
CONCEPTUAL XML FOR SYSTEMS ANALYSIS

by

Reema Al-Kamha

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Brigham Young University

August 2007

Copyright c© 2007 Reema Al-Kamha

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Reema Al-Kamha

This dissertation has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Stephen W. Liddle

Date Scott N. Woodfield

Date Parris K. Egbert

Date Eric G. Mercer

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Reema
Al-Kamha in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date David W. Embley
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

CONCEPTUAL XML FOR SYSTEMS ANALYSIS

Reema Al-Kamha

Department of Computer Science

Doctor of Philosophy

Because XML has become a new standard for data representation, there is a

need for a simple conceptual model that works well with XML-based development.

In this research we present a conceptual model for XML, called C-XML, which meets

this new need of systems analysts who store their data using XML. We describe

our implementation of an automatic conversion from XML Schema to C-XML that

preserves information and constraints. With this conversion, we can view an XML

Schema instance graphically at a higher level of abstraction. We also describe our

implementation of an automatic conversion from C-XML to XML Schema. Our con-

version preserves information and constraints as long as we count the special C-XML

comments that we insert in an XML-Schema instance to capture the constraints in

C-XML that are not representable in XML Schema. In connection with defining C-

XML and implementing conversions between C-XML and XML Schema, we are also

able to make several insightful observations. We point out ways in which C-XML

is more expressive than XML Schema, and we make recommendations for extending

XML Schema. We also point out ways in which XML Schema is more expressive than

conceptual models, and we make recommendations for augmenting traditional con-

ceptual models to better accommodate XML. The work accomplished in connection

with this research establishes the basis for several fundamental activities in system

analysis, design, development, and evolution.

vi

ACKNOWLEDGMENTS

My foremost thank goes to my thesis adviser Dr. David W. Embley. Without

him, this dissertation would not have been possible. I thank him for his patience and

encouragement that carried me on through difficult times, and for his insights and

suggestions that helped to shape my research skills. His valuable feedback contributed

greatly to this dissertation.

I thank the rest of my dissertation committee members: Dr. Stephen W.

Liddle, Dr. Scott N. Woodfield, Dr. Parris K. Egbert, and Dr. Eric G. Mercer. Their

valuable feedback helped me to improve the dissertation in many ways.

I want to express my appreciation to Dr. Sandra Rogers for supporting me

through my studies.

I would like to thank my parents who always encourage me to continue my

studies. I also want to thank my husband, Dr. Ghassan Wazan, my four children,

Wael, Yaman, Maya, and Ameer for their support and patience.

I thank all the BYU data-extraction research group members for their help.

viii

Contents

Acknowledgments vii

List of Figures xvi

1 Introduction 1

2 Enterprise Modeling with Conceptual XML 5

2.1 Introduction . 5

2.2 C-XML: Conceptual XML . 7

2.3 Translations between C-XML and XML Schema 8

2.3.1 Translation from C-XML to XML Schema 9

2.3.2 Translation from XML Schema to C-XML 13

2.3.3 Information and Constraint Preservation 15

2.4 C-XML Views . 18

2.4.1 High-Level Abstractions in C-XML 18

2.4.2 C-XML XQuery Views . 20

2.4.3 XQuery Integration Mappings 23

2.5 Concluding Remarks . 25

3 Representing Generalization/Specialization in XML Schema 27

3.1 Introduction . 27

3.2 Generalization/Specialization Mechanisms in XML Schema 29

3.2.1 Derived Types . 30

3.2.2 Substitution Groups . 32

3.2.3 Abstract Elements and Types 32

3.3 Representing Generalization/Specialization in XML Schema 33

ix

3.3.1 Straightforward Cases . 33

3.3.2 Problematic Cases in XML Schema 37

3.3.3 The Problem of Multiple Generalizations 40

3.4 Resolving the Conceptual Modeling Issues 41

3.4.1 Post-Processing to Enforce Constraints 41

3.4.2 Proposed Extensions to XML Schema 42

3.5 Conclusion . 43

4 Augmenting Traditional Conceptual Models

to Accommodate XML Structural Constructs 45

4.1 Introduction . 45

4.2 XML Modeling Criteria . 46

4.3 Missing Modeling Constructs . 48

4.4 C-XML . 51

4.5 Augmenting ER and UML . 55

4.5.1 ER . 55

4.5.2 UML . 59

4.5.3 ER-XML, UML-XML, and C-XML 63

4.6 Conclusion . 64

4.7 Appendex . 65

4.7.1 Sequence . 65

4.7.2 Choice . 67

4.7.3 Mixed Content . 70

4.7.4 Generalized Co-Occurrence: 70

5 Translating XML Schema to Conceptual XML 71

5.1 Introduction . 71

5.2 Translation Details . 72

5.2.1 Schema . 72

5.2.2 Element . 74

5.2.3 Attribute . 80

x

5.2.4 Key, Unique and Keyref . 82

5.2.5 Simple Type . 86

5.2.6 Complex Type . 90

5.2.7 AttributeGroup . 94

5.2.8 All . 94

5.2.9 Sequence . 95

5.2.10 Choice . 97

5.2.11 Any and AnyAttribute . 98

5.2.12 Group . 100

5.2.13 Simple Content Complex Type 103

5.2.14 Complex Content Complex Type 109

5.3 Conclusion . 115

6 Translating Conceptual XML to XML Schema 117

6.1 Introduction . 117

6.2 Basic Conceptual Structures . 119

6.3 Generalization/Specialization . 130

6.4 Sequence and Choice . 136

6.5 Conclusion . 142

7 Conclusions and Future Work 145

7.1 Contributions . 145

7.2 Observations and Insights . 146

7.3 Future Work . 147

Bibliography 153

xi

xii

List of Figures

2.1 Customer/Order C-XML Model Instance. 7

2.2 XML Schema Excerpt for the C-XML Model Instance in Figure 2.1 . 10

2.3 C-XML Model Instance Translated from Figure 2.2. 14

2.4 High-Level View of Customer/Order C-XML Model Instance. 20

2.5 C-XQuery View of Customers Nested within Items Ordered. 21

2.6 C-XQuery over the View of Customers Nested within Items Ordered. 22

2.7 C-XML Model Instance for the Catalog of an Acquired Company. . . 24

2.8 C-XQuery Mapping for Catalog Integration 24

3.1 Generalization/Specialization in C-XML. 28

3.2 Generalization/Specialization Partition Constraint in C-XML. 34

3.3 XML Schema Translation of C-XML in Figure 3.2. 35

3.4 Generalization/Specialization Mutual-Exclusion Constraint in C-XML. 36

3.5 XML Schema Translation of C-XML in Figure 3.1. 38

3.6 Generalization/Specialization Union Constraint in C-XML. 39

3.7 Multiple Generalizations in C-XML. 40

4.1 More Example of Choice/Sequence Structures in XML Schema. . . . 49

4.2 Sequence/Choice Structures for Figure 4.1. 53

4.3 Best Representation of Figure 4.1 using XER Notation. 55

4.4 Possible Way to Represent XML Schema Document in Figure 4.1 in

ER-XML. 56

4.5 Best Representation of Figure 4.1 Using Conrad Notation. 60

4.6 Possible Way to Represent XML Schema Document in Figure 4.1 in

UML-XML. 61

4.7 Sequence Structure in C-XML. 66

xiii

5.1 Schema Declaration. 73

5.2 Element Declaration. 74

5.3 Example of Element Structure in XML Schema. 75

5.4 Translated C-XML Model Instance of Figure 5.3 76

5.5 Data Frame for Element C1 in Figure 5.3 77

5.6 Data Frame for Element B1 in Figure 5.3 78

5.7 Example Using the Attribute substitutionGroup in Element. 79

5.8 Translated C-XML Model Instance of Figure 5.7 79

5.9 Attribute Declaration. 80

5.10 Example of Attribute Structure in XML Schema. 81

5.11 Translated C-XML Model Instance of Figure 5.10. 81

5.12 Identity-Constraint Declaration. 83

5.13 Example of Identity Constraint Structures in XML Schema. 84

5.14 Translated C-XML Model Instance of Figure 5.13. 85

5.15 Simple Data Type Content Declaration. 87

5.16 Example of Using Simple Type in XML Schema. 88

5.17 Data Frame for Element size in Figure 5.16 89

5.18 Text Representing the Simple Type for MonitorSize in Figure 5.16. . 89

5.19 Text Representing the Simple Type for mysizelist in Figure 5.16. . . . 89

5.20 Complex Data Type Declaration. 91

5.21 Sample of Using Abstract in Complex Type in XML Schema. 92

5.22 Translated C-XML Model Instance of Figure 5.21. 92

5.23 Sample of Mixed Content in XML Schema. 93

5.24 Mixed Content Structure Corresponding to Figure 5.23. 93

5.25 AttributeGroup Declaration. 94

5.26 All Declaration. 94

5.27 Example of All Structure in XML Schema. 95

5.28 Translated C-XML Model Instance of Figure 5.27 95

5.29 Sequence Declaration. 96

5.30 Example of Sequence Structure in XML Schema. 96

xiv

5.31 Translated C-XML Model Instance of Figure 5.30. 96

5.32 Choice Declaration. 97

5.33 Example of Choice Structure in XML Schema. 97

5.34 Translated C-XML Model Instance of Figure 5.33. 98

5.35 Any Declaration. 98

5.36 AnyAttribute Declaration. 99

5.37 Example of the Any and anyAttribute Structures in XML Schema. . . 99

5.38 The Translated C-XML Model Instance of Figure 5.37. 100

5.39 Group Declaration. 101

5.40 Example of the Group Structure in XML Schema. 102

5.41 Translated C-XML Model Instance of Figure 5.40 103

5.42 Simple Content Declaration. 104

5.43 Restriction on simpleContent Content Declaration. 104

5.44 Examples of Simple Content Nested under Complex Type in XML

Schema. 105

5.45 Translated Simple Content Instance of Figure 5.44. 106

5.46 The text Representing the Simple Type for MensSize in Figure 5.44 . 107

5.47 Extension on a simpleContent Content Declaration. 107

5.48 Complex Content Declaration. 109

5.49 Example of Extension of Complex Content under Complex Type in

XML Schema. 110

5.50 Translated C-XML Model Instance of Figure 5.49 110

5.51 Restriction on Complex Content Declaration. 111

5.52 Example of Restriction of Complex Content under Complex Type in

XML Schema. 112

5.53 Translated C-XML Model Instance of Figure 5.52 113

5.54 extension on Complex Content Declaration. 114

6.1 Basic C-XML Model Instance. 120

6.2 Generated Forest of Scheme Trees for Figure 6.1. 122

6.3 Translation of Several Individual Object Sets. 123

xv

6.4 Portion of XML-Schema Instance that Represents the Content of the

first scheme tree. 125

6.5 The Root Element for the Generated XML-Schema Instance. 128

6.6 Generated Key Structure. 130

6.7 Several C-XML Generalization/Specialization Hierarchies. 130

6.8 XML-Schema Instance for the Translated Content for Figure 6.7(a). . 132

6.9 Translation of a Partition Constraint. 133

6.10 C-XML Model Instance Combining Basic Conceptual Structures and

Generalization/Specialization Hierarchies. 135

6.11 Generated Scheme Tree for Figure 6.10. 135

6.12 Sample Sequence and Choice Structures. 137

6.13 Sequence and Choice Structures Replaced with Binary Relationship Sets.138

6.14 Generated Forest of Scheme Trees for Figure 6.12. 139

6.15 XML-Schema Instance for Student. 140

xvi

Chapter 1

Introduction

XML has become a standard for data representation, especially for data that

is exchanged on the web. XML Schema [44] is used to describe the structure and the

content of XML data. Although XML Schema is useful for specifying and validating

XML documents, systems analysts who wish to model their data using XML need a

simple conceptual model to help improve modeling capabilities for XML-based devel-

opment. This need for conceptual modeling arises because XML Schema was designed

as an interchange language, not a conceptual modeling language. When it is applied

to conceptual modeling, XML Schema over exposes analysts to low-level implementa-

tion details, and the structure of XML Schema forces a hierarchical view for all data,

even when its natural structure is not hierarchical.

Furthermore, XML Schema is represented textually. Since the early 1970’s,

systems analysts have used graphical versions of conceptual models to aid in under-

standing and documenting essential characteristics of systems. This capability should

be available to systems analysts who store their data using XML as well.

In this research we present Conceptual-XML (C-XML) which meets these

new needs of systems analysts who wish to store their data using XML. C-XML

is first and foremost a conceptual model, being fundamentally based on object-set

and relationship-set constructs. Further, it has a graphical representation for all its

conceptual components, and it has semi-structured textual attachments for each con-

cept to provide low-level data-type details. Additionally, C-XML can represent each

component and constraint in XML Schema. Hence, system analysts can use it to

model their XML data.

1

We present our contribution of providing a conceptual model for XML Schema

as a series of self-contained papers. Because each chapter is self contained, there

is necessarily some amount of overlap in the introductory material of some of the

chapters. Each chapter, however, contributes an important component of the whole.

Chapter 2, titled “Enterprise Modeling with Conceptual XML,” is a motiva-

tional chapter that describes the “big picture” of what we are trying to accomplish.

An open challenge is to integrate XML and conceptual modeling in order to satisfy

large-scale enterprise needs. Because enterprises typically have many data sources

using different assumptions, formats, and schemas, all expressed in—or soon to be

expressed in—XML, it is easy to become lost in an avalanche of XML detail. This

creates an opportunity for the conceptual modeling community to provide improved

abstractions to help manage this detail. In this chapter, we present a vision for C-

XML that builds on the established work of the conceptual modeling community over

the last several decades to bring improved modeling capabilities to XML-based de-

velopment. Building on a framework such as C-XML will enable better management

of enterprise-scale data and more rapid development of enterprise applications.

Chapter 3, titled“Representing Generalization/Specialization in XML Schema,”

motivates the problem of representing conceptual is-a hierarchies in XML Schema.

Generalization/specialization and its constraints are fundamental concepts in system

modeling and design, but are difficult to express and enforce with XML Schema. This

mismatch leads to unnecessary complexity and uncertainty in XML-based models. In

this chapter, we describe how to translate various aspects of generalization/special-

ization from a conceptual model into XML Schema. We also explore what needs

to be added to XML Schema to handle some aspects of this fundamental model-

ing construct. If XML Schema were to include our proposed constructs, it would

be fully capable of faithfully representing generalization/specialization, thus reducing

the complexity of the XML models that rely on generalization/specialization.

Chapter 4, titled “Augmenting Traditional Conceptual Models to Accommo-

date XML Structural Constructs,” shows how C-XML raises the conceptual level of

2

abstraction of XML Schema. Although it is possible to present XML Schema graph-

ically, such representations do not raise the level of abstraction for XML schemata

in the same way traditional conceptual models raise the level of abstraction for data

schemata. Traditional conceptual models, on the other hand, do not accommodate

several XML-Schema structures. Thus, there is a need to enrich traditional conceptual

models with new XML-Schema features. After establishing criteria for XML concep-

tual modeling, we propose an enrichment to represent the XML features missing in

traditional models. We argue that our solution can be adapted generally for tradi-

tional conceptual models and show how it can be adapted for two popular conceptual

models.

Chapter 5, titled “Translating XML Schema to Conceptual XML,” explains

how to translate any XML Schema instance to C-XML. The textual representation

of XML Schema makes it difficult to understand, handle, and do further modification

and thus difficult to use for systems modeling and design. Since conceptual data

models have proven to be successful for representing data graphically at a higher level

of abstraction, if we can represent an XML-Schema instance graphically, at a higher

level of abstraction, we can conceptualize the XML-Schema instance. We propose

a translation from XML Schema to a conceptual model that preserves information

and constraints. Its implementation allows any XML-Schema instance as input and

produces a C-XML model instance as output.

