

right most cell of the first row is another table. There are also two third level

nested tables.

8

We treat each tagged table as an individual table and assign an identifying

number to it. If the table is nested, we replace the table in the upper level with

its identifying number. By so doing, we are able to remove nested tables from

upper level tables. As a result, TISP decomposes the page in Figure 1 into the

set of tables in Figure 4.

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Figure 4: Decomposition for the Tables in Figure 1.

9

3 Table Matching

To compare and match tables, we first transform each HTML table into a DOM

tree [13]. Tree1 in Figure 5 shows the DOM tree for Table 7 in Figure 4, and

Tree2 in Figure 5 shows the DOM tree for its corresponding table in Figure 3.

Tree1

Tree2

Figure 5: DOM Trees for Table 7 in Figure 4 and its Sibling Table in Figure 3.

Tai [35] gives a well acknowledged formal definition of the concept of a tree

mapping for labeled ordered rooted trees:

Let T be a labeled ordered rooted tree and let T [i] be the ith node in level
order of tree T. A mapping from tree T to tree T ′ is defined as a triple (M, T,
T ′), where M is a set of ordered pairs (i, j), where i is from T and j is from T ′,

10

satisfying the following conditions for all (i1, j1), (i2, j2) ∈ M, where i1 and i2
are two nodes from T and j1 and j2 are two nodes from T ′:

(1) i1 = i2 iff j1 = j2;
(2) T [i1] comes before T [i2] iff T ′[j1] comes before T ′[j2] in level order;

(3) T [i1] is an ancestor of T [i2] iff T ′[j1] is an ancestor of T ′[j2].

According to this definition, each node appears at most once in a mapping — the

order between sibling nodes and the hierarchical relation between nodes being

preserved. The best match between two trees is a mapping with the maximum

number of ordered pairs.

We use a simple tree matching algorithm introduced in [46] which was first

proposed to compare two computer programs in software engineering. It cal-

culates the similarity of two trees by finding the best match through dynamic

programming with complexity O(n1n2), where n1 is the size (number of nodes)

of T and n2 is the size of T ′. This algorithm counts the matches of all possible

combination pairs of nodes from the same level, one from each tree, and finds

the pairs with maximum matches. The simple tree match algorithm returns

the number of these maximum matched pairs. The highlighted part in tree1 in

Figure 5 shows the matched nodes for tree1 with respect to tree2 in Figure 5.

The highlighted nodes indicate a match.

4 Sibling Table Identification

In our research, we use the results of the simple tree matching algorithm for

three tasks: (1) we filter out those HTML tables that are only for layout; (2)

we identify the corresponding tables (sibling tables) from sibling pages; and (3)

we match nodes in a sibling table pair.

For each pair of trees, we use the simple tree matching algorithm to find the

maximum number of matched nodes among the two trees. We call this number

the match score. For each table in one source page, we obtain match scores.

Sibling tables should have a one to one correspondence. Based on the match

scores, we use the Gale-Shapley stable marriage algorithm [18] to pair sibling

tables one-to-one from two sibling pages.

11

For each pair of tables, we calculate the sibling table match percentage, 100

times the match score divided by the number of nodes of the smaller tree. The

match percentage between the two trees in Figure 5, for example, is 19 (match

score) divided by 27 (tree size of Tree2), which, expressed as a percentage, is

70.4%.

We classify table matches into three categories: (1) exact match or near

exact match; (2) false match; and (3) sibling-table match. We use two threshold

boundaries to classify table matches: a higher threshold between exact or near

exact match and sibling-table match, and a lower threshold between sibling-

table match and false match. Usually a large gap exists between the range

of exact or near exact match percentages and the range of sibling-table match

percentages, as well as between the range of sibling-table match percentages

and the range of false match percentages. After some observation, we set the

upper threshold at 90% and the lower threshold at 20%.

In our example, Tables 1, 2, and 3 have match percentages of 100% with

their sibling tables. The match percentages for Tables 4, 5, 6 and 7, and their

corresponding sibling tables, are 66.7%, 58.8%, 69.2%, and 70.4% respectively.

Our example has no false matches. A false match usually happens when a table

does not have a corresponding table in the sibling page. In this case, we save

the table. When more sibling pages are compared, we might find a matching

table.

5 Structure Patterns

The first component of a structure pattern for a table specifies the table’s loca-

tion in a web page. To specify the location, we use XPath [45], which describes

the path of the table from the root HTML tag of the document. For example,

The location for Table 7 in Figure 4 is:

/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/tr[1]/td[2]. An XPath simply

lists the nodes (HTML tag names) of a path in a DOM tree for the HTML

document where [n] designates the nth sibling node in the ordered subtree.

12

The second component of a structure pattern specifies the label-value pairs

for a table and thus provides the interpretation. We now give the details about

how we identify the proper label-value pattern template (Section 5.1) and use

it to generate the specific label-value-pair pattern for the table (Section 5.2).

We then explain how TISP uses the generated pattern to extract label-value

pairs from the table and how TISP produces an interpretation for the table

(Section 5.3). Combinations of basic patterns are also possible; we thus also

explain how to generate and use combination patterns (Section 5.4). Finally,

we explain how TISP dynamically adjusts a pattern to accommodate table vari-

ations it may encounter as it extracts label-value pairs from sibling tables in the

web site (Section 5.5).

5.1 Pattern Templates

We use regular expressions to describe table structure pattern templates. If

we traverse a DOM tree, which is ordered and labeled, in a preorder traver-

sal, we can layout the tree labels textually and linearly. We can then use

regular-expression-like notation to represent the table structure patterns (see

Figure 6). In both templates and generated patterns we use standard notation:

? (optional), + (one or more repetitions), and | (alternative). In templates, we

augment the notation as follows. A variable (e.g. n) or an expression (e.g. n-1)

can replace a repetition symbol to designate a specific number of repetitions. A

pair of braces { } indicates a leaf node. A capital letter L is a position holder

for a label and a capital letter V is a position holder for value. The part in a

box is an atomic pattern which we use for combinational structural patterns in

Section 5.4.

Figure 6 shows three basic pre-defined pattern templates. Pattern 1 is for

tables with n labels in the first row and with n values in each of the rest of the

rows. The association between labels and values is column-wise; the label at the

top of the column is the label for all the values in each column. Pattern 2 is for

tables with labels in the left-most column and values in the rest of the columns.

Each row has a label followed by n values. The label-value association is row-

13

Pattern 1:

< table > (< tbody >)? < tr > (< (td|th) > {L})n (< tr > (< (td|th) > {V })n)+

Pattern 2:

< table > (< tbody >)?(< tr >< (td|th) > {L}(< (td|th) > {V })n)+

Pattern 3:

< table > (< tbody >)? < tr > (< (td|th) > {L})n

(< tr >< (td|th) > {L}(< (td|th) > {V })(n−1))+

Figure 6: Some Basic Pre-defined Pattern Templates.

wise; each label labels all values in the row. Pattern 3 is for two-dimensional

tables with labels on both the top and the left. Each value in this kind of table

associates with both the row header label and the column header label. As

future work, we could define additional patterns and experiment with them or

allow users to define additional patterns, but the patterns and combinations of

patterns we have constitute a large majority of HTML tables.

5.2 Pattern Generation

To check whether a table matches any pre-defined pattern template, TISP tests

each template until it finds a match. When we search for a matching template,

we only consider leaf nodes and seek matches for labels and mismatches for

values. Variations, however, exist and we must allow for them. In tables,

labels or values are usually grouped. We are seeking for a structure pattern

instead of classifying individual cells. Sometimes we find a matched node, but

all other nodes in the group are mismatched nodes and agree with a certain

pattern, TISP should ignore the disagreement and assume the matched node is

a mismatched node of values too. Specifically, we calculate a template match

percentage between a pre-defined pattern template and a matched result, 100

times the number of leaf nodes that agree with a pattern template divided

by total number of leaf nodes in the tree. We calculate the template match

percentage between a table and each pre-defined structure template. A match

must satisfy two conditions: (1) it must be the highest match percentage, and

(2) the match percentage must be greater than a threshold, which we set at

80%.

14

/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/tr[1]/td[2]
< table >< tr >
< td > Gene Model
< td > Status
< td > Nucleotides(coding/transcript)
< td > Protein
< td > Amino Acids
(< tr >
< td > VGene Model
< td > VStatus
< td > VNucleotides(coding/transcript)
< td > VProtein
< td > VAmino Acids)

+

Figure 7: Structure Pattern for Table 7 in Figure 4.

Consider the mapped result in Figure 5 as an example. The highlighted

nodes are matched nodes in tree1. Comparing the template match percentage

for this mapped result for the three pattern templates in Figure 6, we obtain

93.3%, 53.3%, and 80% respectively. Pattern 1 has the highest match percent-

age, and it is greater than the threshold. Therefore we choose Pattern 1.

We now impose the chosen pattern, ignoring matches and mismatches. Note

that for tree1 in Figure 5, the first branch matches the part in Pattern 1 in the

first box, and the second and the third branch each match the part in the second

box, where n is five. For Pattern 1, when n=1, we have a one-dimensional table;

and when n>1, we have a two-dimensional table for which we must generate

record numbers.

After TISP matches a table with a pre-defined pattern template, it generates

a specific structure pattern for the table by substituting the actual labels for

each L and by substituting a placeholder VL for each value. The subscript L

for a value V designates the label for the label-value pair for each record in a

table. Figure 7 shows the specific structure pattern for Table 7 in Figure 4.

5.3 Pattern Usage

With a structure pattern for a specific table, we can interpret the table and

all its sibling tables. The XPath gives the location of the table, and the gen-

erated pattern gives the label-value pairs. The pattern must match exactly in

the sense that each label string encountered must be identical to the pattern’s

15

Figure 8: An Example for Pattern Combination from MutDB.

corresponding label string. Any failure is reported to TISP. (In Section 5.5, we

explain how TISP reacts to a failure notification.)

When the pattern matches exactly, TISP can generate an interpretation

for the table. For our example, the chosen pattern is Pattern 1 (a table with

column headers and one or more data rows). Thus, TISP needs to add another

dimension and add row numbers. Since the table is inside of other tables, TISP

recursively searches for the tables in the upper levels of nesting and collects all

needed labels.

5.4 Pattern Combinations

It is possible that TISP cannot match any pre-defined template. In this case,

it looks for pattern combinations. Using Figure 8 as an example, assume that

TISP matches all cells in the first and third column, but none in the second

and forth column. Comparing the template match percentage for this mapped

result for the three pattern templates in Figure 6, we obtain 50%, 75%, and

68.8% respectively. None of them is greater than the threshold, 80%. The first

two columns, however, match Pattern 2 perfectly, as do the last two columns.

Patterns can be combined row-wise or column-wise. In a row-wise combina-

tion, one pattern template can appear after another, but only the first pattern

template has the header: < table > (< tbody >)?. Therefore, a row-wise com-

bined structure pattern has a few rows matching one template and other rows

matching another template. In a column-wise combination, we combine dif-

ferent atomic patterns. If a pattern template has two atomic patterns, both

patterns must appear in the combined pattern, in the same order, but they can

be interleaved with other atomic patterns. If one atomic pattern appears after

another atomic pattern from a different pattern template, the < tr > tag at the

16

Example 1:
< table > (< tbody >)?

(< tr >< (td|th) >{L}(< (td|th) > {V })n)+

< tr > (< (td|th) > {L})m(< tr > (< (td|th) > {V })m)+

Example 2:
< table > (< tbody >)?

(< tr >< (td|th) >{L}(< (td|th) > {V })n< (td|th) >{L}(< (td|th) > {V })m)+

Figure 9: Two Examples of Pattern Combinations.

beginning is removed. Figure 9 shows two examples of pattern combinations.

Example 1 combines Pattern 2 and Pattern 1 row-wise. Example 2 combines

Pattern 2 with itself column-wise. This second pattern matches the table in

Figure 8, where n = m = 1, and the plus (+) is 4.

The initial search for combinations is similar to the search for single patterns.

TISP checks patterns until it finds mismatches, it then checks to see whether

the mismatched part matches with some other pattern. TISP first searches

row-wise for rows of labels and then uses these rows as delimiters to divide the

table into several groups. If it cannot find any row of labels, it repeats the same

process column-wise. TISP then tries to match each sub group with a pre-

defined template. This process repeats recursively until all sub-groups match

with a template or the process fails to finding any matching template.

For the example in Figure 8, TISP is unable to find any rows of labels, but

finds two columns of labels, the first and third column. It then divides the table

into two groups using these two columns and tries to match each group with

a pre-defined template. It matches each group with Pattern 2. Therefore, this

table matches column-wise with Pattern 2 used twice.

5.5 Dynamic Pattern Adjustment

Given a structure pattern for a table, we know where the table is in the source

document (its XPath), the location of the labels and values, and the association

between labels and values. When TISP encounters a new sibling page, it tries

to locate each sibling table following the XPath, and then tries to interpret

it by matching it with the sibling table structure pattern. If the encountered

table matches the structure pattern regular expression perfectly, we successfully

interpret this table. Otherwise, we might need to do some pattern adjustment.

17

< table >< tr >< td >Gene Model< td >Status < td >Nucleotides(coding/transcript)
< td >Protein (< td >Swissprot)? < td >Amino Acids
(< tr > < td > VGene Model< td > VStatus < td > VNucleotides(coding/transcript)
< td > VProtein(< td > VSwissprot)? < td > VAmino Acids)

+

Figure 10: Structure Pattern for the Table in Figure 3.

There are two ways to adjust a structure pattern: (1) adjust the XPath to locate

a table, and (2) adjust the generated structure pattern regular expression.

Although sibling pages usually have the same base structure, some variations

might exist. Some sibling pages might have additional or missing tables. Thus,

sometimes, following the XPath, we cannot locate the sibling table for which we

are looking. In this case, TISP searches for tables at the same level of nesting,

looking for one that matches the pattern. If TISP finds one, it obtains the

XPath and adds it as an alternative. Thus, for future sibling pages, TISP can

(in fact, always does) check all alternative XPaths before searching for another

alternative XPath. If TISP finds no matching table, it simply continues its

processing with the next table.

We adjust a table pattern when we encounter a variation of an existing table.

There might be additional or missing labels in the encountered variation. In

this case, we need to adjust the structure pattern regular expression, to add

the new optional label or to mark the missing label as optional. Consider the

table that starts with Gene Model in Figure 3 (the sibling table of Table 7 in

Figure 4) as an example. The table matches the pattern in Figure 7 until we

encounter the label Swissprot. If we skip Swissprot, the next label Amino Acids

matches the structure pattern. In this case, we treat Swissprot as an additional

label, and we add it as an optional label as Figure 10 shows.

6 Experimental Results

We tested TISP using source pages from commercial data, scientific data, and

geopolitical data. We picked pages from each field: car advertisements for com-

mercial data, molecular biology for scientific data, and interesting information

18

about US states and about countries for geopolitical data. Most of the source

pages were collected from popular and well-known web sites such as cars.com,

NCBI database, Wormbase, MTB (Mouse Tumor Biology Database), CIA’s

World Factbook, and U.S. Geological Survey (usgs.gov). We tested more than

2,000 tables found in 275 sibling pages in 35 web sites. Most pages from the

molecular biology domain and the geopolitical domain have relatively compli-

cated structures. Seven out of ten sites in the geopolitical domain and eight

out of ten sites in the molecular biology domain contained multiple data tables

per page. Two of the geopolitical sites and eight of the molecular biology sites

contained nested HTML tables.