Chapter 6, titled “Translating Conceptual XML to XML Schema,” proposes a

translation from C-XML to an XML Schema. XML Schema is not a good modeling

language for analysts because it lacks a two-dimensional visualization of the appli-

cation data, and it fails to raise the level of abstraction beyond a mundane textual

specification. C-XML resolves these issues, but raises another—the translation from

C-XML to XML Schema. In this chapter, we propose a translation from a C-XML

conceptual-model instance to an XML-Schema instance. Several issues arise in at-

tempting to make the translation fully automatic and to make it capture the data

contained within the conceptual model instance and the constraints imposed over

this data. These issues include (1) converting nonhierarchical conceptual structures

3

to XML hierarchal structures, (2) resolving fundamental mismatches in constraint

specification between the two languages, (3) translating mixtures of various concep-

tual structures (hypergraphs, is-a hierarchies, choice/sequence hierarchies), and (4)

selecting from among alternative target translation possibilities. Our implementation

resolves these issues, which allow it to take any valid C-XML model instance as input

and produce an XML-Schema instance as output.

In Chapter 7, the conclusion, we summarize our accomplishments and give the

status of our implementation. We also discuss some possibilities for future work.

4

Chapter 2

Enterprise Modeling with Conceptual XML

2.1 Introduction

A challenge [9] for modern enterprise modeling is to produce a simple con-

ceptual model that: (1) works well with XML and XML Schema; (2) abstracts well

for conceptual entities and relationships; (3) scales to handle both large data sets

and complex object interrelationships; (4) allows for queries and defined views via

XQuery; and (5) accommodates heterogeneity.

The conceptual model must work well with XML and XML Schema because

XML is rapidly becoming the de facto standard for business data. Because con-

ceptualizations must support both high-level understanding and high-level program

construction, the conceptual model must abstract well. Because many of today’s

huge industrial conglomerations have large, enterprise-size data sets and increasingly

complex constraints over their data, the conceptual model must scale up. Because

XQuery, like XML, is rapidly becoming the industry standard, the conceptual model

must smoothly incorporate both XQuery and XML. Finally, because we can no longer

assume that all enterprise data is integrated, the conceptual model must accommodate

heterogeneity. Accommodating heterogeneity also supports today’s rapid acquisitions

and mergers, which require fast-paced solutions to data integration.

We call the answer we offer for this challenge Conceptual XML (C-XML). C-

XML is first and foremost a conceptual model, being fundamentally based on object-

set and relationship-set constructs. As a central feature, C-XML supports high-level

object-set and relationship-set construction at ever higher levels of abstraction. At

5

any level of abstraction the object and relationship sets are always first class, which

lets us address object and relationship sets uniformly, independent of level of ab-

straction. These features of C-XML make it abstract well and scale well. Secondly,

C-XML is “model-equivalent” [25] with XML Schema, which means that C-XML can

represent each component and constraint in XML Schema and vice versa. Because of

this correspondence between C-XML and XML Schema, XQuery immediately applies

to populated C-XML model instances and thus we can raise the level of abstrac-

tion for XQuery by applying it to high-level model instances rather than low-level

XML documents. Further, we can define high-level XQuery-based mappings between

C-XML model instances over in-house, autonomous databases, and we can declare

virtual views over these mappings. Thus, we can accommodate heterogeneity at a

higher level of abstraction and provide uniform access to all enterprise data.

Besides enunciating a comprehensive vision for the XML/conceptual-modeling

challenge [9], our contributions in this chapter include: (1) mappings to and from

C-XML and XML Schema, (2) defined mechanisms for producing and using first-

class, high-level, conceptual abstractions, and (3) XQuery view definitions over both

standard and federated conceptual-model instances that are themselves conceptual-

model equivalent. As a result of these contributions, C-XML and XML Schema can

be fully interchangable in their usage over both standard and heterogeneous XML

data repositories. This lets us leverage conceptual model abstractions for high-level

understanding while retaining all the complex details involved with low-level XML

Schema intricacies, view mappings, and integration issues over heterogeneous XML

repositories.

We present the details of our contributions as follows. Section 2.2 describes

C-XML. Section 2.3 shows that C-XML is “model-equivalent” with XML Schema by

providing mappings between the two. Section 2.4 describes C-XML views. We report

the status of our implementation and conclude in Section 2.5.

6

PreviousItem0..5

Qty

RequestDateTime

Manufacturer
ItemNr

Description

Price

Item

SalePriceQty

OrderDate

OrderID

Order

Discount

PreferredCustomerRegularCustomer

Customer

CustomerAddrCustomerName

Figure 2.1: Customer/Order C-XML Model Instance.

2.2 C-XML: Conceptual XML

C-XML is a conceptual model consisting of object sets, relationship sets, and

constraints over these object and relationship sets. Graphically a C-XML model

instance M is an augmented hypergraph whose vertices and edges are respectively the

object sets and relationship sets of M , and whose augmentations consist of decorations

that represent constraints. Figure 2.1 shows an example.

In the notation, boxes represent object sets. An object set with a solid border

is a nonlexical object set (e.g. Customer). An object set with a dashed border is a

lexical object set (e.g. OrderID). With each object set we can associate a data frame

(as we call it) to provide a rich description of its value set and other properties. A

data frame lets us specify, for example, that OrderDate is of type Date or that ItemNr

values must satisfy the value pattern “[A-Z]{3}-\d{7}”. Lines connecting object sets

are relationship sets; these lines may be hyper-lines (hyper-edges in hyper-graphs)

with diamonds when they have more than two connections to object sets. Optional

7

or mandatory participation constraints respectively specify whether objects in a con-

nected relationship may or must participate in a relationship set (an “o” on a con-

necting relationship-set line designates optional while the absence of an“o”designates

mandatory). Thus, for example, the C-XML model instance in Figure 2.1 declares

that an Order must include at least one Item but that an Item need not be included

in any Order. Arrowheads on lines specify functional constraints. Thus, Figure 2.1

declares that an Item has a Price and a Description and is in a one-to-one correspon-

dence with ItemNr and that an Item in an Order has one Qty and one SalePrice. In

cases when optional and mandatory participation constraints along with functional

constraints are insufficient to specify minimum and maximum participation, explicit

min..max constraints may be specified. Triangles denote generalization/specialization

hierarchies. We can constrain is-a hierarchies by partition (⊎), union (∪), or mutual

exclusion (+) among specializations. Any object-set/relationship-set connection may

have a role, but a role is simply a shorthand for an object set that denotes the subset

consisting of the objects that actually participate in the connection.

2.3 Translations between C-XML and XML Schema

Many translations between C-XML and XML Schema are possible. In recent

ER conferences, researchers have described varying conceptual-model translations

to and/or from XML or XML DTD’s or XML-Schema-like specifications. (See, for

example, [12, 14, 26].) It is not our purpose here to argue for or against a particular

translation. Indeed, we would argue that a variety of translations may be desirable.

For any translation, however, we require information and constraint preservation.

This ensures that an XML Schema and a conceptual instantiation of an XML Schema

as a C-XML model instance correspond and that a system can reflect manipulations

of the one in the other.

To make our correspondence exact, we need information- and constraint-

preserving translations in both directions. We do not, however, require that transla-

tions be inverses of one another—translations that generate members of an equivalence

class of XML Schema specifications and C-XML model instances are sufficient. In

8

Section 2.3.1 we present our C-XML-to-XML-Schema translation, and in Section 2.3.2

we present an XML-Schema-to-C-XML translation. In Section 2.3.3 we formalize the

notions of information and constraint preservation and show that the translations we

propose preserve information and constraints.

2.3.1 Translation from C-XML to XML Schema

We now describe our process for translating a C-XML model instance C to

an XML Schema SC . We illustrate our translation process with the C-XML model

instance of Figure 2.1 translated to the corresponding XML Schema excerpted in

Figure 2.2.

Fully automatic translation from C to SC is not only possible, but can be done

with certain guarantees regarding the quality of SC . Our approach is based on our

previous work [21], which for C generates a forest of scheme trees FC such that (1)

FC has a minimal number of scheme trees, and (2) XML documents conforming to

FC have no redundant data with respect to functional and multivalued constraints of

C. For our example in Figure 2.1, the algorithms in [21] will generate the following

two nested scheme trees.

(Customer, CustomerName,CustomerAddr,Discount

(Order,OrderID,OrderDate,

(Item, SalePrice,Qty)∗)∗)∗

(Item, ItemNr,Description, Price,

(PreviousItem)∗, (Manufacturer, RequestDateT ime,Qty)∗)∗

Observe that the XML Schema in Figure 2.2 satisfies these nesting specifications. Item

in the second scheme tree appears as an element on Line 8 with ItemNr, Description,

and Price defined as its attributes on Lines 28–30. PreviousItem is nested, by itself,

underneath Item, on Line 18, and Manufacturer, RequestDateTime, and Qty are

nested underneath Item as a group on Lines 13–15. The XML-Schema notation that

accompanies these C-XML object-set names obscures the nesting to some extent, but

this additional notation is necessary either to satisfy the syntactic requirements of

XML Schema or to allow us to specify the constraints of the C-XML model instance.

9

1: <?xml version="1.0" encoding="UTF-8"?>

2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3: elementFormDefault="qualified" attributeFormDefault="unqualified">

4: <xs:element name="Document">

5: <xs:complexType>

6: <xs:choice minOccurs="0" maxOccurs="unbounded">

7: <xs:element ref="Customer"/>

8: <xs:element name="Item">

9: <xs:complexType>

10: <xs:sequence>

11: <xs:element name="ItemMR" minOccurs="0" maxOccurs="5">

12: <xs:complexType>

13: <xs:attribute name="Manufacturer" type="xs:string" use="required"/>

14: <xs:attribute name="RequestDateTime" type="xs:date" use="required"/>

15: <xs:attribute name="Qty" type="xs:positiveInteger" use="required"/>

16: </xs:complexType>

17: </xs:element>

18: <xs:element name="PreviousItem" minOccurs="0" maxOccurs="unbounded">

19: <xs:complexType>

20: <xs:attribute name="ItemNr" type="xs:positiveInteger" use="required"/>

21: </xs:complexType>

22: <xs:keyref name="r1" refer="ItemKey">

23: <xs:selector xpath="."/>

24: <xs:field xpath="@ItemNr"/>

25: </xs:keyref>

26: </xs:element>

27: </xs:sequence>

28: <xs:attribute name="ItemNr" type="xs:positiveInteger" use="required"/>

29: <xs:attribute name="Description" type="xs:string" use="required"/>

30: <xs:attribute name="Price" type="xs:decimal" use="required"/>

31: </xs:complexType>

32: </xs:element>

33: </xs:choice>

34: </xs:complexType>

35: <xs:key name="OrderKey">

36: <xs:selector xpath=".//Order"/>

37: <xs:field xpath="@OrderID"/>

38: </xs:key>

39: <xs:key name="ItemKey">

40: <xs:selector xpath=".//Item"/>

41: <xs:field xpath="@ItemNr"/>

42: </xs:key>

43: </xs:element>

44: <xs:element name="Customer" abstract="true"/>

45: <xs:element name="PreferredCustomer" substitutionGroup="Customer">

46: <xs:complexType>

47: <xs:group ref="CustomerDetails"/>

48: <xs:attribute name="Discount" type="xs:string" use="required"/>

49: </xs:complexType>

50: </xs:element>

51: <xs:element name="RegularCustomer" substitutionGroup="Customer">

52: <xs:complexType>

53: <xs:group ref="CustomerDetails"/>

54: </xs:complexType>

55: </xs:element>

56: <xs:group name="CustomerDetails">

57: <xs:sequence>

58: <xs:element name="CustomerName" type="xs:string"/>

59: <xs:element name="CustomerAddr" type="xs:string"/>

60: <xs:element name="Order" minOccurs="0" maxOccurs="unbounded">

61: <xs:complexType>

62: <xs:sequence>

63: <xs:element name="OrderItem" minOccurs="0" maxOccurs="unbounded">

64: <xs:complexType>

65: <xs:attribute name="Qty" type="xs:positiveInteger" use="required"/>

66: <xs:attribute name="SalePrice" type="xs:decimal" use="required"/>

67: <xs:attribute name="ItemNr" type="xs:positiveInteger" use="required"/>

68: </xs:complexType>

69: <xs:keyref name="r3" refer="ItemKey">

70: <xs:selector xpath="."/>

71: <xs:field xpath="@ItemNr"/>

72: </xs:keyref>

73: </xs:element>

74: </xs:sequence>

75: <xs:attribute name="OrderID" type="xs:positiveInteger" use="required"/>

76: <xs:attribute name="OrderDate" type="xs:date" use="required"/>

77: </xs:complexType>

78: </xs:element>

79: </xs:sequence>

80: </xs:group>

81: </xs:schema>

Figure 2.2: XML Schema Excerpt for the C-XML Model Instance in Figure 2.1

10

As we continue, recall first that each C-XML object set has an associated data

frame that contains specifications such as type declarations, value restrictions, and

any other annotations needed to specify information about objects in the object set.

For our work here, we let the kind of information that appears in a data frame corre-

spond exactly to the kind of data constraint information specifiable in XML Schema.

One example we point out explicitly is order information, which is usually absent in

conceptual models, but is unavoidably present in XML. Thus, if we wish to say that

CustomerName precedes CustomerAddr, we add the annotation “≺ CustomerAddr”

to the CustomerName data frame and add the annotation“≻ CustomerName”to the

CustomerAddr data frame. In our discussion, we assume that these annotations are

in the data frames that accompany the object sets CustomerName and CustomerAddr

in Figure 2.1.

Our conversion algorithm preserves all annotations found in C-XML data

frames. This is where we obtain all the type specifications in Figure 2.2. We capture

the order specification, CustomerName ≺ CustomerAddr, by making Customer-

Name and CustomerAddr elements (rather than attributes) and placing them, in

order, in their proper place in the nesting—for our example in Lines 58 and 59 nested

under CustomerDetails.

In the conversion from C-XML to XML Schema we use attributes instead of

elements where possible. An object set can be represented as an attribute of an

element if it is lexical, is functionally dependent on the element, and has no order

annotations. The object sets OrderID and OrderDate, for example, satisfy these

conditions and appear as attributes of an Order element on Lines 75 and 76. Both

attributes are also marked as “required” because of their mandatory connection to

Order as specified by the absence of an“o”on their connection to Order in Figure 2.1.

When an object set is lexical but not functional and order constraints do not

hold, the object set becomes an element with minimum and maximum participation

constraints. PreviousItem in Line 18 has a minimum participation constraint of 0 and

a maximum of unbounded.

11

Because XML Schema will not let us directly specify n-ary relationship sets

(n ≥ 2), we convert them all to binary relationship sets by introducing a tuple iden-

tifier. We can think of each diamond in a C-XML diagram as being replaced by a

nonlexical object set containing these tuple identifiers. To obtain a name for the

object set containing the tuple identifiers, we concatenate names of nonfunctionally

dependent object sets. For example, given the n-ary relationship set for Order, Item,

SalePrice, and Qty, we generate an OrderItem element (Line 63). If names become

too long, we abbreviate using only the first letter of some object-set names. Thus,

for example, we generate ItemMR (Line 11) for the relationship set connecting Item,

Manufacturer, RequestDateTime, and Qty.