For each web site, we randomly chose two sibling pages for initial pattern

generation. For the initial two sibling pages, we tested (1) whether TISP was

able to recognize HTML data tables and discard HTML tables used only for

layout, (2) whether it was able to pair all sibling tables correctly, and (3) whether

it was able to recognize the correct pattern template or pattern combination.

For the rest of sibling pages from the same web site, we tested (1) whether

TISP was able to interpret tables using the recognized structure patterns, (2)

whether it correctly detected the need for dynamic adjustment, and (3) whether

it recognized new structure patterns correctly.

We collected 75 sibling pages from 15 different web sites in the car-advertisements

domain for a total of 780 HTML tables.4 TISP correctly discarded all uses of

tables for layout and successfully paired all sibling tables. There were no nested

tables in this domain. Most of the web sites contained only one table pattern,

except for one site that had three different patterns. Two web sites contained

tables with structure combinations. Of the 17 pairs of sibling tables, TISP recog-

nized 16 correctly. The one pattern TISP failed to recognize correctly contained

too many value cells that included the same value (values such as unknown, gen-

eral car, auto, dealer, and empty spaces). TISP considered them as labels, and

thus could not match the table with any pre-defined pattern template or detect
4The sibling pages in this domain are usually very regular. Indeed, we found no table

variations in any of the sites we considered. We, therefore, only tested five pages per site.

19

(a)

Crime in New York by Year

(b)

Figure 11: Two Partially Misinterpreted Tables.

any pattern combination. TISP successfully interpreted all tables from the gen-

erated patterns. No adjustment were needed, neither for any path nor for any

label.

For the geopolitical information domain, we tested 100 sibling pages from

10 different web sites with 884 HTML tables. TISP correctly paired 100% of

all data tables and correctly discarded all layout tables. For initial pattern gen-

eration, TISP was able to recognize all 22 structure patterns successfully. As

TISP processed additional sibling pages, it found one additional sibling table

and correctly interpreted it. There were no path adjustments, but there were

22 label adjustments — all of them correct. For two sets of sibling tables, TISP

recognized the correct patterns, but failed to recognize some implicit informa-

tion that affects the meaning of the tables. Therefore it interpreted these tables

only partially correctly. Figure 11 shows these two cases. There are actually two

HTML tables in Figure 11a. The header Geography Mongolia is in one HTML

20

table, and the rest of information is in another HTML table. Because it sepa-

rated tables using HTML tags, TISP was not able to determine the relationship

between these two HTML tables. TISP correctly interpreted Figure 11b as Pat-

tern 3. It, however, did not recognize the relationship between Murders and per

100,000 and between Rapes and per 100,000.

We collected 100 sibling pages from 10 different web sites in the molecular

biology domain for a total of 862 HTML tables. Among these tables, TISP

falsely classified three pairs of layout tables as data tables. TISP, however, suc-

cessfully eliminated these false sibling pairs during pattern generation because

it was unable to find a matching pattern. No false patterns were generated.

TISP was able to recognize 28 of 29 structure patterns. TISP missed one pat-

tern because the table contained too many empty cells. If it had considered

empty cells as mismatches, TISP would have correctly recognized this pattern.

As TISP processed additional sibling pages, it found 5 additional sibling tables

and correctly interpreted all but one of them. The failure was caused by labels

that varied across sibling tables causing them, in some cases, to look like values.

There were 5 path adjustments and 12 label adjustments — all of them correct.

One table was interpreted only partially correctly because TISP considered the

irrelevant information To Top as a header.

For measuring the overall accuracy of TISP, we computed precision (P),

recall (R), and an F-measure (F = 2PR/(P+R)). In its table recognition step,

TISP correctly discarded 155 of 158 layout tables and discarded no data tables.

It therefore achieved an F-measure of 99.0% (98.1% recall and 100% precision).

TISP later discarded these three layout tables in its pattern generation step,

but it also rejected two data tables, being unable to find any pattern for them.

It thus achieved an F-measure of 99.4% (100% recall and 98.8% precision). For

table interpretation, TISP correctly recognized 69 of 74 structure patterns. It

therefore achieved a recall of 93.2%. Of the 72 structure patterns it detected, 69

were correct. It therefore achieved a precision of 95.8%. Overall the F-measure

for table interpretation was 94.5% for the sites we tested.

We discuss the time performance of TISP in two phases: (1) initial pattern

21

generation from a pair of sibling pages and (2) interpretation of the tables

in the rest of the sibling pages. The time for the pattern generation given a

pair of sibling pages consists of: (1) the time to read and parse the two pages

and locate all the HTML tables, (2) the time for sibling table comparisons,

and (3) the time to select from pre-defined structure templates and generate a

pattern. The complexity of parsing and locating HTML tables is O(n), where

n is the number of HTML tags. The simple tree matching algorithm has time

complexity O(m1m2), where m1 and m2 are the numbers of nodes of the two

sibling trees. To find the best match for each HTML table, we need to compare

each table with all the HTML tables in its sibling page. The time complexity

is O(km1m2), where k is the number of HTML tables in the sibling page. The

time complexity for finding the correct pattern for each matched sibling table is

O(pl), where p is the number of pattern templates and l is the number of leaf

nodes in the HTML table. If pattern combinations are involved, the complexity

of template discovery increases exponentially since for each subgroup we must

consider every template and find the best match. We conducted the experiment

on a Pentium 4 computer running at 3.2 GHz. The typical actual time needed

for the pattern generation for a pair of sibling pages was below or about one

second. The actual time reached a maximum of 15 seconds for a complicated

web site where pages had more than 20 tables.

The time for table interpretation for a single sibling web page when no

adjustment is necessary consists of: (1) the time for locating each table and (2)

the time for processing the table with a pattern. The complexity of locating a

table is O(p), where p is the number of path possibilities leading to the table.

Each path possibility is itself logarithmic with respect to the number of nodes in

the DOM tree for the pages. The complexity of matching a located table with

the corresponding pattern is O(el), where e is the number of pattern entries

(an entry could be either a pattern label or a pattern value) of the pattern and

l is the number of leaf nodes in the HTML table’s DOM tree. The time to

do adjustments ranges from the time to do a simple label adjustment, which

is constant, to the time required to re-evaluate all sibling tables, which is the

22

same as the time for initial pattern generation. Overall, the typical actual time

needed for interpreting tables in one page was below one second. The actual

time reached a maximum of 19 seconds for a complicated web page with several

tables and several adjustments.

7 Semantic Ontology Generation

After we obtain the structure pattern for a web site, we can conceptualize the

information present in the tables by generating an ontology according to the

structure pattern. TISP++ uses a structure pattern to generate OWL classes,

properties, and constraints according to the structure pattern. It then uses

Jena [24], a semantic web framework for Java, to output the OWL ontology.

Figure 12 shows part of the ontology for the sibling pages processed from the

WormBase gene repository [44]. As a default, TISP++ selects the site name,

“WormBase”, but a user can change the name if desired. This name provides

an anchor to which we attach ontological concepts. Line 10 in Figure 12 shows

the OWL class “WormBase”.

For each table label, TISP++ generates an OWL class. The label name

becomes the class name. To satisfy the OWL syntax, however, TISP++ elides

illegal characters such as spaces and parentheses. Thus “Gene model(s):” be-

comes “Genemodels” as Line 13 in Figure 12 shows. The generated ontology

also represents the relationships among the labels. TISP++ generates relation-

ships according to the structure patterns in Figure 6. For Pattern 1 and Pattern

2, each value has only one associated label, and each label has only one parent

label. Thus, these patterns require only binary relationships and relationship

generation is straightforward. For a binary relationship between two classes

A and B, TISP++ generates an OWL object property: A-B and its inverse

B-A. For the property A-B, TISP++ defines A as the domain and B as the

range. For example, Lines 17–23 in Figure 12 show the OWL object property

for WormBase-Identification. If a label is paired with an actual value such as

are the labels Gene Model and Amino Acids in Figures 1 and 3, TISP++ gener-

23

1. <rdf:RDF...
2. xmlns:owl=“http://www.w3.org/2002/07/owl#”
3. xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”
4. xmlns:base =“http://dithers.cs.byu.edu/owl/ontologies/wormbase#”... >
5. ...
6. <owl:Ontology rdf:about=“”>
7. <rdfs:comment>OWL Ontology for WormBase</rdfs:comment>
8. <rdfs:label>WormBase Ontology</rdfs:label>
9. </owl:Ontology>
10. <owl:Class rdf:ID=“WormBase”/>
11. <owl:Class rdf:ID=“Identification”/>
12. ...
13. <owl:Class rdf:ID=“Genemodels”/>
14. ...
15. <owl:Class rdf:ID=“AminoAcids”/>
16. ...
17. <owl:ObjectProperty rdf:ID=“WormBase-Identification”>
18. <owl:inverseOf>
19. <owl:ObjectProperty rdf:ID=“Identification-WormBase”>
20. </owl:inverseOf>
21. <rdfs:domain rdf:resource=“#WormBase”/>
22. <rdfs:range rdf:resource=“#Identification”/>
23. </owl:ObjectProperty>
24. ...
25. <owl:ObjectProperty rdf:ID=“Identification-IDs”>
26. ...
27. <owl:ObjectProperty rdf:ID=“Identification-Genemodels”>
28. ...
29. <owl:ObjectProperty rdf:ID=“Genemodels-AminoAcids”>
30. ...
31. <owl:DatatypeProperty rdf:ID=“AminoAcidsValue”>
32. <rdfs:range rdf:resource=“xsd;string”/>
33. <rdfs:domain rdf:resource=“#AminoAcids”/>
34. </owl:DatatypeProperty>
35. ...
36. </rdf:RDF>

Figure 12: Partial OWL Ontology for WormBase.

24

Figure 13: An Example Table with Pattern 3.

ates an OWL data type property for the OWL class associated with this label.

For example, data type property AminoAcidsValue describes the actual value

for AminoAcids. As Lines 31–34 in Figure 12 show, its domain is AminoAcids

and its range is string, by default.

For Pattern 3, each value has two associated labels. Figure 13 shows an

example: the value 41.24 has the labels Normalized Expression (%) and uterus.

Thus, the pattern requires a ternary relationship. Since OWL ontologies only

allow binary relationships, we transform Pattern 3 as follows. In Figure 6,

we consider the label L in the pattern “(< tr >< (td|th) > {L}(< (td|th) >

{V }(n−1))+” as a value V. The pattern then becomes “(< tr >< (td|th) >{V}(<
(td|th) > {V }(n−1))+” and can be further simplified to “(< tr > (< (td|th) >

{V })n)+”, which is the same as Pattern 1. In Figure 13, for example, the

contents in the first row and the first column are all labels. When TISP++

generates the ontology for this table, it considers the contents in the first row as

labels, but considers the contents in the first column as values (except for the

first one “Tissue” since it is in the first row). Therefore TISP++ can transform

ternary relationships to binary relationships and then translate them as binary

relationships to OWL.

8 Semantic Annotation and Querying

After TISP++ generates an ontology according to the structure pattern of a

web repository, it automatically annotates the pages from this repository with

respect to the generated ontology. Figure 14 shows a portion of the RDF file

generated from the page in Figure 1. In an RDF annotation file, we first declare

25

1. <rdf:RDF
2. xmlns:wormbase=“http://www.deg.byu.edu/owl/ontologies/wormbase#”
3. xmlns:ann=“http://www.deg.byu.edu/owl/ontologies/annotation#”
4. xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
5. ...
6. <wormbase:WormBase rdf:ID=“WormBase 1”>
7. <wormbase:WormBase-Identification rdf:resource=”#Identification 1”/>
8. <wormbase:WormBase-Location rdf:resource=”#Location 1”/>
9. ...
10. </wormbase:WormBase>
11. <wormbase:Identification rdf:ID=“Identification 1”>
12. <wormbase:Identification-IDs rdf:resource=“#IDs 1”/>
13. ...
14. <wormbase:Identification-Genemodels rdf:resource=“#Genemodels 1”/>
15. <wormbase:Identification-Genemodels rdf:resource=“#Genemodels 2”/>
16. ...
17. </wormbase:Identification>
18. <wormbase:IDs rdf:ID=“IDs 1”>
19. <wormbase:IDs-CGCname rdf:resource=“#CGCname 1”/>
20. <wormbase:IDs-Sequencename rdf:resource=“#Sequencename 1”/>
21. ...
22. </wormbase:IDs>
23. ...
24. <wormbase:Genemodels rdf:ID=“Genemodels 1”>
25. ...
26. <wormbase:Genemodels-Protein rdf:resource=“#Protein 1”/>
27. <wormbase:Genemodels-AminoAcids rdf:resource=“#AminoAcids 1”/>
28. </wormbase:Genemodels>
29. <wormbase:Genemodels rdf:ID=“Genemodels 2”>
30. ...
31. <wormbase:Genemodels-Protein rdf:resource=“#Protein 2”/>
32. <wormbase:Genemodels-AminoAcids rdf:resource=“#AminoAcids 2”/>
33. </wormbase:Genemodels>
34. ...
35. <wormbase:CGCname rdf:ID=“CGCname 1”>
36. <ann:OffsetOnHTMLPage/>5951< /ann:OffsetOnHTMLPage/>
37. <ann:HTMLText/>cdk-4 ... < /ann:HTMLText/>
38. <wormbase:CGCnameValue>cdk-4 ... < /wormbase:ProteinValue>
39. <wormbase:CGCname-IDs rdf:resource=”#IDs 1”/>
40. </wormbase:CGCname>
41. ...
42. <wormbase:Protein rdf:ID=“Protein 1”>
43. <ann:OffsetOnHTMLPage/>10015< /ann:OffsetOnHTMLPage/>
44. <ann:HTMLText/>WP:CE18608< /ann:HTMLText/>
45. <wormbase:ProteinValue>WP:CE18608< /wormbase:ProteinValue>
46. <wormbase:Protein-Genemodels rdf:resource=”#Genemodels 1”/>
47. </wormbase:Protein>
48. <wormbase:AminoAcids rdf:ID=“AminoAcids 1”>
49. <ann:OffsetOnHTMLPage/>10152< /ann:OffsetOnHTMLPage/>
50. <ann:HTMLText/>342 aa< /ann:HTMLText/>
51. <wormbase:AminoAcidsValue>342 aa</wormbase:ProteinValue>
52. <wormbase:AminoAcids-Genemodels rdf:resource=”#Genemodels 1”/>
53. </wormbase:AminoAcids>
54. ...
55. <wormbase:Protein rdf:ID=“Protein 2”>
56. <ann:OffsetOnHTMLPage/>10689< /ann:OffsetOnHTMLPage/>
57. <ann:HTMLText/>WP:CE28918</ann:HTMLText/>
58. <wormbase:ProteinValue>WP:CE28918</wormbase:ProteinValue>
59. <wormbase:Protein-Genemodels rdf:resource=”#Genemodels 2”/>
60. </wormbase:Protein>
61. <wormbase:AminoAcids rdf:ID=“AminoAcids 2”>
62. <ann:OffsetOnHTMLPage/>10826< /ann:OffsetOnHTMLPage/>
63. <ann:HTMLText/>406 aa< /ann:HTMLText/>
64. <wormbase:AminoAcidsValue>406 aa</wormbase:ProteinValue>
65. <wormbase:AminoAcids-Genemodels rdf:resource=”#Genemodels 2”/>
66. </wormbase:AminoAcids>
67. ...
68. </rdf:RDF>

Figure 14: Annotation for Figure 1 for the Ontology in Figure 12.
26

the name spaces of referenced ontologies. Line 2 in Figure 14 refers to the worm-

base ontology in Figure 12, and Lines 3 and 4 declare additional name spaces.