When a lexical object set has a one-to-one relationship with a nonlexical ob-

ject set, we use the lexical object set as a surrogate for the nonlexical object set

and generate a key constraint. In our example, this generates key constraints for

Order/OrderID in Line 35 and Item/ItemNr in Line 39. We also use these surrogate

identifiers, as needed, to maintain explicit referential integrity. Observe that in the

scheme trees above, Item in the first tree references Item in the root of the second

scheme tree and also that PreviousItem in the second scheme tree is a role and there-

fore a specific specialization (or subset) of Item in the root. Thus, we generate keyref

constraints, one in Lines 69–72 to ensure the referential integrity of ItemNr in the

OrderItem element and another in Lines 22–25 for the PreviousItem element.

Another construct in C-XML we need to translate is generalization/specializ-

ation. XML Schema uses the concept of substitution groups to allow the use of

multiple element types in a given context. Thus, for example, we generate an abstract

element for Customer in Line 44, but then specify in Lines 45–55 a substitution

group for Customer that allows RegularCustomer and PreferredCustomer to appear

in a Customer context. We model content that would normally be associated with

the generalization by generating a group that is referenced in each specialization (in

Lines 47 and 52). In our example, we generate the group CustomerDetails and nest

the details of Customer such as CustomerName, CustomerAddr, and Orders under

CustomerDetails as we do beginning in Line 56. Further, we can nest any information

12

that only applies to one of the specializations directly with that specialization; thus,

in Line 48 we nest Discount under PreferredCustomer.

Finally, XML documents need to have a single content root node. Thus, we

assume the existence of an element called Document (Line 4) that serves as the

universal content root.

2.3.2 Translation from XML Schema to C-XML

We translate XML Schema instances to C-XML by separating structural XML

Schema concepts (such as elements and attributes) from non-structural XML Schema

concepts (such as attribute types and order constraints). Then we generate C-XML

constructs for the structural concepts and annotate generated C-XML object sets

with the non-structural information.

We can convert an XML Schema S to a C-XML model instance CS by gener-

ating object sets for each element and attribute type connected by relationship sets

according to the nesting structure of S. Figure 2.3 shows the result of applying our

conversion process to the XML Schema instance of Figure 2.2. Note that we nest

object and relationship sets inside one another corresponding to the nested element

structure of the XML Schema instance. Whether we display C-XML object sets inside

or outside one another has no semantic significance. The nested structure, however,

is convenient because it corresponds to the natural XML Schema instance structure.

The initial set of generated object and relationship sets is straightforward.

Each element or attribute generates exactly one object set, and each element that is

nested inside another element generates a relationship set connecting the two. Each

attribute associated with an element e always generates a corresponding object set

a and a relationship set r connecting a to the object set generated by e. Partici-

pation constraints for attribute-generated relationship sets are always 1..* on the a

side and are either 1 or 0..1 on the e side. Participation constraints for relationship

sets generated by element nesting require a bit more work. If the element is in a se-

quence or a choice, there may be specific minimum/maximum occurrence constraints

13

OrderItem

CustomerItem
Document

Qty

OrderDate

OrderID

Order

Discount

PreferredCustomerRegularCustomer

Customer

CustomerAddr

CustomerName

0..5
ItemMR

Qty

RequestDateTime

Manufacturer

ItemNr

Description

Price

Item

PreviousItem

CustomerDetails

SalePrice

Figure 2.3: C-XML Model Instance Translated from Figure 2.2.

we can use directly. For example, according to the constraints on Line 60 in Fig-

ure 2.2 a CustomerDetails element may contain a list of 0 or more Order elements.

However, an Order element must be nested inside a CustomerDetails element. Thus,

for the relationship set connecting CustomerDetails and Order, we place participation

constraints of 0..* on the CustomerDetails side, and 1 on the Order side.

In order to make the generated C-XML model instance less redundant, we

look for certain patterns and rewrite the generated model instance when appropriate.

For example, since ItemNr has a key constraint, we infer that it is one-to-one with

Item. Further, the keyref constraints on ItemNr for PreviousItem and OrderItem

indicate that rather than create two additional ItemNr object sets, we can instead

relate PreviousItem and OrderItem to the ItemNr nested in Item. Another optimiza-

tion is the treatment of substitution groups. In our example, since RegularCustomer

14

and PreferredCustomer are substitutable for Customer, we construct a generaliza-

tion/specialization for the three object sets and factor out the common substructure

of the specializations into the generalization. Thus, CustomerDetails exists in a one-

to-one relationship with Customer.

Another complication in XML Schema is the presence of anonymous types. For

example, the complex type in Line 5 of Figure 2.2 is a choice of 0 or more Customer

or Item elements. We need a generalization/specialization to represent this, and since

C-XML requires names for object sets, we simply concatenate all the top-level names

to form the generalization name CustomerItem.

There are striking differences between the C-XML model instances of Fig-

ures 2.1 and 2.3. The translation to XML Schema introduced new elements Docu-

ment, CustomerDetails, OrderItem, and ItemMR in order to represent a top-level root

node, generalization/specializations, and decomposed n-ary relationship sets. If we

knew that a particular XML Schema instance was generated from an original C-XML

model instance, we could perform additional optimizations. For example, if we knew

CustomerDetails was fabricated by the translation to XML Schema, we could observe

that in the reverse translation to C-XML it is superfluous because it is one-to-one

with Customer. Similarly, we could recognize that Document is a fabricated top-level

element and omit it from the reverse translation; this would also eliminate the need

for CustomerItem and its generalization/specialization. Finally, we could recognize

that n-ary relationship sets have been decomposed, and in the reverse translation re-

constitute them. The original C-XML to XML Schema translation could easily place

annotation objects in the generated XML Schema instance marking elements for this

sort of optimization.

2.3.3 Information and Constraint Preservation

To formalize information and constraint preservation for schema translations,

we use first-order predicate calculus. We represent any schema specification (which for

C-XML is a model instance and for XML is an XML Schema instance) in predicate

calculus by generating an n-place predicate for each n-ary tuple container and a

15

closed formula for each constraint [19]. Using the closed-world assumption, we can

then populate the predicates to form an interpretation. If all the constraints hold

over the populated predicates, the interpretation is valid.

For any schema specification SA of type A (e.g. SC−XML or SXMLSchema

in our discussion here) there is a corresponding valid interpretation ISA
(i.e. a

valid, populated model instance for a C-XML model instance or a conforming XML

document for an XML Schema instance). We can guarantee that a translation

T translates a schema specification SA to a constraint-equivalent schema specifi-

cation SB by checking whether the constraints of the generated predicate calcu-

lus for the schema specification of type B imply the constraints of the generated

predicate calculus for the schema specification of type A (i.e. by checking whether

Constraints(SPC
B) ⇒ Constraints(SPC

A), where the superscript PC denotes that the

schema is predicate calculus). A translation T that translates a schema specification

SA into a schema translation SB induces a translation T ′ from an interpretation ISA

for a schema of type A to an interpretation ISB
for a schema of type B. We can

guarantee that a T -induced translation T ′ translates any valid interpretation ISA
into

an information equivalent valid interpretation ISB
by translating both of the corre-

sponding valid interpretations to predicate calculus interpretations ISPC
A

and ISPC
B

and

checking for information equivalence.

Definition 1 A translation T from schema specification SA to a schema specification

SB preserves information if there exists a procedure P that for any valid interpreta-

tion ISA
corresponding to SA computes ISA

from ISB
where ISB

is the interpretation

corresponding to SB induced by T . 2

Definition 2 A translation T from schema specification SA to a schema specification

SB preserves constraints if the constraints of SB imply the constraints of SA. 2

Lemma 1 Let ISC−XML
be a valid interpretation for a populated C-XML model in-

stance SC−XML. There exists a translation TC−XML that correctly represents ISC−XML

as a valid interpretation ISPC
C−XML

in predicate calculus.

Proof : We construct TC−XML as follows. We generate 1-place predicates for object

16

sets (e.g. OrderDate(x)), n-place predicates for relationship sets (e.g. Order Order-

Date(x, y)), and closed formulas corresponding to the constraints (e.g. ∀x(∃yOrder O-

rderDate(x, y) ⇒ OrderDate(x))). We then populate the predicates with corre-

sponding constants representing each object and relationship in the model instance

to obtain TC−XML. Since TC−XML includes all and only all objects in 1-place pred-

icates and all and only all relationships in n-place predicates and represents all and

only all constraints, TC−XML correctly represents ISC−XML
as a valid interpretation

ISPC
C−XML

in predicate calculus. See [19] for details. 2

Lemma 2 Let ISXMLSchema
be an XML document that conforms to an XML Schema

instance SXMLSchema. There exists a translation tXMLSchema that correctly represents

ISXMLSchema
as a valid interpretation ISPC

XMLSchema
in predicate calculus.

Proof : We construct tXMLSchema as follows. Similar to [19], we generate 1-place pred-

icates for elements and attributes (e.g. PreferredCustomer(x)), 2-place predicates

for each attribute of an element and for each element nested within another ele-

ment (e.g. PreferredCustomer Discount(x, y)), and closed formulas corresponding

to the constraints (e.g. ∀x(PreferredCustomer(x)⇒ Customer(x)). We generate

constants corresponding to the data in the document, and populate the 1- and 2-

place predicates accordingly. Since tXMLSchema includes all and only all objects in

1-place predicates and all and only all relationships in n-place predicates and rep-

resents all and only all constraints, tXMLSchema correctly represents ISXMLSchema
as a

valid interpretation ISPC
XMLSchema

in predicate calculus. 2

Theorem 1 Let T be the translation described in Section 2.3.1 that translates a C-

XML model instance SC−XML to an XML Schema instance SXMLSchema. T preserves

information and constraints.

Proof : Let T ′ be the induced translation of T that translates a valid, populated model

instance ISC−XML
for SC−XML to an XML document ISXMLSchema

for SXMLSchema. By

Lemma 1, we can obtain ISPC
C−XML

as a valid interpretation for ISC−XML
in predicate

calculus; similarly by Lemma 2, we can obtain ISPC
XMLSchema

as a valid interpretation

for ISXMLSchema
in predicate calculus. According to Definition 1 we must show that

17

there is a procedure P that can construct each populated predicate in ISPC
C−XML

from

ISPC
XMLSchema

. The 1-place predicates map directly, but the n-place predicates are

more interesting since ISPC
XMLSchema

has binary predicates decomposed from n-place

predicates. To recover the original n-place predicates, we join the binary predicates

and project the n required columns. According to Definition 2, we must also show

that the constraints of ISPC
XMLSchema

imply the constraints of ISPC
C−XML

. This requires a

case analysis of the generated constraints. See [19] for a list of cases. 2

Theorem 2 Let T be the translation described in Section 2.3.2 that translates an

XML Schema instance SXMLSchema to a C-XML model instance SC−XML. T preserves

information and constraints.

Proof : Like Theorem 1, the proof is by case analysis, showing how each XML Schema

construct maps to C-XML. Again we use Lemmas 1 and 2 to provide predicate calculus

interpretations, and then we need to show that (1) each predicate in the XML Schema

interpretation can be constructed from those in the C-XML interpretation, and (2)

each constraint in the XML Schema interpretation is implied by the constraints of

the C-XML interpretation. 2

2.4 C-XML Views

This section describes three types of views—simple views that help us scale

up to large and complex XML schemas, query-generated views over a single XML

schema, and query-generated views over heterogeneous XML schemas.

2.4.1 High-Level Abstractions in C-XML

We create simple views in two ways. Our first way is to nest and hide C-XML

components inside one another [19]. Figure 2.3 shows how we can nest object sets

inside one another. We can pull any object set inside any other connected object

set, and we can pull any object set inside any connected relationship set so long

as we leave at least two object sets outside (e.g. in Figure 2.1 we can pull Qty

and/or SalePrice inside the diamond). Whether an object set appears on the inside

18

or outside has no effect on the meaning. Once we have object sets on the inside, we

can implode the object set or relationship set and thus remove the inner object sets

from the view. We can, for example, implode Customer, Item, and PreferredCustomer

in Figure 2.3, presenting a much simpler diagram showing only five object sets and

two generalization/specialization components nested in Document. To denote an

imploded object or relationship set, we shade the object set or the relationship-set

diamond. Later, we can explode object or relationship sets and view all details. Since

we allow arbitrary nesting, it is possible that relationship-set lines may cross object-

or relationship-set boundaries. In this case, when we implode, we connect the line to

the imploded object or relationship set and make the line dashed to indicate that the

connection is to an interior object set.

Our second way to create simple views is to discard C-XML components that

are not of interest. We can discard any relationship set, and we can discard all but

any two connections of an n-ary relationship set (n > 2). We can also discard any

object set, but then must discard (1) any connecting binary relationship sets, (2)

any connections to n-ary relationship sets (n > 2), and (3) any specializations and

relationship sets or relationship-set connections to these specializations. Figure 2.4

shows an example of a high-level abstraction of Figure 2.1. In Figure 2.4 we have

discarded Price and its associated binary relationship set, the relationship set for

PreviousItem, and the connections to RequestDateTime and Qty in the n-ary rela-

tionship set involving Manufacturer. We have also hidden OrderID, OrderDate, and

all customer information except CustomerName inside Order, and we have hidden

SalePrice and Qty inside the Order -Item relationship set. Note that both the Order

object set and the Order -Item relationship set are shaded, indicating the inclusion

of C-XML components; that neither the Item object set nor the Item-Manufacturer

relationship set are shaded, indicating that the original connecting information has

been discarded rather than hidden within; and that the line between CustomerName

and Order is dashed, indicating that CustomerName connects, not to Order directly,

but rather to an object set inside Order.

19

0..5
Manufacturer

ItemNrDescription

Item

OrderCustomerName

Figure 2.4: High-Level View of Customer/Order C-XML Model Instance.

Theorem 3 Simple, high-level views constructed by properly discarding C-XML

components are valid C-XML model instances.

Proof : Clear based on the construction procedure. 2

Corollary 1 Any simple, high-level view can be represented by an XML Schema.

Proof : Since each high level view is a valid C-XML model instance (Theorem 3),

and since each C-XML model instance can be represented by an XML-Schema in-

stance (Section 2.3.1), thus any simple, high-level view can be represented by an

XML Schema. 2

2.4.2 C-XML XQuery Views

We now consider the use of C-XML views to generate XQuery views. As other

researchers have pointed out [8, 13], XQuery can be hard for users to understand

and manipulate. One reason XQuery can be cumbersome is because it must follow

the particular hierarchical structure of an underlying XML schema, rather than the

simpler, logical structure of an underlying conceptual model. Further, different XML

sources might specify conflicting hierarchical representations of the same conceptual

relationship [8]. Thus, it is highly desirable to be able to construct XQuery views by

generating them from a high-level conceptual model-based description. [13] describes

an algorithm for generating XQuery views from ORA-SS descriptions. [8] also de-

scribes how to specify XQuery views by writing conceptual XPath expressions over

a conceptual schema and then automatically generating the corresponding XQuery

20

define view CustomersByItemsOrdered
{ for $item in Item

return

<Item>

{$item/ItemNr, $item/Description}
{ for $customer in $item/Order/Customer

return

<Customer>
{$customer/CustomerName, $customer/CustomerAddr}
{ for $order in $customer/Order,

$item2 in $order/Item
where $item2 = $item
return

<Order>
{$order/OrderDate, $item2/Qty, $item2/SalePrice}

</Order>
}

</Customer>
}

</Item>

}

Figure 2.5: C-XQuery View of Customers Nested within Items Ordered.

specifications. In a similar fashion, we can generate XQuery views directly from

high-level C-XML views. In some situations a graphical query language would be

an excellent choice for creating C-XML views [25], but in keeping with the spirit of

C-XML we define an XQuery-like textual language called C-XQuery.