The annotation name space gives the meaning of the annotation declarations

in the RDF file, and 22-rdf-syntax-ns name space gives the meaning of the rdf

declarations.

In Line 6, the URI instance WormBase 1, which refers to the whole ta-

ble, is a URI instance for the WormBase class in the wormbase ontology in

Figure 12. In Line 11, the URI instance Identification 1, which refers to the

value of the label Identification in Table 4 in Figure 4, is a URI instance of

the class Identification in the wormbase ontology. Since Table 7 in Figure 4

has two data rows, TISP++ declares URI instances: Genemodels 1 and Gen-

emodels 2, one for each row (Lines 14 and 15). TISP++ also declares the

relationship between two URI instances. For example, TISP++ declares the

relationship WormBase 1-Identification 1 in Lines 6 and 7. TISP++ also de-

clares the relationships between instances and annotated values. Annotated

values appear as themselves, tagged with both HTMLText and with their ap-

propriate <label>Value (For string types the HTML text and the value are often

the same. But for data types like xsd:boolean, the HTML text could be “True”

or “False”, but its value in the value space should be “T” or “F”). For example,

Line 44 gives the HTMLText for the protein value “WP:CE18608”, and Line 45

tells its ProteinValue, also “WP:CE18608”. To identify the annotated string in

the original page, TISP++ keeps track of the position where the values are lo-

cated by recording the offset of the string from the beginning of the cached page,

a local copy of the original page containing the values. Line 43 in Figure 14,

for example, shows that we can locate the value “WP:CE18608” at character

10015 in the cached HTML document.

With the annotated data properly stored in an RDF file (e.g. Figure 14), we

are now ready to query the annotated data using SPARQL [33]. A simple query

illustrates how this works. If we want to find the protein and the animo-acids

information for gene “cdk-4”, we can write the SPARQL query in Figure 15.

Figure 15 shows the query and the result of this query.

27

Figure 15: A Sample SPARQL Query and the Results for the Annotation in
Figure 14

The FILTER statement in the SPARQL query allows the variable ?Gene-

Name to bind only to values containing string “cdk-4”. The CGCnameValue

in Line 38 of Figure 14 satisfies this constraint. Through the property worm-

base:CGCnameValue (Line 35), the SPARQL query associates ?GeneName val-

ues with ?CGCname instance values. Thus, in our example, the instance

value CGCname 1 (Line 35) binds to the variable ?CGCname. Then, through

the property wormbase:IDs-CGCname, the query finds the corresponding in-

stances of IDs (in our example, IDs 1 in Line 18). Next, through the worm-

base:Identification-IDs property, the query finds the instances of Identification

that associate with IDs 1 (in our example, Identification 1 in Line 11). There-

after, through the wormbase:Identification-Genemodels property, the query finds

the instances Genemodels 1 and Genemodels 2 (Lines 14 and 15). The query

then locates the result instances, finding Protein 1, Protein 2, AminoAcids 1,

and AminoAcids 2 through the properties wormbase:Genemodels-Protein and

wormbase:Genemodels-AminoAcids (Lines 26, 31, 27, and 32). Finally, the

query returns the result values for these instances through the properties worm-

base:ProteinValue and wormbase:AminoAcidsValue (Lines 45, 58, 51, and 64).

A user can select one or more returned records by checking the corresponding

check boxes. TISP++ then shows the user the original source page with the

28

values of interest highlighted. Figure 15 shows that we have selected the check

box of the second record in the results. Thus, in the displayed page the values

WP:CE18608 and 342 aa are highlighted. In addition to allowing a user to

select a record of values, TISP++ also makes all values individually clickable.

When a user clicks on an individual value, TISP++ displays the source page

with the corresponding value highlighted.

As a result of TIPS++ processing, which includes table understanding, on-

tology generation, and semantic annotation, we make hidden web data present

in HTML tables completely accessible by a standard query system. In addition,

TISP++ also semantically annotates the data with respect to the generated

OWL ontology, so that the data becomes machine-understandable and auto-

matically manipulatable by by computer agents.

9 Related Work

9.1 Sibling Page Comparison

Other researchers have also tried to take advantage of sibling pages. RoadRun-

ner [8] compares two HTML pages from one web site and analyzes the similarities

and dissimilarities between them in order to generate extraction wrappers. It

discovers data fields by string mismatches and discovers iterators and option-

als by tag mismatches. EXALG [2] uses equivalence classes (sets of items that

occur with the same frequency in sibling pages) and differentiating roles to gen-

erate extraction templates for the sibling pages. DEPTA [48] compares different

records in a page instead of sibling pages and tries to find the extraction tem-

plate for the record. This approach first tries to find individual data records by

using a few heuristics. It then uses a tree edit distance algorithm to compare

different data records and tries to find the extraction region. The approach in

[26] compares sibling pages to filter out general headers and footers and other

constant non-data areas of a page. It then makes various comparisons among

main pages and linked pages to find record segmentations.

TISP fundamentally differs from these approaches. The first three [2, 8,

29

48] focus on finding data fields, and the technique in [26] focuses on record

segmentation. They do not discover labels or try to associate data and labels.

TISP focuses on table interpretation. It looks for a table pattern in addition to

data fields. Furthermore, TISP also tries to find the general structure pattern for

the entire web site. It dynamically adjusts the structure pattern as it encounters

new, yet-unseen structures.

9.2 Table Interpretation

Automated table processing is typically done in two steps: (1) table recognition

— find the data table, and (2) table interpretation — find and associate labels

and values. Recent surveys [15, 47] describe the vast amount of research that

has been done in table processing and illustrate the challenges of automated

table processing. Most of this work is about tables in imaged documents, but

some is about HTML tables. Since we focus in this paper only on HTML tables,

we limit the related work we discuss to only HTML table processing.

Several researchers have tried to differentiate data tables from tables for

layout [4, 7, 19, 42]. They have tried to use machine learning methods [7, 42],

visual level features [19, 20], and linguistic features [4]. TISP provides a unique

way to do this task when sibling pages are available. By considering the match

percentage between tables, we were able to filter out all the layout tables in the

car and geopolitical domain and only failed to filter out three pairs of tables out

of more than 800 HTML tables from the molecular biology domain (These three

false positives were also filtered out during the process of pattern generation).

The approaches [4, 7, 19, 42] were able to achieve F-measures of 86.5% [4],

95.5% [7], 90.0% [19], and 87.6% [42]. By way of a comparison, TISP was

able to achieve an F-measure of 99.4%. TISP techniques, of course, only work

when sibling pages and tables are available. Further, the experimentation was

for different data sets, so these comparative results should not be construed

as being definitive. The results only give an indication of about where the

techniques might stand with respect to each other.

Several papers have discussed the HTML table interpretation problem. Some

30

table interpretation systems work based on simple assumptions and heuristics

(e.g. [4, 16, 17, 22, 27]). These simple assumptions (labels are either the first few

rows or the first few columns) are easily broken in complex tables such as nested

tables (e.g. Figure 1) or tables with combination structures (e.g. Figure 8). The

approach in [31] presents a table interpretation system for automatic generation

of F-logic frames for tables. It considers many linguistic features in a table such

as alphabetic features, numeric features, number ranges, and data formats. It

calculates differences among different regions of a table to detect the orientation

of a table and to locate label cells and value cells. The average F-measure of

this approach is around 50%. The technique in [38] learns lexical variants from

training examples and uses a vector space model to deal with non-exact matches

among labels. It also uses a few heuristics to find the association among labels

and values. It achieves an F-measure of 91.4%. The approach in [20] uses

visual boxes instead of HTML tags to interpret HTML tables. It achieves an F-

measure of 52.1% (the precision value was 57% and the recall value was 48%).

By way of comparison, TISP is able to achieve an F-measure of 94.5%. Of

course, TISP only works when sibling tables are available, On the other hand,

when applicable, TISP has the advantage over machine learning because it is

unsupervised and document and web-site independent. TISP has no need for

training data and works for all domains and web sites where sibling pages with

sibling tables are available. Here again, these comparative results should not

be construed as being definitive since the various research groups used different

data sets for experimentation. Furthermore, the measurements here are for

solving variations of the same problem, not identical problems.

9.3 Ontology Generation

In recent years, many researchers have tried to facilitate ontology generation.

Manual editing tools such as Protégé [29] and OntoWeb [34] have been developed

to help users create and edit ontologies. It is not trivial, however, to learn

ontology modeling languages and complex tools in order to manually create

ontological description for information repositories.

31

Because of the difficulties involved in manual creation, researchers have de-

veloped semi-automatic ontology generation tools. Most efforts so far have been

devoted to automatic generation of ontologies from text files. Tools such as On-

toLT [3], Text2Onto [6], OntoLearn [28], and KASO [43] use machine learning

methods to generate an ontology from arbitrary text files. These tools usually

require a large training corpus and use various natural language processing al-

gorithms to derive features to learn ontologies. The results, however, are not

very satisfactory [30].

Tools such as SIH [37], TANGO [39], and the one developed by Pivk [30]

use structured information (HTML tables) as a source for learning ontologies.

Structured information makes it easier to interpret new items and relations.

The approach in [30] tries to discover semantic labels for table regions and

generate an ontology based on a table’s structure. But how this process is done

and what format the generated ontologies have is not discussed in the paper.

SIH [37] and TANGO [39] are two ongoing projects we are currently working

on. SIH tries to generate user-specified ontologies depending on user-generated

forms. TANGO generates ontologies by analyzing related tables in a specific

domain, generating an ontology according to each table, and then merging these

ontologies to a general ontology for the domain. TISP++ can generate OWL

ontologies fully automatically. It, however, only generates an ontology for a

single set of sibling pages. It does not merge ontologies generated from different

web sites, nor does it provide for user-specified ontologies. In addition, TISP++

generates ontologies in only one simple way, while TANGO aims at generating

more sophisticated ontologies.

9.4 Semantic Annotation

Existing semantic annotation systems can be classified into pattern-based sys-

tems and machine learning-based systems. Pattern-based systems such PANKOW [5]

and Armadillo [12] find entities by discovering patterns. The pattern are either

discovered manually or induced semi-automatically with a set of initial manu-

ally tagged seed patterns. Systems such as SemTag [9], AeroDAML [25], and

32

KIM [32] use a set of pre-defined rules to locate the information of interest.

OWL-AA [10, 11] uses a domain-specified extraction ontology to locate seman-

tic entities. Systems such as S-CREAM [21] and MnM [40] use machine learning

algorithms and natural language processing methods to locate semantic entities.

All of these approaches require some pre-defined information. Pattern-based ap-

proaches need a set of initial seed patterns. Rule-based approaches need a set of

pre-defined rules. Extraction-ontology-based approaches need domain ontolo-

gies. And machine learning-based approaches need a training corpus. TISP++,

however, does not require a training corpus or pre-defined domain knowledge

and relies only on the definition of a few typical table-pattern templates, which

are all domain-independent.

10 Conclusion and Future Work

In this paper we introduced TISP, an approach to automatically interpret ta-

bles in hidden-web pages — pages which are almost always sibling pages. By

comparing data tables in sibling pages, TISP is able to find the location of table

labels and data entries and pair them to infer the general pattern for all sib-

ling tables from the same site. Our experiments using source pages from three

different domains — car advertisements, molecular biology, and geopolitical in-

formation — indicate that TISP can succeed in properly interpreting tables in

sibling pages. TISP achieved an F-measure for sibling table interpretation of

94.5%.

We also extended TISP to TISP++. TISP++ uses TISP results to semanti-

cally annotate web pages, turning their embedded facts into externally accessible

facts. Given an interpreted table, TISP++ automatically generates an OWL

ontology depending on the table’s structure and then semantically annotates

the data in the table with respect to this generated ontology. By doing so, all

the data present in the sibling tables becomes accessible through a standard

query interface.

Several directions remain to be pursued. For TISP and table interpretation,

33

we would like to do the following. (1) We assumed that information in one

table cell is either a table label or a table value. There could be structured

information within a cell, however, such as the label via person and the value

Michael Krause in Figure 1. As a future work on table interpretation, we would

like to analyze cell content to find structured information within cells. (2) Some

web pages use lists as tables; we would like to consider them too. (3) We would

also like to interpret non-HTML tables such as tables in plain text. (4) We

would also like to be able to deal with the case in Figure 11a, where we need

to join adjacent HTML tables to form a single table, and we would like to

improve TISP so that it can interpret tables with factored labels, where part of

a label has been removed and placed in a higher level heading, such as those in

Figure 11b.

For TISP++ and semantic ontology generation and semantic annotation, we

would like to do the following. (1) Average web users need a more user-friendly

query system, so that they can find data of interest without knowing SPARQL.

We plan to provide our users with a natural-language-based query interface (e.g.

like [1]) and a form-based query interface (e.g. like [14]). (2) We plan to allow

users to harvest information from multiple sites according to a personalized

view. Our users would have the option to choose which data in a table they

want to include and how this data should be organized. (3) We would like to

generate more sophisticated ontologies that cover more complicated situations

such as n-ary relationships, generalization/specialization, and aggregation.

11 Acknowledgement

This work is supported in part by the National Science Foundation under Grant

#0414644. We would like to thank Stephen W. Liddle, Yihong Ding, and An-

drew Zitzelberger for their help and efforts in implementing the query system

for TISP++.

34

References

[1] M.J. Al-Muhammed. Ontology Aware Software Service Agents: Meeting

Ordinary User Needs on the Semantic Web. PhD thesis, Brigham Young

University, 2007.

[2] A. Arasu and H. Garcia-Molina. Extracting structured data from web

pages. In Proceedings of the 2003 ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD’03), pages 337–348, San Diego,

California, 2003.

[3] P. Buitelaar, D. Olejnik, and M. Sintek. Ontolt: A Protégé plug-in for

ontology extraction from text based on linguistic analysis. In Proceedings

of the First European Semantic Web Symposium (ESWS’04), pages 31–44,

Heraklion, Greece, May 2004.

[4] H. Chen, S. Tsai, and J. Tsai. Mining tables from large scale HTML

texts. In Proceedings of the 18th International Conference on Computa-

tional Linguistics (COLING’00), pages 166–172, Saarbrücken, Germany,

July–August 2000.

[5] P. Cimiano, S. Handschuh, and S. Staab. Towards the self-annotating web.

In Proceedings of the 13th International Conference on World Wide Web

(WWW’04), pages 462–471, New York, New York, May 2004.

[6] P. Cimiano and J. Völker. Text2Onto—a framework for ontology learning

and data-driven change discovery. In Proceedings of the 10th International

Conference on Applications of Natural Language to Information Systems

(NLDB’05), pages 227–238, Alicante, Spain, June 2005.

[7] W.W. Cohen, M. Hurst, and L.S. Jensen. A flexible learning system for

wrapping tables and lists in HTML documents. In Proceedings of the 11th

International World Wide Web Conference (WWW’02), pages 232–241,

Honolulu, Hawaii, May 2002.

35

[8] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic

data extraction from large web sites. In Proceedings of the 27th Interna-

tional Conference on Very Large Data Bases (VLDB’01), pages 109–118,

Rome, Italy, September 2001.

[9] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo,

K.S. Mccurley, S. Rajagopalan, and A. Tomkins. A case for automated

large-scale semantic annotation. Journal of Web Semantics: Science, Ser-

vices and Agents on the World Wide Web, 1(1):115–132, December 2003.