Figure 2.5 shows a high-level view written in C-XQuery over the model instance

of Figure 2.1. We introduce a view definition with the phrase define view, and specify

the contents of the view with FLWOR (for, let, where, order by, return) expressions

[43]. The first for $item in Item phrase creates an iterator over objects in the Item

object set. Since there is no top-level where clause, we iterate over all the items. Also,

since C-XML model instances do not have“root nodes” the idea of context is different.

In this case, Item defines the Item object set as the context of the path expression.

For each such item, we return an <Item> ... </Item> structure populated according

to the nested expressions.

C-XQuery is much like ordinary XQuery, with the main distinguishing factor

that our path expressions are conceptual, and so, for example, they are not concerned

with the distinction between attributes and elements. Note particularly that for

the data fields, such as ItemNr, CustomerName, and OrderDate, we do not care

21

define view RecentNitrogenFertilizerCustomers
{ for $i in CustomersByItemsOrdered/Item

where $i/Description = “Nitrogen Fertilizer”
return

<Customer>
{ for $c in $i/Customer

let $total := sum(for $o in $c/Order
where $o/OrderDate > add-days(current-date(),-90)
return $o/Qty * $o/SalePrice)

return

{$c/CustomerName, Total=$total}
}

</Customer>
}

for $c in RecentNitrogenFertilizerCustomers/Customer
where $c/total > 300
return

<PotentialThreatCustomer>
{$c/CustomerName, $c/Total}

</PotentialThreatCustomer>

Figure 2.6: C-XQuery over the View of Customers Nested within Items Ordered.

whether the generated XML treats them as attributes or elements. A more subtle

characteristic of our conceptual path expressions is that since they operate over a flat

C-XML structure, we can traverse the conceptual-model graph more flexibly, without

regard for hierarchical structure. Thus, we generalize the notion of a path expression

so that the expression A//B designates the path from A to B regardless of hierarchy

or the number of intervening steps in the path [25]. This can lead to ambiguity in the

presence of cycles or multiple paths between nodes, but we can automatically detect

ambiguity and require the user to disambiguate the expression (say, by designating

an intermediate node that fixes a unique path).

Given a view definition, we can write queries against the view. For the view in

Figure 2.5, for example, the query in Figure 2.6 finds customers who have purchased

more than $300 worth of nitrogen fertilizer within the last 90 days. To execute the

query, we unfold the view according to the view definition and minimize the resulting

XQuery. See [39] for a discussion of the underlying principles.

The view in Figure 2.6 illustrates the use of views over views. Indeed, applica-

tions can use views as first-class data sources, just like ordinary sources, and we can

write queries against the conceptual model and views over that model. In any case,

22

we translate the conceptual queries to XQuery specifications over the XML Schema

instance generated for the C-XML conceptual model.

Theorem 4 A C-XQuery view Q over a C-XML model instance C can be translated

to an XQuery query QC over an XML Schema instance SC .

Proof : Observe that by the definition of XQuery [43], any valid XQuery instance

generates an underlying XML Schema instance. By Theorem 4, we thus know that

for any C-XQuery view we retain a correspondence to XML Schema. In particular,

this means we can compose views of views to an arbitrary depth and still retain a

correspondence to XML Schema. 2

2.4.3 XQuery Integration Mappings

To motivate the use of views in enterprise conceptual modeling, suppose through

mergers and acquisitions we acquire the catalog inventory of another company. Fig-

ure 2.7 shows the C-XML for this assumed catalog. We can rapidly integrate this

catalog into the full inventory of the parent company by creating a mapping from the

acquired company’s catalog to the parent company’s catalog. Figure 2.8 shows such a

mapping. In order to integrate the source (Figure 2.7) with the target (Figure 2.1), the

mapping needs to generate target names in the source. In this example, CatalogItem,

CatalogNr, and ShortName correspond respectively to Item, ItemNr, and Description.

We must compute Price in the target from the MSRP and MarkupPercent values in

the source, as Figure 2.8 shows. We assume the function CatalogNr-to-ItemNr is

either a hand-coded lookup table, or a manually-programmed function to translate

source catalog numbers to item numbers in the target. The underlying structure of

this mapping query corresponds directly to the relevant section of the C-XML model

instance in Figure 2.1, so integration is now immediate.

The mapping in Figure 2.8 creates a target-compatible C-XQuery view over the

acquired company’s catalog in Figure 2.7. When we now query the parent company’s

items, we also query the acquired company’s catalog. Thus, the previous examples

are immediately applicable. For example, we can find those customers who have

23

MarkupPercent

Description

MSRP

ShortName CatalogItem

CatalogNr

Figure 2.7: C-XML Model Instance for the Catalog of an Acquired Company.

define view CatalogItemToItem
{ for $cItem in CatalogItem

let $itemNr := CatalogNr-to-ItemNr($cItem)
let $price := $cItem/MSRP * (1 + $cItem/MarkupPercent)
return

<Item>

<ItemNr>{$itemNr}</ItemNr>
<Description>{$cItem/ShortName}</Description>

<Price>{$price}</Price>
</Item>

}

Figure 2.8: C-XQuery Mapping for Catalog Integration

ordered more than $300 worth of nitrogen fertilizer from either the inventory of the

parent company or the inventory of the acquired company by simply issuing the

query in Figure 2.6. With the acquired company’s catalog integrated, when the query

in Figure 2.6 iterates over customer orders, it iterates over data instances for both

Item in Figure 2.1 and CatalogItem in Figure 2.8. (Now, if the potential terrorist

has purchased, say $200 worth of nitrogen fertilizer from the original company and

$150 worth from the acquired company, the potential terrorist will appear on the list,

whereas the potential terrorist would have appeared on neither list before.)

We could also write a mapping query going in the opposite direction, with

Figure 2.1 as the source and Figure 2.7 as the target. Such bidirectional integration

is useful in circumstances where we need to shift between perspectives, as is often

the case in enterprise application development. This is especially true because all

enterprise data is rarely fully integrated.

In general it would be nice to have a mostly automated tool for generating

integration mappings. In order to support such a tool, we require two-way mappings

between both schemas and data elements. Sometimes we can use automated element

matchers [6, 31] to help us with the mapping. However, in other cases the mappings

24

are intricate and require programmer intervention (e.g. calculating Price from MSRP

plus a MarkupPercent or converting CatalogNr to ItemNr). In any case, we can write

C-XQuery views describing each such mapping, with or without the aid of tools (e.g.

[27]), and we can compose these views to provide larger C-XQuery schema mappings.

Of course there are many integration details we do not address here, such as handling

dirty data, but the approach of integrating by composing C-XQuery views is sound.

2.5 Concluding Remarks

We have offered Conceptual-XML (C-XML) as an answer to the challenge

of modern enterprise modeling. C-XML is equivalent in expressive power to XML

Schema (Theorems 1 and 2). In contrast to XML Schema, however, C-XML provides

for high level conceptualization of an enterprise. C-XML allows users to view schemas

at any level of abstraction and at various levels of abstraction in the same specification

(Theorem 3), which goes a long way toward mitigating the complexity of large data

sets and complex interrelationships. Along with C-XML, we have provided C-XQuery,

a conceptualization of XQuery that relieves programmers from concerns about the

often arbitrary choice of nesting and arbitrary choice of whether to represent values

with attributes or with elements. Using C-XQuery, we have shown how to define

views and automatically translate them to XQuery (Theorem 4). We have also shown

how to accommodate heterogeneity by defining mapping views over federated data

repositories and automatically translate them to XQuery.

Implementing C-XML is a huge undertaking. Fortunately, we have a foun-

dation on which to build. We have already implemented tools relevant to C-XML

that include graphical diagram editors, model checkers, textual model compilers, a

model execution engine, and several data integration tools. We are actively continuing

development of an Integrated Development Environment (IDE) for modeling-related

activities. Our strategy is to plug new tools into this IDE rather than develop stand-

alone programs. Our most recent implementation work consists of tools for automatic

generation of XML normal form schemes. We are now working on the implementation

25

of the algorithms to translate C-XML to XML Schema, XML Schema to C-XML, and

C-XQuery to XQuery.

26

Chapter 3

Representing Generalization/Specialization in XML Schema

3.1 Introduction

The scientific community has long recognized the importance of generaliza-

tion—and its inverse, specialization—as a fundamental and highly useful modeling

construct (see, for example, [36, 4]). Generalization/specialization is used broadly in

conceptual models such as UML [7], and EER [40], and in description logics [3]. The

main idea in generalization/specialization, also called the is-a relationship, is that

one set, class, or concept is a subset of another. If A is a generalization of B (or

equivalently, if B is a specialization of A), we say that B is a subset of A (B is-a

A). In general, concepts form a hierarchy wherein a generalization may have many

specializations, and a specialization may have many generalizations. It is often use-

ful, however, to define constraints over generalization/specialization hierarchies. For

example, we can declare two specializations of a common generalization to be mutu-

ally exclusive. We can also declare the specializations of a concept to be complete

in the sense that their union contains all members of the generalization. If both of

these constraints are present (a common occurrence), the specializations partition the

generalization space. A less common constraint is the situation where a specialization

constitutes the intersection of its multiple generalizations.

In this chapter we illustrate our examples using Conceptual XML (C-XML)

[20] which is a conceptual model consisting of object sets, relationship sets, and

27

* A2A1

C2

C1

B2

B1

B C

A

Figure 3.1: Generalization/Specialization in C-XML.

constraints over these object and relationship sets.1 In C-XML, we represent object

sets or concepts by writing names inside rectangles, with a solid border indicating a

nonlexical concept and a dashed border indicating a lexical concept. In Figure 3.1,

each nonlexical concept has two related lexical concepts whose relationship sets are

functional, indicated by arrows (e.g., for each A, there is exactly one A1, but multiple

A’s may have the same A1 value). In C-XML, a triangle denotes generalization/-

specialization. For example, in Figure 3.1 the set of objects in B is a subset of the

set of objects in A. C-XML allows modelers to constrain generalizations by writing a

constraint symbol in a triangle. A plus symbol (+) in indicates that the specialization

sets are mutually exclusive. A union symbol (∪), specifies that the set of objects in

the generalization is the union of the specialization object sets. A plus and union

together (⊎) specify that the specializations partition the generalization since there is

both a union and a mutual-exclusion constraint. An intersection symbol (∩) indicates

that the members of the specialization object set constitute the intersection of the

generalization object sets.

These simple definitions find many different, intricate, and complicating ex-

pressions in conceptual models and schema description languages. For example, a

typical object-oriented “class” is a type rather than a mathematical set, and it uses

the inheritance relationship and the notion of substitutability in place of the more

general concept of generalization/specialization and simple is-a semantics. This leads

1The particular choice of conceptual model is not critical to this chapter, since the various concep-
tual models and description logics typically have very similar underlying generalization/specialization
constructs.

28

to a potential mismatch between how we model the real world and how we implement

information systems.2

XML Schema has rapidly become the method of choice for describing XML

document structures. Since XML is the de facto standard for modern data inter-

change, it is important that we understand how to properly capture and enforce con-

straints on XML document structures. Thus, a number of researchers have studied

how to transform conceptual models into XML Schema. A chapter in [10] describes

how to translate a UML model instance into XML Schema. A chapter in [16] presents

Relax NG and introduces how to translate from the Asset Oriented Modeling con-

ceptual model into XML Schema. Yet another study shows how to translate Object

Role Modeling into XML Schema [5]. In each case, the discussion is about translation

in general and does not focus specifically on the problem of fully capturing all the

semantics of generalization/specialization. In this chapter we deal with the full details

of translating generalization/specialization and its constraints into XML Schema.

The remainder of the chapter proceeds as follows. In Section 3.2 we describe

the mechanisms available in XML Schema to represent generalization/specialization.

In Section 3.3 we show how to use those mechanisms to capture the semantics of

certain forms of generalization/specialization and its constraints. Since XML Schema

is incapable of fully representing all of the necessary semantics, in Section 3.4 we

describe a relatively small but important set of augmentations that would allow XML

Schema to do a complete job. We conclude in Section 3.5.

3.2 Generalization/Specialization Mechanisms in XML Schema

There are several mechanisms in XML Schema that support generalization/-

specialization. The foundational information construct in XML, of course, is the

element, which together with the attribute construct and element nesting is sufficient

to represent all data structures. So the starting point for any translation from a

conceptual model to XML is to map“concepts” to “elements.” Relationships typically

2Thus some developers adopt the rule of thumb that class derivation (inheritance) should only
be used when is-a also holds for the derivation relationship. But this rule is not applied universally.

29

map either to attributes or to nested elements. There are significant complications

when we consider finer points like object identity, but the overall process of structure

mapping is fairly clear-cut and generally intuitive.

However, once we have a basic structure encoded in XML, how can we capture

generalization/specialization relationships and their constraints? We find three con-

structs in XML Schema that support various aspects of generalization/specialization:

(1) derived types, (2) substitution groups, and (3) abstract elements. We consider

each construct in turn.

3.2.1 Derived Types

In XML Schema, each element has a type that describes valid element content.

Types come in two broad categories: simple and complex. One simple type can be

derived from another by restriction. For example, string is a simple type, and we can

specify a customized type, GenericTLD, as the set of strings that correspond to the

generic top-level internet domains by restricting the string type as follows:

<xs:simpleType name=“GenericTLD”>

<xs:restriction base=“xs:string”>

<xs:enumeration value=“com” />

<xs:enumeration value=“edu” />

<xs:enumeration value=“gov” />

<xs:enumeration value=“net” />

<xs:enumeration value=“org” />

. . .

</xs:restriction>

</xs:simpleType>

Similarly, complex types may be derived by restriction from a base type. Valid

restrictions include those that increase the constraints on attributes or elements in

the complex type in a way that is compatible with the base type. For example, an

30

optional element in the base type may be required in the derived type. Thus, the

derivation of both simple and complex types by restriction results in a set of allowed

values for the derived type that is a subset of the allowed values for the base type.

This notion is similar to the conceptual is-a relationship.

Extension of complex types involves creating a derived complex type whose

content model is a superset of its base type’s content model. When we extend a

complex type, we can add to the derived type extra attributes or elements in addition

to those found in the content model of the base type as follows:

<xs:complexType name=“A”>

<xs:sequence>

<xs:element name=“A1” type=“xs:string” />

<xs:element name=“A2” type=“xs:string” />

</xs:sequence>

</xs:complexType>

<xs:complexType name=“B”>

<xs:complexContent>

<xs:extension base=“A”>

<xs:sequence>

<xs:element name=“B1” type=“xs:string” />

<xs:element name=“B2” type=“xs:string” />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

In this case, type B is derived by extension from type A. In addition to in-

cluding A1 and A2 elements, B -type elements also include B1 and B2 elements.

31

The concept of a extension constitutes a form of generalization/specialization.

The element that we derive from its type contains the common properties of attributes

and elements. Thus, we consider it as a generalization element. The element that

derives its type from the type of the generalization element inherits all properties

of the generalization element and it also has additional properties of attributes and

elements that do not already exist in the generalization element. Thus, we consider

it as a specialization element.

3.2.2 Substitution Groups

In XML Schema, global elements can be organized into a substitution group,

wherein a particular set of elements can be substituted for a named element called

the head element. For example, if elements B and C were each declared to be substi-

tutable for A by including the attribute substitutionGroup=“A” in the declarations of

elements B and C, then the meaning is that B or C may appear anywhere that A is re-

quired. The presence of a substitution group does not require use of the substitutable

elements, nor does it preclude the use of the head element. It simply establishes a

way for a set of elements to be used interchangeably.

The concept of a substitution group constitutes a form of generalization/spe-

cialization, though it is not identical to the natural subset notion of generalization/-

specialization that corresponds to the is-a relationship described in the introduction.

Instead, a substitution group defines an equivalence class of elements that can be

used interchangeably. However, substitution groups can form hierarchies similar to

is-a hierarchies, and we can construe them to denote a relationship much like is-a.