[10] Y. Ding, D.W. Embley, and S.W. Liddle. Automatic creation and simplified

querying of semantic web content: An approach based on information-

extraction ontologies. In Proceedings of the First Asian Semantic Web

Conference (ASWC’06), pages 400–414, Beijing, China, September 2006.

[11] Y. Ding, D.W. Embley, and S.W. Liddle. Enriching OWL with instance

recognition semantics for automated semantic annotation. In Proceedings

of the First International Workship on Ontologies and Information Systems

for the Semantic Web (ONISW’2007), Auckland, New Zealand, November

2007.

[12] A. Dingli, F. Ciravegna, and Y. Wilks. Automatic semantic annotation

using unsupervised information extraction and integration. In Proceedings

of the Third International Conference on Knowledge Capture (K-CAP’03),

Workshop on Knowledge Markup and Semantic Annotation, Sanibel Island,

Florida, October 2003.

[13] The W3C architecture domain. http://www.w3.org/dom/, 2005.

[14] D.W. Embley. NFQL: the natural forms query language. ACM Transac-

tions on Database Systems, 14(2):168–211, 1989.

[15] D.W. Embley, M. Hurst, D. Lopresti, and G. Nagy. Table processing

paradigms: A research survey. International Journal of Document Analysis

and Recognition, 8(2-3):66–86, June 2006.

36

[16] D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting onto-

logically specified data from HTML tables with unknown structure. In

Proceedings of the 21st International Conference on Conceptual Modeling

(ER’02), pages 322–327, Tampere, Finland, October 2002.

[17] D.W. Embley, C. Tao, and S.W. Liddle. Automating the extraction of data

from HTML tables with unknown structure. Data & Knowledge Engineer-

ing, 54(1):3–28, July 2005.

[18] D. Gale and L.S. Shapley. College admissions and the stability of marriage.

American Mathematics Monthly, 69(1):9–14, 1962.

[19] W. Gatterbauer and P. Bohunsky. Table extraction using spatial reason-

ing on the CSS2 visual box model. In Proceedings of the 21st National

Conference on Artificial Intelligence (AAAI’06), pages 1313–1318, Boston,

Massachusetts, July 2006.

[20] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak.

Towards domain-independent information extraction from web tables.

In Proceedings of the 16th International World Wide Web Conference

(WWW’07), pages 71–80, Banff, Canada, May 2007.

[21] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM — Semi-automatic

CREAtion of Metadata. In Proceedings of the 13th International Confer-

ence on Knowledge Engineering and Knowledge Management (EKAW’02),

pages 358–372, Siguenza, Spain, October 2002.

[22] W. Holzinger, B. Krüpl, and M. Herzoge. Using ontologies for extracting

product features from web pages. In Proceedings of the Fifth International

Semantic Web Conference (ISWC’06), pages 286–299, Athens, Georgia,

November 2006.

[23] P.G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and classify:

categorizing hidden web databases. In Proceedings of the 2001 ACM SIG-

37

MOD International Conference on Management of Data (SIGMOD’01),

pages 67–78, Santa Barbara, California, May 2001.

[24] Jena — A Semantic Web Framework for Java. http://jena.sourceforge.net/,

2008.

[25] P. Kogut and W. Holmes. AeroDAML: Applying information extraction to

generate DAML annotations from web pages. In Proceedings of the of the

First International Conference on Knowledge Capture (K-CAP’01) Work-

shop on Knowledge Markup and Semantic Annotation, Victoria, British

Columbia, 2001.

[26] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the structure

of web sites for automatic segmentation of tables. In Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data

(SIGMOD’04), pages 119–130, Paris, France, June 2004.

[27] S. Lim and Y. Ng. An automated approach for retrieving heirarchical data

from HTML tables. In Proceedings of the Eighth International Conference

on Informaiton and Knowledge management (CIKM’99), pages 466–474,

Kansas City, Missouri, November 1999.

[28] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri. Quantitative and quali-

tative evaluation of the OntoLearn ontology learning system. In Proceedings

of the 20th International Conference on Computational Linguistics, pages

1043–1050, Geneva, Switzerland, August 2004.

[29] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson, and

M. Musen. Creating semantic web contents with Protègè-2000. IEEE

Intelligent Systems, 16(2):60–71, March/April 2001.

[30] A. Pivk. Automatic ontology generation from web tabular structures. AI

Communications, 19(1):83–85, 2006.

38

[31] A. Pivk, P. Cimiano, and Y. Sure. From tables to frames. In Proceedings

of the Third International Semantic Web Conference (ISWC’04), pages

166–181, Hiroshima, Japan, November 2004.

[32] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov. KIM

— a semantic platform for information extraction and retrieval. Natural

Language Engineering, 10(3-4):375–392, 2004.

[33] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-

query/, 2008.

[34] P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and

R. Meersman. OntoWeb—a semantic web community portal. In Proceed-

ings of the 5th International Conference on Practical Aspects of Knowledge

Management (PAKM’02), pages 189–200, Vienna, Austria, December 2002.

[35] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM,

26(3):422–433, 1979.

[36] C. Tao and D.W. Embley. Automatic hidden-web table interpretation by

sibling page comparison. In Proceedings of the 26th International Con-

ference on Conceptual Modeling (ER’07), pages 560–581, Auckland, New

Zealand, November 2007.

[37] C. Tao and D.W. Embley. Seed-based generation of personalized bio-

ontologies for information extraction. In Proceedings of the First Inter-

national Workshop on Conceptual Modelling for Life Sciences Applications

(CMLSA’07), pages 74–84, Auckland, New Zealand, November 2007.

[38] A. Tengli, Y. Yang, and N.L. Ma. Learning table extraction from exam-

ples. In Proceedings the 20th International Conference on Computational

Linguistics (COLING’04), pages 987–993, Geneva, Switzerland, August

2004.

39

[39] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy. To-

ward ontology generation from tables. World Wide Web: Internet and Web

Information Systems, 8(3):251–285, September 2004.

[40] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and

F. Ciravegna. MnM: Ontology driven semi-automatic and automatic sup-

port for semantic markup. In Proceedings of the 13th International Confer-

ence on Knowledge Engineering and Knowledge Management (EKAW’02),

pages 379–391, Siguenza, Spain, October 2002.

[41] X. Wang. Tabular Abstraction, Editing, and Formatting. PhD thesis, Uni-

veristy of Waterloo, 1996.

[42] Y. Wang and J. Hu. A machine learning based approach for table detection

on the web. In Proceedings of the 11th International Conference on World

Wide Web (WWW’02), pages 242–250, Honolulu, Hawaii, May 2002.

[43] Y. Wang, J. Völker, and P. Haase. Towards semi-automatic ontology build-

ing supported by large-scale knowledge acquisition. In AAAI Fall Sympo-

sium On Semantic Web for Collaborative Knowledge Acquisition, volume

FS-06-06, pages 70–77, Arlington, Virginia, October 2006.

[44] Worm base! http://www.wormbase.org, 2005.

[45] XML Path Language (XPath). http://www.w3.org/TR/xpath, 2006.

[46] W. Yang. Identifying syntactic differences between two programs. Software

Practice and Experience, 21(7):739–755, 1991.

[47] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table recognition.

International Journal of Document Analysis and Recognition, 7(1):1–16,

2004.

[48] Y. Zhai and B. Liu. Web data extraction based on partial tree alignment.

In Proceedings of the 14th International Conference on World Wide Web

(WWW’05), pages 76–85, Chiba, Japan, May 2005.