Indeed, we argue that the use of a substitution group implies conceptual generaliza-

tion/specialization in the sense that one concept (a substitutable element) is a special

kind of another concept (the head element).

3.2.3 Abstract Elements and Types

It is possible to require the use of substitution for a particular element or type

by declaring it to be abstract. An element declared to be abstract cannot be used in

32

an instance document—a non-abstract substitutable element must be used instead.

Thus, declaring an element as abstract requires the specification of a substitution

group. Similarly, declaring a type to be abstract requires the use of concrete types

that extend the abstract type. In both cases, abstract elements are associated with

concept hierarchies that are related to the conceptual is-a relationship.

3.3 Representing Generalization/Specialization in XML Schema

Given the foundational XML Schema mechanisms described in Section 3.2,

we now turn our attention to how we can actually represent conceptual generaliza-

tion/specialization in XML Schema. There are two cases of conceptual generaliza-

tion/specialization that we are able to represent faithfully in XML Schema, two cases

that are problematic, and two other cases that are not possible (directly). When a

generalization/specialization hierarchy does not include multiple generalizations for

any specialization (i.e., no concept has more than one parent concept), we are able

to represent generalization/specialization relationships with partition and mutual-

exclusion constraints in a straightforward manner as we show in Section 3.3.1. We

are also able to represent union constraints and unconstrained generalization/spe-

cialization relationships, but as we describe in Section 3.3.2, these cases are more

problematic. In Section 3.3.3 we discuss the cases that we cannot model reasonably

in XML Schema, namely generalization/specialization relationships involving multiple

generalizations.

3.3.1 Straightforward Cases

The two straightforward cases of generalization/specialization constraints are

partition and mutual-exclusion. In both cases, we start by translating concepts into

elements and attributes, and relationship sets into attributes and nested elements.

The primary means for representing generalization/specialization in XML Schema is

captured by the notion of substitution groups, so we have chosen to represent each

generalization/specialization relationship with an XML Schema substitution group.

33

* A2A1

C2

C1

B2

B1

B C

A

Figure 3.2: Generalization/Specialization Partition Constraint in C-XML.

We now describe how to represent partition and mutual-exclusion constraints in XML

Schema.

Partition Constraints

Figure 3.2 shows a C-XML model instance where specialized concepts B and

C form a partition of the general A concept. In set terminology, we say that B ∪ C

= A and B ∩ C = {}. Figure 3.3 shows our XML Schema translation of this model

instance.

The translation from C-XML in Figure 3.2 to XML Schema in Figure 3.3

proceeds as follows. We begin by introducing Document as a root-level node that

contains a sequence of A elements. We declare A as an abstract type whose content

is defined by the complex type Atype (line 11). Since A is abstract, it cannot appear

independently in an instance document—either B or C must be substituted. This

serves the purpose of covering the union constraint (recall that partition is the com-

bination of union and mutual exclusion), since A must necessarily be defined as the

union of the set of B ’s and C ’s that actually appear in the instance document.

Atype declares that the content model of A includes exactly one A1 element

and exactly one A2 element (lines 12-16). Furthermore, we define an object identifier

attribute OID of type ID (line 17) that serves as a unique identifier for each A. XML

Schema defines the special ID type to be unique across an entire document instance.

Since B and C must be mutually exclusive, we can ensure that the sets are disjoint

simply by providing a unique surrogate identifier for each element. A key point here is

how we deal with the issue of object identity. How do we know whether a B element

34

1: <?xml version="1.0" encoding="UTF-8"?>

2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3: elementFormDefault="qualified" attributeFormDefault="unqualified">

4: <xs:element name="Document">

5: <xs:complexType>

6: <xs:sequence minOccurs="0" maxOccurs="unbounded">

7: <xs:element ref="A" />

8: </xs:sequence>

9: </xs:complexType>

10: </xs:element>

11: <xs:element name="A" type="Atype" abstract="true" />

12: <xs:complexType name="Atype">

13: <xs:sequence>

14: <xs:element name="A1" minOccurs="1" maxOccurs="1" />

15: <xs:element name="A2" minOccurs="1" maxOccurs="1" />

16: </xs:sequence>

17: <xs:attribute name="OID" type="xs:ID" use="required" />

18: </xs:complexType>

19: <xs:element name="B" type="Btype" substitutionGroup="A" />

20: <xs:complexType name="Btype">

21: <xs:complexContent>

22: <xs:extension base="Atype">

23: <xs:sequence>

24: <xs:element name="B1" type="xs:string" minOccurs="1" maxOccurs="1" />

25: <xs:element name="B2" type="xs:string" minOccurs="1" maxOccurs="1" />

26: </xs:sequence>

27: </xs:extension>

28: </xs:complexContent>

29: </xs:complexType>

30: <xs:element name="C" type="Ctype" substitutionGroup="A" />

31: <xs:complexType name="Ctype">

32: <xs:complexContent>

33: <xs:extension base="Atype">

34: <xs:sequence>

35: <xs:element name="C1" type="xs:string" minOccurs="1" maxOccurs="1" />

36: <xs:element name="C2" type="xs:string" minOccurs="1" maxOccurs="1" />

37: </xs:sequence>

38: </xs:extension>

39: </xs:complexContent>

40: </xs:complexType>

41: </xs:schema>

Figure 3.3: XML Schema Translation of C-XML in Figure 3.2.

and a C element represent the same A object? Since A, B, and C are all nonlexical,

we need to associate object identifiers with them. Attribute OID serves this purpose,

and because OID must be unique across all elements, we are guaranteed that no B

element will have the same OID value as some C element. Hence we know that B

and C are mutually exclusive (even if a B object and a C object share the same A1

and A2 values).

The remainder of Figure 3.3 accounts for the specialized structure of B and

C, each with its own pair of related concepts. Elements B and C are members of

the substitution group whose head element is A (lines 19 and 30). Both elements B

35

* A2A1

C2

C1

B2

B1

B C

A

Figure 3.4: Generalization/Specialization Mutual-Exclusion Constraint in C-XML.

and C derive their content models by extension from the base Atype (lines 20-29 and

31-40 respectively).

Mutual-Exclusion Constraints

Figure 3.4 shows a C-XML model instance that is similar to the model in-

stance in Figure 3.2, except that the partition constraint is replaced with the weaker

mutual-exclusion constraint. The translation of the model instance to XML Schema

is identical to the partition-constraint case with one exception. Since the C-XML

model instance in Figure 3.4 does not force A to be the union of B and C, there may

be A’s present that are in neither B nor C. That is, we still have B ∩ C = {}, but

we no longer have B ∪ C = A. Instead, we merely know that B ∪ C ⊆ A. Thus we

must allow instances of the A element to be directly present in the XML document

instance. We accomplish this by repeating the same translation as before except we

declare element A not to be abstract. The only thing that changes from Figure 3.3 is

that on line 11 we write abstract=“false” instead of abstract=“true”.

Partition and mutual-exclusion constraints on generalization/specialization re-

lationships are fairly straightforward to represent in XML Schema without introduc-

ing many artifacts. The two additional information-carrying elements in the XML

Schema translation are the Document element, since XML requires a single root-

level container element, and the OID attribute, which is necessary to capture object

identity semantics. We now proceed to the more difficult union constraint and un-

constrained generalization/specialization.

36

3.3.2 Problematic Cases in XML Schema

In contrast with the straightforward translation of partition and mutual-ex-

clusion constraints from C-XML to XML Schema, unconstrained generalization/spe-

cialization and generalization/specialization with only a union constraint are more

difficult to handle, and the mapping approach is not entirely satisfactory.

Generalization/Specialization without any Constraint

Figure 3.1 shows an unconstrained generalization/specialization relationship,

where A is the general concept and B and C are specializations of A. In set notation

we write B ⊆ A and C ⊆ A. In particular, this allows for the possibility that the

intersection of B and C is non-empty. And that is where the chief difficulty arises—

how do we enforce object identity when B ∩ C 6= {}? Figure 3.5 shows the best we

can do with the available mechanisms in XML Schema to represent this case.

The differences between Figure 3.5 and Figure 3.3 are (1) element A is not

abstract, thus relaxing the union constraint, and (2) the object identifier attribute

OID is not of type ID, and so we do not enforce uniqueness, thus relaxing the mutual-

exclusion constraint.

A, B, and C are still nonlexical concepts, and so they should have an identity

in the corresponding XML Schema translation. We can argue that two elements in

an XML document instance with the exact same values still have distinct identities

because they are written separately in the XML document. Thus we can distinguish

between the element instance written first in the document and the element instance

written second. However, consider the case where an object is a member of both B

and C. Since we have no combined type to represent a B/C element, we must write

the element first as a B, and then using the same values for OID, A1, and A2, we must

write the element as a C. Now the conceptual object that is a member of B and C

is represented as two separate XML elements tied together by a common OID value.

Besides introducing an update anomaly over A1 and A2, we are in the unsatisfying

position of not being able to enforce uniqueness of OID.

37

1: <?xml version="1.0" encoding="UTF-8"?>

2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3: elementFormDefault="qualified" attributeFormDefault="unqualified">

4: <xs:element name="Document">

5: <xs:complexType>

6: <xs:sequence minOccurs="0" maxOccurs="unbounded">

7: <xs:element ref="A" />

8: </xs:sequence>

9: </xs:complexType>

10: </xs:element>

11: <xs:element name="A" type="Atype" abstract="false" />

12: <xs:complexType name="Atype">

13: <xs:sequence>

14: <xs:element name="A1" minOccurs="1" maxOccurs="1" />

15: <xs:element name="A2" minOccurs="1" maxOccurs="1" />

16: </xs:sequence>

17: <xs:attribute name="OID" type="xs:string" use="required" />

18: </xs:complexType>

19: <xs:element name="B" type="Btype" substitutionGroup="A" />

20: <xs:complexType name="Btype">

21: <xs:complexContent>

22: <xs:extension base="Atype">

23: <xs:sequence>

24: <xs:element name="B1" type="xs:string" minOccurs="1" maxOccurs="1" />

25: <xs:element name="B2" type="xs:string" minOccurs="1" maxOccurs="1" />

26: </xs:sequence>

27: </xs:extension>

28: </xs:complexContent>

29: </xs:complexType>

30: <xs:element name="C" type="Ctype" substitutionGroup="A" />

31: <xs:complexType name="Ctype">

32: <xs:complexContent>

33: <xs:extension base="Atype">

34: <xs:sequence>

35: <xs:element name="C1" type="xs:string" minOccurs="1" maxOccurs="1" />

36: <xs:element name="C2" type="xs:string" minOccurs="1" maxOccurs="1" />

37: </xs:sequence>

38: </xs:extension>

39: </xs:complexContent>

40: </xs:complexType>

41: </xs:schema>

Figure 3.5: XML Schema Translation of C-XML in Figure 3.1.

The alternative is even less satisfying. We could include a combined B/C type,

but there would still be two major problems. First, there would be an exponential

explosion of potential combinations (imagine having just 10 or 20 specializations of

one general concept—the XML Schema would be unwieldy to say the least). Second,

we would break the nice correspondence between substitution groups and generaliza-

tion/specialization. So, for example, a combined B/C element would let us create B

elements that do not directly relate to the B element which represents the B concept

in our conceptual model. Iterating over the set of B elements would become needlessly

difficult.

38

* A2A1

C2

C1

B2

B1

B C

A

Figure 3.6: Generalization/Specialization Union Constraint in C-XML.

The advantages of our chosen approach are that it aligns more closely with

the conceptual model structure, and we can enforce the appropriate constraints by

post-processing outside of the ordinary XML Schema constraint enforcement mecha-

nisms. Nonetheless, as we explore in Section 3.4, a fully satisfactory approach requires

extensions to XML Schema.

Union Constraint

Figure 3.6 shows a C-XML model instance similar to the previous case except

with a union constraint on the generalization/specialization relationship. For this

case, our translation approach is similar to the unconstrained case in Figure 3.5 except

we declare the element A to be abstract so that it cannot be instantiated directly in

a document instance. With a union constraint, we know that B ∪ C = A, and so we

must prevent the situation where an A exists that is neither in B nor C. Specifying

abstract=“true” for A accomplishes this.

Unfortunately, our solution in this case suffers from the same problems we de-

scribe in Section 3.3.2, and so we are not fully satisfied with the outcome. Nonetheless,

it is possible to faithfully represent the conceptual structures of our C-XML model

instances in all these cases, even though we sometimes cannot enforce the constraints

fully in XML Schema. The unifying mechanism of our C-XML-to-XML Schema trans-

lation of generalization/specialization is that we use substitution groups to represent

the generalization/specialization hierarchy.

39

B

C

A B

C

A

Figure 3.7: Multiple Generalizations in C-XML.

3.3.3 The Problem of Multiple Generalizations

The correspondence between generalization/specialization and substitution

groups breaks down when we consider multiple generalizations. Figure 3.7 shows

a simple C-XML model instance where concept C is a specialization of both A and

B, so that C ⊆ A and C ⊆ B. When we specify an intersection constraint on the

generalization/specialization, we further require that A ∩ B = C. As with the uncon-

strained generalization/specialization case, we must be able to handle the situation

where an object is a member of more than one concept. Thus we will rely on the

same OID mechanism as before.

However, for these cases, we simply have no way of specifying in XML Schema

that an element is a member of two substitution groups. The philosophy of XML

Schema 1.0 was to implement single inheritance only. Five years ago, one of the

editors of the XML Schema standard acknowledged that this is a problem and that

the working group might consider adding support for multiple inheritance in the

future [17]. However, since inheritance combines the is-a construct with a code-reuse

mechanism, it is not clear that simply adding multiple inheritance will resolve the

problem of supporting conceptual generalization/specialization appropriately. We

agree that extension from multiple types would be useful, but conceptually what we

need even more is the ability for an element to participate in multiple substitution

groups. (See [15] for ideas on this topic generated in a different but related context.)

40

3.4 Resolving the Conceptual Modeling Issues

There are two general approaches we can take to resolve the issues we have

raised with respect to capturing conceptual generalization/specialization constructs

in XML Schema. First, we could implement constraint-checking external to XML

Schema to enforce the meaning of the conceptual model within corresponding XML

documents. Alternatively, we could augment XML Schema with a few modest exten-

sions that will support conceptual generalization/specialization directly.

3.4.1 Post-Processing to Enforce Constraints

Section 3.3.2 describes a somewhat unsatisfactory approach to mapping uncon-

strained and union-constrained generalization/specialization to XML Schema. What

is missing in these cases is appropriate enforcement of object identity uniqueness.

Consider the C-XML model instance in Figure 3.1 and its translation to XML Schema

in Figure 3.5. If we were to add pragmas to the XML Schema instance to indicate

that B ⊆ A and C ⊆ A, a post-processor could examine the corresponding document

instance and determine whether the object identities are all appropriate. The post-

processor would need to verify the following: (1) OID is vertically unique across the

generalization/specialization hierarchy (so, for example, there is no B element whose

OID value is identical to some A element), and (2) when two OID values are the

same in two sibling classes, they also share the same A1 and A2 values.

To implement multiple generalizations, we would need to take a somewhat

different approach to laying out the C-XML concepts as XML elements. Instead of

relying on substitution groups to map one-to-one with generalization/specialization,

we would need to write pragmas to indicate the structure of the conceptual gen-

eralization/specialization relationships. So we might write in a specially-formatted

comment, for example, that C is a specialization of both A and B, and if an intersec-

tion constraint were present we would also note that. A post-processor could readily

parse the pragmas and check whether the specified constraints hold. However, since

XML Schema would have no way of tying C directly to A and B, we would need to

rewrite the schema so that any reference to A or B could be replaced by a C element

41

instead. In general, we could use this strategy to handle all generalization/speciali-

zation relationships and constraints.