40

Appendix: TISP Algorithms

Algorithm 1 ProcessTISP(list of two or more sibling pages)
1: randomly select two sibling pages for initial pattern recognition
2: parse both to a DOM tree, yielding pageDOM1 and pageDOM2

3: find all the HTML tables in pageDOM1 and pageDOM2

4: obtain unnested tables for both, yielding tables1 and tables2

5: run simpleTreeMappingAlgorithm to produce a match score for each table in
tables1 with each table in tables2

6: run stableMarriageAlgorithm to produce potentialSiblingTablePairs, the best 1-1
mapping between tables1 and tables2

7: save in unpairedTables any tables in tables1 and tables2 not paired in potentialSi-
blingTablePairs

8: for each potentialSiblingTablePair in potentialSiblingTablePairs do
9: matchPercentage = 100 * (match score for the potentialSiblingTablePair)/(size

in terms of DOM-tree nodes of the smaller table in the pair)
10: if lower threshold < matchPercentage < higher threshold then
11: put the potentialSiblingTablePair in a list of siblingTablePairs
12: else if higher threshold ≤ matchPercentage then
13: add both tables to layoutTables
14: else if matchPercentage ≤ lower threshold then
15: add both tables to unpairedTables
16: end if
17: end for
18: let tablePatterns be an empty list of table patterns
19: for each siblingTablePair in siblingTablePairs do
20: tablePattern = determineTablePattern(siblingTablePair) - - see Algorithm 2
21: if tablePattern �= null then
22: add tablePattern to tablePatterns
23: end if
24: end for
25: let interpretedTables be an empty list of interpreted tables
26: for each sibling page in the input list do
27: parse page to a DOM tree, yielding pageDOM
28: interpretTables(pageDOM, tablePatterns, interpretedTables, unpairedTables, lay-

outTables) - - see Algorithm 3, which adds tables in pageDOM interpreted by
patterns in tablePatterns to interpretedTables and may also adjust existing pat-
terns in tablePatterns and may pair tables in pageDOM with tables in un-
pairedTables producing either additional interpretedTables or additional layout-
Tables

29: end for
30: use tablePatterns to generate a conceptualization (e.g., generate an OWL ontology)

- - see Section 7
31: use interpretatedTables to annotate pages (e.g., for the conceptualization, extract

data and data-item offsets and generate RDF triples) - - see Section 8

41

Algorithm 2 determineTablePattern(siblingTablePair)
1: run simpleTreeMappingAlgorithm on siblingTablePair to identify matched nodes

and mis-matched nodes in each table
2: for all pre-defined table patterns
3: for all labels in the pattern
4: if the nodes in the label position in the siblingTablePair are matched nodes

then
5: increase matchCount by 1
6: end if
7: end for
8: for all values in the pattern
9: if the nodes in the value position in the siblingTablePair are mis-matched

nodes then
10: increase matchCount by 1
11: end if
12: end for
13: patternMatchPercentage = 100 * matchCount/(total number of leaf nodes in

the two tables in siblingTablePair divided by two)
14: end for
15: find the pattern that has the highest patternMatchPercentage
16: if the highest patternMatchPercentage > threshold then
17: create an xpath expression as the pattern’s path; the xpath expression must

accommodate paths from root to table in both sibling tables
18: record the label names found as labels for the pattern
19: mark any label that does not appear in both sibling tables as optional
20: return the pattern, the xpath expression, the label names, and the optional

indicators as the tablePattern
21: else if findCombination(siblingTablePair) �= null then
22: return the result of findCombination(siblingTablePair) - - see Algorithm 5
23: else
24: return null
25: end if

42

Algorithm 3 interpretTables(pageDOM, tablePatterns, interpretedTables, un-
pairedTables, layoutTables)
1: for each table in pageDOM do
2: get the xpath expression for table in pageDOM
3: use the xpath expression to identify table in layoutTables or in tablePatterns
4: if table identified in layoutTables then
5: do not interpret - - not a data table
6: else if table identified in tablePatterns then
7: let foundPattern be the table pattern found
8: tableMatch = matchTablePattern(table, foundPattern) - - see Algorithm 4
9: if tableMatch �= null then

10: save returned interpreted table in interpretedTables
11: else
12: put table in unmatchedPathTables
13: end if
14: else
15: put table in unmatchedPathTables
16: end if
17: end for
18: - - The code above usually processes all tables in a page; the code below processes

anomalies.
19: for each table in unmatchedPathTables do
20: if table matches a table in layoutTables then
21: adjust the xpath expression for the matching table in layoutTables
22: do not interpret - - not a data table
23: else if table matches with a pattern in tablePatterns then
24: adjust the xpath expression for table in tablePatterns
25: save in interpretedTables the interpreted table returned from having executed

matchTablePattern to check the match with a pattern
26: else
27: put table in unmatchedTables
28: end if
29: end for
30: for each table in unmatchedTables do
31: check whether table is a sibling table of any table in unpairedTables
32: if sibling table found then
33: let s table be the sibling table found
34: if the the match percentage is such that s table is a layout table then
35: add both table and s table to layoutTables
36: remove s table from unpairedTables
37: else
38: tablePattern = determineTablePattern(<table, s table>) - - see Algo-

rithm 2
39: if tablePattern �= null then
40: save table pattern found in tablePatterns
41: use the table pattern found to interpret both table and s table
42: save returned results for both tables in interpretedTables
43: remove s table from unpairedTables
44: else
45: add table to unPairedTables
46: end if
47: end if
48: else
49: add table to unpairedTables
50: end if
51: end for

43

Algorithm 4 matchTablePattern(table, pattern)
1: find all the potential label cells in table according to pattern
2: for each potential label cell do
3: if it matches with the corresponding sibling cell then
4: increase matchCount by 1
5: end if
6: end for
7: find all the potential value cells in table according to pattern
8: for each potential value cell do
9: if it fails to match with the corresponding sibling cell then

10: increase matchCount by 1
11: end if
12: end for
13: calculate matchRate = matchCount/(total number of cells in table)
14: if matchRate > threshold then
15: for each extra label found do
16: add the extra label to pattern, mark it optional
17: end for
18: for each missing label found do
19: mark it optional
20: end for
21: - - With respect to pattern, the cells in table are now known either to be label

cells or value cells; further, it is known which labels associate with which values;
all that remains to be done is to record this information.

22: record label-value pairs in table with respect to pattern, yielding interpretedTable
23: return interpretedTable
24: else
25: return null
26: end if

44

Algorithm 5 findCombination(siblingTablePair)
1: let table1 and table2 be the two tables in siblingTablePair
2: let tableRegions1 and tableRegions2 be empty lists of table-row groups
3: for each row in table1 do
4: if (number of matched nodes in row)/(number of nodes in row) > threshold

then
5: mark row as a row of labels
6: else
7: mark row as a row of values
8: end if
9: end for

10: if the first row of the table is not a row of labels then
11: group the table rows from the first row up through the row just before the first

row of labels or the end of the table
12: add this table-row group to tableRegions1

13: end if
14: for each row of labels do
15: if there is at least one row of values between this row and the next row of labels

or the end of the table then
16: group the table rows from the row of labels through the row just before the

next row of labels (or the end of the table)
17: add this table-row group to tableRegions1

18: end if
19: end for
20: repeat 3–19 with table2 and tableRegions2

21: if the number of table regions in tableRegions1 and tableRegions2 is identical and
nonzero then

22: create tableRegionPairs of corresponding table regions in tableRegions1 and
tableRegions2

23: let tablePatternCombinations be an empty list of table pattern combinations
24: for each tableRegionPair in tableRegionPairs do
25: tablePatternCombination = determineTablePattern(tableRegionPair) - - see

Algorithm 2
26: if tablePatternCombination �= null then
27: add tablePatternCombination to tablePatternCombinations
28: end if
29: if tablePatternCombinations is not empty then
30: syntactically form the list into a single combined pattern
31: if the combined pattern is the same as the combined pattern for the last

time through findCombination then
32: return null - - to prevent infinite recursion
33: else
34: return the combined pattern
35: end if
36: end if
37: end for
38: end if
39: repeat 3–38 column-wise
40: return null - - neither row-wise nor column-wise pattern found

45