Certainly the post-processor methodology has significant drawbacks; we now

explore a cleaner approach.

3.4.2 Proposed Extensions to XML Schema

Perhaps the best way to implement conceptual generalization/specialization

in XML Schema is to augment XML Schema with a few extensions. For multiple

generalizations, it would be straightforward to extend the substitutionGroup attribute

on a substitutable element so that it admits a list of multiple head elements. For

example, to capture the generalization/specialization hierarchy of Figure 3.7, we could

write the following:

<xs:element name=“C” substitutionGroup=“A,B” />

And if there were an intersection constraint present, we could note it with a

distinguished keyword, for example:

<xs:element name=“C” intersectionGroup=“A,B” />

To capture the concept of union-constrained generalization/specialization, we

need to mark head elements with the appropriate constraints. For example, we could

mark the union constraint of Figure 3.6 in this manner:

<xs:element name=“A” union=“B,C” />

Similarly, mutual-exclusion and partition constraints could replace the word

union with mutex and partition, respectively.

Finally, to cover the aforementioned cases and to handle unconstrained gener-

alization/specialization, we would need to attach unique object identifiers uniformly

to all elements in all substitution groups. We could do this by modifying XML

Schema to automatically assert the existence of an OID attribute for all elements in

a substitution group, including the head element(s) and all substitutable elements.

42

3.5 Conclusion

Generalization/specialization is an important structure in conceptual model-

ing, but it is often difficult to implement faithfully in XML Schema. This leads to

XML Schema instances that are unnecessarily complex or that misrepresent the orig-

inal semantics of a conceptual model. To compound the problem, it is often the

case that inheritance combines the properties of the conceptual is-a relationship with

the notion of code reuse. This can sometimes cause awkward structures that are

implemented efficiently but do not correspond to a natural conceptual model.

The contributions of this chapter include the following:

• We have characterized the nature of conceptual generalization/specialization

and have shown how it corresponds to structures in XML Schema.

• We have identified a small set of constructs that could augment XML Schema

so that it would fully support conceptual generalization/specialization.

If our proposal were adopted, it would result in better alignment between con-

ceptual models and corresponding XML Schema instances, and the resulting schemas

would have the added benefit of being substantially less complex than the alternatives.

Given the inherent complexity of enterprise application modeling and development,

these advantages could be significant.

43

44

Chapter 4

Augmenting Traditional Conceptual Models

to Accommodate XML Structural Constructs

4.1 Introduction

Recently, many organizations have begun to store their data using XML, and

XML Schema has become the preeminent mechanism for describing valid XML docu-

ment structures. Moreover, the number of applications that use XML as their native

data model have increased. This increases the need for well-designed XML data

models and the need for a conceptual model for designing XML schemas.

Several commercial tools provide support for graphically representing XML

Schema structures. Visual Studio .NET [29] from Microsoft, Stylus Studio [38] from

DataDirect Technologies, and XML Spy [37] from Altova all have their own propri-

etary methods for graphically representing XML structures. Each of them includes a

graphical XML Schema editor that uses connected rectangular blocks to present the

schema. Although these products provide visual XML Schema editing tools, they do

not raise the level of abstraction because they only provide a direct view of an XML

Schema document. Thus, these graphical representations do not serve the objective

of conceptualizing XML Schema to be used in modeling and design.

In systems modeling and design, traditional conceptual models have proven to

be quite successful for graphically representing data at a higher level of abstraction.

Conceptual models represent components and their relationships to other components

in the system under study in a graphical way, at a conceptual level of understanding.

45

Popular conceptual models that achieve these objectives are ER [11], extended ER

models [40], and UML [7, 41].

XML Schema, however, introduces a few features that are not explicitly sup-

ported in these and similar conceptual models. The most important of these features

include the ability to (1) order lists of concepts, (2) choose alternative concepts from

among several, (3) declare nested hierarchies of information, (4) specify mixed con-

tent, and (5) use content from another data model.

The chapter makes the following contributions. First, it proposes conceptual

representation for XML content structures that are not explicitly present in tradi-

tional conceptual models. Second, based on the underlying idea of the proposed

representation, it suggests ways to represent missing XML content structures in two

of the most popular conceptual models, ER and UML.

We present the details of our contributions as follows. Section 4.2 lists criteria

an XML conceptual model should satisfy. Section 4.3 describes the structural con-

structs in XML Schema that are missing in traditional conceptual models. Section

4.4 explains how we model these features of XML Schema in a modeling language we

call Conceptual XML (C-XML). Section 4.5 compares our proposal with other pro-

posals for ways to extend some traditional conceptual models to represent some XML

features and shows how to adapt C-XML representations for traditional conceptual

models. Section 4.6 summarizes and draws conclusions.

4.2 XML Modeling Criteria

Lists of requirements for XML conceptual models have been presented in [42],

[35], and [28]. Some of these requirements cover general goals of conceptual modeling,

while others are specific to XML. General requirements include the following:

• Graphical notation. The notation should be graphical and should be user-

friendly [28, 35, 42].

• Formal foundation. The conceptual model should have a formal foundation

[28, 35, 42].

46

• Structure independence. The notation should ensure that the basics of the

conceptual model are not influenced by the underlying structure, but reflect

only the conceptual components of the data [28, 35, 42].

• Reflection of the mental model. The conceptual model must be consistent with a

designer’s mental conceptualization of objects and their interrelationships [35].

For example, there should be no distinction between element and attribute on

the conceptual level, and hierarchies should not be required.

• N-ary relationship sets. The conceptual model should be able to represent n-ary

relationship sets at the conceptual level [28].

• Views. It should be possible to transform the model to present multiple user

views [28].

• Logical level mapping. There should be algorithms for mapping the conceptual

modeling constructs to XML Schema [28, 42].

• Constraints. The conceptual model should support common data constraints

such as cardinality and uniqueness constraints [35].

• Cardinality for all participants. The hierarchical structure of XML data restricts

the specification of cardinality constraints only to nested participants; however,

it should be possible to specify cardinality constraints for all participants at the

conceptual level [28].

• Ordering. The conceptual model should be able to order a list of concepts

[28, 35].

• Irregular and heterogeneous structure. The conceptual model should introduce

constructs for modeling irregular and heterogeneous structure [28].

• Document-centric data. The conceptual model should be able to represent the

mixed content and open content that XML Schema provides [28, 35, 42].

47

4.3 Missing Modeling Constructs

In this section we give an overview of the structural constructs in XML Schema

that are missing in traditional conceptual models. We explain each and give a mo-

tivating example, which we also use in later sections to illustrate conceptual model

augmentations.

The sequence structure specifies that the child concepts declared inside it must

appear in an XML document in the order declared. Each ordered child concept can

occur zero or more times within the sequence constrained by minOccurs and max-

Occurs attributes. Likewise, the entire sequence itself can occur zero or more times.

The default value for both minOccurs and maxOccurs is always 1. The sequence con-

struct may include several types of child constructs: element, group, choice, sequence,

and any. Lines 15–23 in Figure 4.1 specify that in a complying XML document

an element School contains a sequence of required SchoolName, SchoolAddress, and

SchoolID elements, and an optional SchoolMascot element.

The choice structure specifies that for each choice only one of the child concepts

declared within it can appear in an XML document. Each child concept in the

choice can occur zero or more times within the choice constrained by minOccurs and

maxOccurs attributes. Likewise, the entire choice itself can occur zero or more times.

The default value for minOccurs and maxOccurs for both the entire choice and the

component children is 1. The choice construct may include several types of child

constructs: element, group, choice, sequence, and any. In Figure 4.1, lines 47–55

specify that in a complying XML document an element ContactInfo contains one or

two choices, and each choice contains either one PhoneNumber, one Email, or one

Fax.

By default, structural constructs in XML Schema can contain child elements,

but not text. To allow mixed content (child elements and text), XML Schema pro-

vides a mixed attribute that can be set to true. In Figure 4.1, lines 43–58 show an

example of mixed content for a complex type. Setting mixed to true enables character

data to appear between the child elements of RecommendationLetter in a complying

XML document. Thus, the content of RecommendationLetter may, for example, be

48

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="StudentInfo">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:choice>

7 <xs:element name="Name" type="xs:string"/>

8 <xs:sequence>

9 <xs:element name="FirstName" type="xs:string"/>

10 <xs:element name="MiddleName" type="xs:string" minOccurs="0" maxOccurs="2"/>

11 <xs:element name="LastName" type="xs:string"/>

12 </xs:sequence>

13 </xs:choice>

14 <xs:sequence maxOccurs="5">

15 <xs:element name="School">

16 <xs:complexType>

17 <xs:sequence>

18 <xs:element name="SchoolName" type="xs:string"/>

19 <xs:element name="SchoolAddress" type="xs:string"/>

20 <xs:element name="SchoolID" type="xs:string"/>

21 <xs:element name="SchoolMascot" type="xs:string" minOccurs="0"/>

22 </xs:sequence>

23 </xs:complexType>

24 <xs:key name="schoolKey">

25 <xs:selector xpath=".//School"/>

26 <xs:field xpath="SchoolName"/>

27 <xs:field xpath="SchoolAddress"/>

28 </xs:key>

29 <xs:key name="schoolIDKey">

30 <xs:selector xpath=".//School"/>

31 <xs:field xpath="SchoolID"/>

32 </xs:key>

33 </xs:element>

34 <xs:element name="GraduationDate" minOccurs="0">

35 <xs:complexType>

36 <xs:sequence>

37 <xs:element name="Month" type="xs:string"/>

38 <xs:element name="Year" type="xs:string"/>

39 </xs:sequence>

40 </xs:complexType>

41 </xs:element>

42 </xs:sequence>

43 <xs:element name="RecommendationLetter" minOccurs="0" maxOccurs="3">

44 <xs:complexType mixed="true">

45 <xs:all>

46 <xs:element name="ProfessorName" type="xs:string"/>

47 <xs:element name="ContactInfo">

48 <xs:complexType>

49 <xs:choice maxOccurs="2">

50 <xs:element name="PhoneNumber" type="xs:string"/>

51 <xs:element name="Email" type="xs:string"/>

52 <xs:element name="Fax" type="xs:string"/>

53 </xs:choice>

54 </xs:complexType>

55 </xs:element>

56 </xs:all>

57 </xs:complexType>

58 </xs:element>

59 <xs:any namespace="##other" minOccurs="0"/>

60 </xs:sequence>

61 <xs:attribute name="StudentNumber" type="xs:ID" use="required"/>

62 <xs:anyAttribute namespace="##any"/>

63 </xs:complexType>

64 </xs:element>

65 </xs:schema>

Figure 4.1: More Example of Choice/Sequence Structures in XML Schema.

49

“<RecommendationLetter> <ProfessorName> Dr. Jones </ProfessorName> rec-

ommends this student. Email <ContactInfo><Email>jones@ univ.edu </Email>

</ContactInfo> with questions. </RecommendationLetter>”.

The any and anyAttribute structures of XML Schema let designers reuse com-

ponents from foreign schemata or namespaces. The any structure allows the inser-

tion of any element belonging to a list of namespaces, and it can have minOccurs

and maxOccurs attributes to define the number of occurrences of the any construct.

The anyAttribute structure allows the insertion of any attribute belonging to a list

of namespaces. Both any and anyAttribute can have namespace and processContents

as attributes. The attribute namespace specifies the namespaces that an XML val-

idator examines to determine the validity of an element in an XML document. The

attribute processContents specifies how the XML processor should handle validation

against the elements specified by the any or anyAttribute. In Figure 4.1, the any

element in line 59 specifies that zero or more elements from any other namespace can

appear after the RecommendationLetter element. Further, the anyAttribute specifica-

tion in line 62 indicates that the StudentInfo element can have additional attributes

from any namespace. When processContents is strict, the XML processor must obtain

the schema for the required namespaces and validate the elements. When processCon-

tents is set to lax, the XML processor attempts the same processing as for strict, but

ignores errors if validation fails. When processContents is skip, the XML processor

does not attempt to validate any elements from the specified namespaces.

In XML Schema, it is possible to nest structural constructs, thus forming

a hierarchy of nested constructs. In Figure 4.1, for example, StudentInfo has the

attributes StudentNumber and anyAttribute, and it also contains the following struc-

tures in order: first, either a Name or a sequence of one FirstName, zero to two

MiddleName’s, and one LastName; second, one to five sequences such that each

sequence includes one SchoolName, one SchoolAddress, and an optional Graduation-

Date (the GraduationDate itself contains a Month followed by a Year); third, an

50

element RecommendationLetter that has two elements, ProfessorName and Contact-

Info (ContactInfo in turn contains one to two choices such that in each choice either

PhoneNumber or Email or Fax is specified); and fourth, an optional any element.

4.4 C-XML

In this section we propose an enrichment to represent XML Schema content

structures that are usually missing in traditional conceptual models. Since hyper-

graphs provide a general representation for conceptual models, we begin with an

augmented hypergraph whose vertices and edges are respectively object sets and re-

lationship sets, and whose augmentations consist of decorations that represent con-

straints. A hypergraph foundation is amenable to the requirements of XML Schema,

and thus this choice simplifies the correspondence between conceptual models and

XML Schema. We call our representation Conceptual XML (C-XML).

We derive C-XML from OSM [19], a hypergraph-based conceptual model that

defines structure in terms of object sets (or concepts), relationship sets, and con-

straints over these object and relationship sets. Figure 4.2 shows a C-XML model

instance that corresponds to the XML schema of Figure 4.1. An object set with a

solid border indicates a nonlexical concept, a dashed border indicates a lexical con-

cept, and a double solid/dashed border indicates a mixed concept.1 A shaded object

set indicates a high-level object set that groups other object and relationship sets into

a single object set. Lines connecting object sets are relationship sets. A participation

constraint specifies how many times an object in a connected relationship may par-

ticipate in a relationship set. For the most common participation constraints (0:1,

1:1, 0:*, and 1:*), C-XML uses graphical notation as a shorthand: (1) an “o” on a

connecting relationship-set line designates optional participation, while the absence of

an “o” designates mandatory, and (2) an arrowhead specifies a functional constraint,

limiting participation of objects on the tail side of the arrow to be at most one.

1In an XML document, the content string for a mixed concept might be interspersed among a
number of child nodes. However, in C-XML the mixed concept does not explicitly specify how text
and child elements can be interleaved. If the pattern for interspersing chunks of the string among
child nodes matters, then the user must model text nodes explicitly (in combination with a sequence
structure) rather than use the generic mixed construct.

51

The sequence structure representation must be able to specify concepts in a

sequence in a particular order. Also, the representation must be able to specify the

minimum and maximum numbers of occurrence of the whole sequence and of each

child element within the sequence. For C-XML we let a bounded half circle with

a directional arrow represent a sequence. The sequenced child concepts connect to

the curved side, and the parent concept that contains the sequenced child concepts

connects to the flat side. We place participation constraints for the entire sequence

near the connection to the parent. We place participation constraints for each child

near the curved side of the sequence symbol. Note that C-XML has participation

constraints that represent the minimum and maximum number of occurrences of the

sequence in the relationship set between the parent and the sequence. C-XML also

allows participation constraints that represent the minimum and maximum allowed

occurrences of the sequence in the relationship set between the sequence and each

sequenced child concept.

The representation for choice is similar in appearance to the representation

for sequence, but instead of an arrow we use a vertical bar to indicate choice.

For any and anyAttribute we use a high-level object set to indicate that it

contains some content from another schema. XML Schema is not specific enough

to designate which concept, and thus we cannot specify which concept. We there-

fore name these concepts “any”. Conceptually, in C-XML whether the concept is an

attribute or an element does not matter, and we do not distinguish between these

cases.

We now evaluate C-XML with respect to the criteria for XML conceptual

models in Section 4.2.

• Graphical notation. We have presented a sufficient graphical notation, but this

is just one possibility among many.

• Formal foundation. OSM has a solid formal foundation in terms of predicate

calculus (see Appendix A of [19]). In OSM, each object set maps to a one-

place predicate, and each n-ary relationship set (n ≥ 2) relationship set maps

52

Figure 4.2: Sequence/Choice Structures for Figure 4.1.

to an n-place predicate. Each constraint (e.g. a participation constraint) maps

to a closed predicate-calculus formula. In the appendix of this chapter we

provide formal representations for the added features for C-XML: sequence,

choice, mixed content, and general co-occurrence constraints.

• Structure independence. XML in general, and XML Schema in particular, are

strongly hierarchical in nature. C-XML is capable of representing the hierarchi-

cal aspect of XML Schema, but C-XML is more general, flexible, and conceptual.

For example, C-XML allows multiple sequence and choice structures to be as-

sociated directly with a single concept (XML Schema allows only one sequence

or choice structure for the content of an element). Also, C-XML supports the

intermixing of ordinary relationship sets with sequence and choice structures.

From this conceptual structure, we can derive many possible hierarchical rep-

resentations. Similarly, C-XML defines generalized versions of the concepts of

53

sequence, choice, and mixed content. C-XML provides a conceptual perspective

that is structurally independent of XML Schema.

• Reflection of the mental model. Given its structure independence and gener-

ality, C-XML is well suited to reflect the mental model (design) of a modeler.

C-XML can represent hierarchical and non-hierarchical structure. Conceptu-

ally, whether a concept is an attribute or an element does not matter, and

C-XML does not distinguish between them. C-XML is also able to represent

both sequences among related entities and non-sequences among related enti-

ties. Choices among alternative related entities are also possible, and choice

is distinct from generalization/specialization so that neither is overloaded. C-

XML supports mixed content and open content. Finally, C-XML provides for

all XML cardinality constraints; indeed it provides for a very large spectrum of

cardinality constraints [24] encompassing and going beyond those provided by

XML.

• N-ary relationship sets. C-XML supports n-ary relationship sets, (n ≥ 2).

• Views. High-level object sets constitute a formal view mechanism, as do high-

level relationship sets [19]. As described above, C-XML also can represent both

hierarchical and non-hierarchical views.

• Logical level mapping. We have implemented automatic conversions from XML

Schema to C-XML and vice versa.

• Constraints. C-XML supports several kinds of constraints: set constraints,

referential-integrity constraints, cardinality constraints, and general constraints.

• Cardinality for all participants. C-XML goes further than XML Schema, even

allowing cardinality constraints for children of a sequence or choice.

• Ordering. C-XML explicitly supports ordering with its sequence construct.

54

Figure 4.3: Best Representation of Figure 4.1 using XER Notation.

• Irregular and heterogeneous structure. The features that give C-XML its struc-

ture independence (described above) provide for the modeling of irregular and

heterogeneous structure.

• Document-centric data. C-XML is able to represent both mixed content and

open content.

4.5 Augmenting ER and UML

A number of conceptual modeling languages for XML Schema have been de-

scribed in the literature. Sengupta and Mohan [33] and Necasky [28] present fairly

recent surveys. As we explain in this section, however, most of these efforts do not

support the full generality of XML Schema.

4.5.1 ER

Sengupta et al. [34] propose XER as an extension to the ER model for XML.

Figure 4.3 shows an example of XER; in fact, it shows the best that can be done to

represent the XML schema in Figure 4.1. As we will see, it does not capture all the

concepts and constraints in the XML schema in Figure 4.1.

55

Figure 4.4: Possible Way to Represent XML Schema Document in Figure 4.1 in
ER-XML.

XER represents an entity such as StudentInfo or GraduationDate using a rec-

tangle with a title area giving the name of the entity and the body giving the at-

tributes. For example, in Figure 4.1, Month and Year are sequenced elements nested

under the element GraduationDate, so in Figure 4.3 Month and Year are represented

as attributes for the GraduationDate entity. Multi-valued attributes are also allowed;

their multiplicity constraints are in parentheses. MiddleName, for example, is a multi-

valued attribute with a multiplicity (0,2). XML attributes in an XER entity are pre-

fixed with @, and key attributes are underlined. The attribute StudentNumber is a

key in Figure 4.1, so in Figure 4.3 it appears as an underlined attribute with a prefix

of @.

An XER entity can be ordered or unordered. Additionally, an XER entity can

be mixed.

• Ordered Entity. XER entities are ordered by default from top to bottom. The

ordered entity GraduationDate in Figure 4.3 indicates that its attributes are

ordered first Month, then Year.

56

• Unordered Entity. An unordered entity is represented by placing a question

mark (?) in front of the entity name. StudentInfo in Figure 4.3 is an unordered

entity.

• Mixed Entity. A mixed entity is represented in XER using a rounded rectangle.

RecommendationLetter in Figure 4.3 is a mixed entity.

XER relationships denote a connection between two or more entities, but in

XER they can also denote that a complex entity contains a complex element as one

of its sub-elements. When an entity E in XER has an attribute A and this attribute

A by itself is an entity that contains other attributes, then A appears in the XER

diagram twice, once as an attribute inside the entity E, and once as an entity A. In

addition, there is a connection between the attribute A inside the entity E and the en-

tity A. If minA:maxA is the participation constraint on A within E and minE:maxE

is the participation constraint on E for A, minA:maxA appears on the side of the

attribute A within E, and minE:maxE appears on the side of the entity A. For ex-

ample, RecommendationLetter has two attributes ProfessorName and ContactInfo,

but ContactInfo by itself is an entity. Thus, a relationship set appears between the

attribute ContactInfo inside RecommendationLetter and the entity ContactInfo. A

participation constraint of 1:1 appears on the side of the attribute ContactInfo inside

RecommendationLetter to denote that RecommendationLetter has one ContactInfo,

and a participation constraint of 1:N appears on the ContactInfo entity side to denote

that ContactInfo is for one or more RecommendationLetters.2

XER represents the choice concept in XML Schema as a generalization/speciali-

zation. The generalization term in XER refers to the concept of having an entity that

can have different specialization entities in an is-a relationship. XER represents a gen-

eralization using a covering rectangle containing the specialized XER entities. This,

the authors claim in [34], is equivalent to using the“xs:choice”tag in XML Schema. In

Figure 4.3 the rectangle representing the entity ContactInfo contains the rectangles

of entities of choice elements PhoneNumber, Email, and Fax.

2Although ER more commonly uses look-across cardinality constraints, the designers of XER
have chosen to use participation constraints [34].

57

Comparing the conceptual components for C-XML (e.g. Figure 4.1) and XER

(e.g. Figure 4.3), we see that several constructs and constraints are missing in XER.

First, XER lacks the ability to represent the minimum and the maximum occurrence

of the whole sequence or choice within a containing entity when either of their values

is more than 1. For example, XER cannot represent the minimum and maximum

occurrence of 1 to 2 for the choice within the entity ContactInfo. Second, XER has

no representation for any and anyAttribute structures. For example, in Figure 4.3

the entity StudentInfo is missing the anyAttribute, and the sequence contained inside

the StudentInfo entity does not have any. Third, XER has no representation for

composite keys. For example, in Figure 4.3 the representation that SchoolName and

SchoolAddress together constitute a key for the entity School is missing. Fourth,

although XER has a representation for a single key, this representation only applies

when the key for an entity is an attribute of that entity. The representation is not

able to specify a key constraint for an entity within the context of another entity.

Beyond these omissions, we have several concerns about some representations

in XER.

• Representing choice by generalization/specialization is problematic; the formal

definition of choice differs from the formal definition of generalization/specialization.

First, choice contains different types of alternative concepts, but all the special-

ized concepts in generalization/specialization hierarchies typically must have

the same type. Second, in generalization/specialization hierarchies any special-

ized concept inherits relationship sets from its generalization concepts, while in

choice, the alternative concepts do not inherit relationship sets. Third, the par-

ticipation constraints for choice allow alternative concepts to appear more than

one time, while in generalization/specialization hierarchies specialized concepts

can appear at most once.

• In XER it is not clear from [34] whether it is possible to represent an entity

without having a name for the entity. For Figure 4.3 we assume that we are

able to represent an entity in XER with a null name. Also, in XER it is not

58

clear whether it is possible to have an empty slot in an entity to indicate that an

attribute by itself is an entity without a name. We also assume for Figure 4.3

that we are able to do so in XER. From [34] it is not clear whether it is possible

to have hierarchies of choice and sequence structures, but we assume that this

is possible as Figure 4.3 shows.

• In XER when an entity has an attribute and this attribute is also an entity,

the model instance in XER has an attribute and an entity with the same name.

This redundancy might cause problems if XER developers are able to write the

two names independently.

In light of these omissions and concerns, we extend XER, augmenting it with

constructs and constraints that are missing and resolving our concerns. Figure 4.4

shows our suggested way of representing the schema in Figure 4.1 in ER-XML, our

ER augmentation for XML. We add any and anyAttribute concepts to XER. We

have chosen to add a representation of any and anyAttribute as entities with the

name any. We also add minimum and maximum occurrence to sequence and choice,

placing this minimum and maximum in parentheses in the name slot, following the

name, if any, of the entity that declares the sequence or choice. We have chosen

to add a representation for key constraints by allowing functional dependencies that

must hold within entity sets or along paths of relationship sets. Thus, for example,

as Figure 4.4 shows, we can specify the composite key SchoolName, SchoolAddress

by the functional dependency SchoolName, SchoolAddress −→ School. Although we

use the same notation for choice, we do not consider the representation of choice in

ER-XML to be a generalization concept. Finally, we do not repeat attribute names,

writing the name only in the entity that represents the attribute.

4.5.2 UML

Conrad et al. [14] add features to UML to enable mappings from class diagrams

to XML DTDs. Figure 4.5 shows an example; in fact, it shows the best that can be

59

Figure 4.5: Best Representation of Figure 4.1 Using Conrad Notation.

done to represent the XML schema in Figure 4.1. Unfortunately, it does not capture

all the concepts and constraints in the XML schema in Figure 4.1.

As described in [14], Conrad et al. augment UML aggregation so that it can

be transformed into a sequence construct or a choice construct. The designation

{sequence} specifies a left-to-right ordering of elements, and the designation {choice}

specifies a choice among elements. For a sequence the first constituent element is

marked as 1 , the second as 2 , and so forth. A sequence or choice construct may have

cardinality to represent the minimum and maximum occurrence of the entire sequence

or choice. For example, the class ContactInfo in Figure 4.5 has one to two choices

{choice : 1..2} of the classes PhoneNumber, Email, and Fax. For an any structure,

the notation in [14] uses the «content» stereotype.

Comparing the conceptual components for C-XML (e.g. Figure 4.1) and ex-

tended UML presented in [14] (e.g. Figure 4.5), we see that several constructs are

missing. First, the extended UML in [14] lacks the ability to represent an anyAt-

tribute. For example, in Figure 4.5 the class StudentInfo is missing the anyAttribute.

Second, the extended UML in [14] lacks the ability to represent mixed content. In

Figure 4.5 the class RecommendationLetter does not appear as having mixed content.

Third, the extended UML in [14] lacks key constraints, although, in principle, we

could specify key constraints using OCL (the constraint language of UML).

60

Figure 4.6: Possible Way to Represent XML Schema Document in Figure 4.1 in
UML-XML.

Besides these omissions, we have concerns about the suggested representation

of sequence and choice in [14]. The suggested representations can only be applied

between classes, not between attributes. This is because Conrad et al. augment

UML aggregation for sequence and choice. Since the aggregation in UML applies

to classes, the notation forces attributes to be represented as classes. For example,

to represent the GraduationDate class as a sequence of Month and Year, would-be

attributes Month and Year must each become a class first.

To overcome these difficulties, we need to extend and adjust the representations

in [14]. Figure 4.6 shows our suggested extensions and adjustments by rendering

Figure 4.1 in UML-XML, our UML augmentation for XML.

• We have chosen to represent the anyAttribute as an associated class with the any

content type rather than as a stereotype. For mixed content we use the «mixed»

stereotype. The RecommendationLetter class in Figure 4.6 is an example.

• We suggest representing sequence and choice in a different way so that we

do not force attributes to be represented as classes. When attributes in a

class are ordered, we add the designation [Sequence] under the class name

61

to specify a top-to-bottom ordering of the attributes. We also add minOc-

curs..maxOccurs, if needed, to express participation different from the default.

For example, in Figure 4.6, the designation [Sequence] is added under Gradua-

tionDate. Similarly, we allow designating a choice construct by adding [Choice

minOccurs..maxOccurs], allowing minOccurs .. maxOccurs to be omitted when

it is 1..1, the default. For example, in Figure 4.6, the designation [Choice 1..2]

is added under ContactInfo.

• We add notation to denote that a class contains an attribute and that this at-

tribute is a class that contains other attributes. A connection appears that con-

nects an empty slot indicating the presence of an attribute inside the class with

the class containing other attributes. For example, we indicate that ContactInfo

is an attribute inside the class RecommendationLetter by the connection inside

RecommendationLetter that extends to ContactInfo. Note also that Contact-

Info by itself is a class that contains attributes. A multiplicity of 1 is added to

the ContactInfo class side and a multiplicity of 1..* is added to the ContactInfo

attribute side in the RecommendationLetter class to denote that ContactInfo

is for 1 or more RecommendationLetters and each RecommendationLetter has

one ContactInfo.

• For the case when a sequence or choice is a complex attribute inside a class

C, the sequence or choice is represented as a class with no name but has the

designation [Sequence] or [Choice], and we connect the empty slot inside the

class C with the class that represents the sequence or choice. For example, the

class StudentInfo has a complex sequence attribute. Further, this sequence by

itself is a class that contains other attributes including another complex choice

attribute and a complex sequence attribute.

• We can specify key constraints in UML by using OCL. However, since this is a

common task, we have an alternative representation that we can add to a dia-

gram. We have chosen to add a representation for key constraints by allowing

62

functional dependencies which must hold within classes or along paths of asso-

ciations. Thus, for example, as Figure 4.6 shows, we can specify the composite

key SchoolName, SchoolAddress by the functional dependency {SchoolName,

SchoolAddress −→ School}.

4.5.3 ER-XML, UML-XML, and C-XML

Comparing ER-XML, UML-XML, and C-XML, we make the following ob-

servations according to the criteria for XML conceptual modeling we described in

Section 4.2. Criteria from Section 4.2 not listed here have equal validity among the

three models (e.g. all three have a graphical notation).

• Formal foundation. C-XML has a solid formal foundation in terms of predicate

calculus. ER-XML and UML-XML are respectively derived from XER as de-

scribed in [34] and UML as described in [14]. There is no formal foundation for

XER [28], and the underlying formalism of UML is not fully developed [22]. In

principle both could have complete formal foundations.

• Reflection of the mental model. ER-XML distinguishes attributes from enti-

ties and UML-XML distinguishes attributes from classes. C-XML represents

all concepts as object-set nodes in hypergraphs. Forcing attributes to be em-

bedded within an entity/class has the disadvantage that a user of UML-XML

or ER-XML has to decide before representing any concept whether it should

be an attribute or entity/class. Distinguishing between an attribute and an

entity/class is not necessary and may even be harmful as a mental-model con-

ceptualization. Goldstein and Storey [23] showed that this can be a major source

of errors in conceptual modeling.

• Views. Hypergraphs are typically more amenable to translations to various

views and even alternate XML schemas such as normalized XML schemas. Fur-

ther, although not discussed here, C-XML supports both high-level object sets

and high-level relationship sets as first class concepts [19]. Neither ER-XML

nor UML-XML supports high-level view constructs.

63

• Logical level mapping. We have implemented both a mapping from XML Schema

to C-XML and vice versa [1, 2]. In principle mappings to and from XML Schema

and ER-XML as well as UML-XML are possible.

• Cardinality for all participants. The nesting representation for ER-XML and

UML-XML restricts the specification of cardinality constraints to only the nest-

ing participants. C-XML specifies cardinality constraints for all participants,

beyond even those supported by XML Schema.

4.6 Conclusion

In this chapter we discussed the structural constructs in XML Schema that

are missing in traditional conceptual models. Our proposed solution is to enrich

conceptual models with the ability to order a list of concepts, choose alternative

concepts from among several, specify mixed content, and use content from another

data model. We presented our solution using C-XML, and we showed that our solution

can be adapted and used for the ER and UML languages.

We also presented requirements for conceptual modeling for XML. We based

these requirements on those presented in [28], [35], and [42]. We evaluated C-XML

against these requirements and showed that C-XML satisfies all of them, which makes

C-XML a good candidate for a conceptual modeling language for XML. We also

argued that ER-XML and UML-XML, our adaptations for ER and UML, also largely

satisfy these requirements, but do not satisfy them as well as does C-XML.

We have implemented C-XML, and we have implemented conversions from

XML Schema to C-XML and vice versa. Currently, we are working on a formal proof

that our conversions to and from C-XML and XML Schema preserve information and

constraints.

64

4.7 Appendex

4.7.1 Sequence

Figure 4.7 shows the schematic structure of a sequence. Exactly one parent

object set connects to a sequence of n children, n ≥ 0, with participation constraints

on the several connections as Figure 4.7 shows. A sequenced child may be either

an object set or a nested sequence or choice structure. In general, there may be

many sequences in a model instance, and since we do not explicitly name sequence

structures, we denote a particular sequence, the kth sequence, by Sequencek. Let P be

the name of the parent object set for Sequencek, and let C1, ..., Cn be the names of the

n child object sets or nested sequences or choices that are sequenced within Sequencek.

To impose order, we introduce the unary predicate Order, which we can think of as

an object set containing as many ordinal numbers as we need 1, 2, We denote

the minimum and maximum cardinalities of Sequencek according to Figure 4.7. Let

min and max be, respectively, the minimum and maximum number of occurrences

of Sequencek allowed for an object in P . Let minCi
and maxCi

, 1 ≤ i ≤ n, be,

respectively, the minimum and maximum number of allowed occurrences of Ci objects

within Sequencek. Let min′ and max′ be, respectively, the minimum and maximum

number of occurrences of Sequencek sequences in the relationship set between P

and Sequencek. Finally, let minSeqi
and maxSeqi

, 1 ≤ i ≤ n, be, respectively, the

minimum and maximum allowed occurrences of Sequencek in the relationship set

between Sequencek sequences and Ci (i.e. the number of Ci objects that can be

associated with Sequencek for a given order position). For Sequencek, we have the

following object sets, relationship sets, and constraints.

• Object Sets:

– P (x)

– Sequencek(x)

– Order(x)

– C1(x), ..., Cn(x)

65

Figure 4.7: Sequence Structure in C-XML.

• Relationship Sets:

– P (x) contains Sequencek(y)

– C1(x) has Order(1) in Sequencek(y)

– ...

– Cn(x) has Order(n) in Sequencek(y)

• Referential Integrity:

– ∀x∀y(P (x) contains Sequencek(y) ⇒ P (x) ∧ Sequencek(y))

– ∀x∀y(C1(x) has Order(1) in Sequencek(y) ⇒ C1(x) ∧ Order(1) ∧ Sequencek(y))

– ...

– ∀x∀y(Cn(x) has Order(n) in Sequencek(y) ⇒ Cn(x) ∧ Order(n) ∧ Sequencek(y))

• Participation Constraints:

– ∀x(P (x) ⇒ ∃≥miny(P (x) contains Sequencek(y))) ∧

∀x(P (x) ⇒ ∃≤maxy(P (x) contains Sequencek(y)))

– ∀x(Sequencek(x) ⇒ ∃≥min′

y(P (y) contains Sequencek(x))) ∧

∀x(Sequencek(x) ⇒ ∃≤max′

y(P (y) contains Sequencek(x)))

– ∀x(Sequencek(x) ⇒

∃≥minSeq1y1(C1(y1) has Order(1) in Sequencek(x))

66

∧ ... ∧

∃≥minSeqn yn(Cn(yn) has Order(n) in Sequencek(x)))

∧

∀x(Sequencek(x) ⇒

∃≤maxSeq1y1(C1(y1) has Order(1) in Sequencek(x))

∧ ... ∧

∃≤maxSeqnyn(Cn(yn) has Order(n) in Sequencek(x)))

– ∀x(C1(x) ⇒ ∃≥minC1y(C1(x) has Order(1) in Sequencek(y))) ∧

∀x(C1(x) ⇒ ∃≤maxC1y(C1(x) has Order(1) in Sequencek(y)))

∧ ... ∧

∀x(Cn(x) ⇒ ∃≥minCny(Cn(x) has Order(n) in Sequencek(y))) ∧

∀x(Cn(x) ⇒ ∃≤maxCny(Cn(x) has Order(n) in Sequencek(y)))

4.7.2 Choice

The schematic structure of a choice is similar to sequence (see Figure 4.7).

Exactly one parent object set connects to a group of n children, n ≥ 0, and the par-

ticipation constraints for choice are similar to those for sequence. As with sequence,

children of a choice may be either object sets or nested sequence or choice structures.

In general, there may be many choices in a model instance, and since we do not

explicitly name choice structures, we denote a particular choice, the kth choice, by

Choicek. Let P be the name of the parent object set for Choicek, and let C1, ...,

Cn be the names of the n child object sets or nested sequences or choices that are

alternatives for Choicek. Let min and max be, respectively, the minimum and max-

imum number of occurrences of Choicek allowed for an object in P . Let minCi
and

maxCi
, 1 ≤ i ≤ n, be, respectively, the minimum and maximum number of allowed

occurrences of Ci objects within Choicek. Let min′ and max′ be, respectively, the

minimum and maximum number of occurrences of Choicek choices in the relationship

set between P and Choicek. Finally, let minChoi
and maxChoi

, 1 ≤ i ≤ n, be, re-

spectively, the minimum and maximum allowed occurrences of Choicek choices in the

67

relationship set between Choicek and Ci. For Choicek, we have the following object

sets, relationship sets, and constraints.

• Object Sets:

– P (x)

– Choicek(x)

– C1(x), ..., Cn(x)

• Relationship Sets:

– P (x) contains Choicek(y)

– C1(x) is alternative for Choicek(y)

– ...

– Cn(x) is alternative for Choicek(y)

• Referential Integrity:

– ∀x∀y(P (x) contains Choicek(y) ⇒ P (x) ∧ Choicek(y))

– ∀x∀y(C1(x) is alternative for Choicek(y) ⇒ C1(x) ∧ Choicek(y))

– ...

– ∀x∀y(Cn(x) is alternative for Choicek(y) ⇒ Cn(x) ∧ Choicek(y))

• Participation Constraints:

– ∀x(P (x) ⇒ ∃≥miny(P (x) contains Choicek(y))) ∧

∀x(P (x) ⇒ ∃≤maxy(P (x) contains Choicek(y)))

– ∀x(Choicek(x) ⇒ ∃≥min′

y(P (y) contains Choicek(x))) ∧

∀x(Choicek(x) ⇒ ∃≤max′

y(P (y) contains Choicek(x)))

– ∀x(Choicek(x) ⇒

(∃≥minCho1y1 (C1(y1) is alternative for Choicek(x)) ∧

∃≤maxCho1z1 (C1(z1) is alternative for Choicek(x))) ∨

68

¬∃w1 (C1(w1) is alternative for Choicek(x)))

∧ ... ∧

∀x(Choicek(x) ⇒

(∃≥minChonyn(Cn(yn) is alternative for Choicek(x)) ∧

∃≤maxChonzn(Cn(zn) is alternative for Choicek(x))) ∨

¬∃wn (Cn(wn) is alternative for Choicek(x)))

– ∀x(C1(x) ⇒ ∃≥minC1y(C1(x) is alternative for Choicek(y))) ∧

∀x(C1(x) ⇒ ∃≤maxC1y(C1(x) is alternative for Choicek(y)))

∧ ... ∧

∀x(Cn(x) ⇒ ∃≥minCny(Cn(x) is alternative for Choicek(y))) ∧

∀x(Cn(x) ⇒ ∃≤maxCny(Cn(x) is alternative for Choicek(y)))

• Mutual-Exclusion Constraints:

– ∀x(Choicek(x) ⇒

(∃y1(C1(y1) is alternative for Choicek(x)) ∧

¬∃y2(C2(y2) is alternative for Choicek(x)) ∧ . . .∧

¬∃yn(Cn(yn) is alternative for Choicek(x)))

∨ . . .∨

(¬∃y1(C1(y1) is alternative for Choicek(x)) ∧ . . .∧

¬∃yi−1(Ci−1(yi−1) is alternative for Choicek(x)) ∧

∃yi(Ci(yi) is alternative for Choicek(x)) ∧

¬∃yi+1(Ci+1(yi+1) is alternative for Choicek(x)) ∧ . . .∧

¬∃yn(Cn(yn) is alternative for Choicek(x)))

∨ . . .∨

(¬∃y1(C1(y1) is alternative for Choicek(x)) ∧ . . .∧

¬∃yn−1(Cn−1(yn−1) is alternative for Choicek(x)) ∧

∃yn(Cn(yn) is alternative for Choicek(x))))

69

4.7.3 Mixed Content

Formally, marking an object set P as mixed is a template for creating a rela-

tionship set to a lexical object set Text of type string: P [1] contains [1:*]Text. The

string associated with an object in a mixed object set may be interspersed among

direct child elements.

4.7.4 Generalized Co-Occurrence:

A generalized co-occurrence constraint A1, ..., An → B1, ..., Bm is shorthand

for an ordinary co-occurrence constraint written over a high-level relationship set

connecting the object sets A1, ..., An, B1, ..., Bm. If the subgraph that connects these

object sets is unique, we can derive the corresponding high-level relationship set

automatically. Otherwise, in addition to specifying the co-occurrence constraint, the

user must also specify the derived relationship set using Prolog-like syntax (e.g.,

r(A,B) :- r1(A,X), r2(X,B)). The formal definition of co-occurrence constraints

appears in Appendix A of [19].

70

Chapter 5

Translating XML Schema to Conceptual XML

5.1 Introduction

Recently, many organizations have begun to store their data using XML, and

XML Schema has become the preeminent mechanism for describing valid XML docu-

ment structures. Moreover, the number of applications that use XML as their native

data model has increased. This increases the need for well-designed XML data mod-

els and the need for a conceptual model for designing XML schemas. The objective

in this chapter is to translate any given XML-Schema instance to Conceptual XML

(C-XML). We describe in detail the translation of all XML-Schema components to

conceptual model (C-XML) elements.

The basic translation strategies are straightforward.1 In translating from XML

Schema to C-XML, elements and attributes become object sets. Elements that have

simple types become lexical object sets, while elements that have complex types be-

come nonlexical object sets. Attributes become lexical object sets since they always

have a simple type. Built-in data types and simple data types for an element or an

attribute in XML Schema are specified in the data frame associated with the object

set representing the element or the attribute. XML parent-child connections among

elements and XML element-attribute connections both become binary relationship

sets in C-XML. The constraints minOccurs and maxOccurs translate directly to par-

ticipation constraints in C-XML.

Following [45], we discuss the following components of XML Schema in the

sections indicated: schema (Section 5.2.1), element (Section 5.2.2), attribute (Sec-

tion 5.2.3), identity-constraint definitions (key, unique, and keyref) (Section 5.2.4),

simpleType (Section 5.2.5), complexType (Section 5.2.6), attributeGroup (Section 5.2.7),

all (Section 5.2.8), sequence (Section 5.2.9), choice (Section 5.2.10), any (Section 5.2.11),

1Some require a deep understanding of C-XML, the OSM Object-Relationship Model, and XML
Schema. We assume that the reader has the necessary background.

71

anyAttribute (Section 5.2.11), group (Section 5.2.12), simple-content complex type

(Section 5.2.13), and complex-content complex type (Section 5.2.14).

In the translation we are concerned about conceptualizing XML Schema, and

thus we are only interested in representing the conceptual components of XML Schema.

The XML Schema components annotation, notation, include, redefine, and import are

not conceptual constructs, but we could include them in trivial ways. For example,

we could map annotation and notation as comments. Since include and import add

schemas to the XML-Schema instance, we could insert the actual added schemas to

the XML-schema instance and then map the content of that XML-Schema instance

to C-XML. Since the redefine component redefines simple and complex types, groups,

and attribute groups from an external schema, we can simply insert the newly de-

fined components in the XML-Schema instance and then map the new content of that

XML-Schema instance to C-XML.

5.2 Translation Details

In this section we explain in detail the translation of each conceptual com-

ponent in XML Schema to C-XML. For each component we give (1) the component

declaration definition from [45], (2) an XML-Schema instance exemplifying the com-

ponent, and (3) a C-XML instance illustrating the translation. As necessary to com-

plete the discussion of some components, we give additional XML-Schema instance

examples and their translation to C-XML. To explain the translation and to show

that all component parts are translated, we list each component part, explain its

translation, and show its translation in the given examples. When the content part in

the component definition contains other XML-Schema components, we explain these

other components in the sections in which their definition appears.

5.2.1 Schema

Figure 5.1 shows definition details for schema which is the root element of any

document that conforms to W3C XML Schema. A schema component serves two

purposes: (1) it establishes default values and (2) it records basic meta information.

We use the default specification in a preprocessing step and then discard these state-

ments. We store the basic meta information directly as header meta information in

C-XML.

In the following, we give the translation details of the component parts of

schema.

72

<schema

id = ID

attributeFormDefault = (‘qualified’ | ‘unqualified’) : ‘unqualified’

blockDefault = (‘#all’ | List of (‘extension’ |‘restriction’

| ‘substitution’)) : ‘‘’’

elementFormDefault = (‘qualified’ | ‘unqualified’) : ‘unqualified’

finalDefault = (‘#all’ | List of (‘extension’ | ‘restriction’)) : ‘‘’’

targetNamespace = anyURI

version = token

xml:lang = language>

Content: ((include | import | redefine | annotation)*,

(((simpleType | complexType | group | attributeGroup)

| element | attribute | notation), annotation*)*)

</schema>

Figure 5.1: Schema Declaration.

• id. The id plays no role in the translation. We simply discard it.

• attributeFormDefault. The preprocessing step for attributeFormDefault con-

sists of considering each attribute in the XML-Schema instance. If no value

is assigned to the form attribute, we assign it the default value specified in

attributeFormDefault.

• elementFormDefault. The preprocessing step for elementFormDefault consists

of considering each element in the XML-Schema instance. If no value is assigned

to the form attribute, we assign it the default value specified in elementFormDe-

fault.

• blockDefault and finalDefault. The preprocessing step for both blockDefault and

finalDefault consists of considering each element and complexType in the XML-

Schema instance. If no value is assigned to the block or final attribute, we

assign it the default value specified in its corresponding attribute blockDefault

or finalDefault.

• targetNamespace, version, and xml:lang. The value of the attribute target-

Namespace is recorded in the specified place in the C-XML instance for tar-

getNamespace. The value of the attribute version is recorded in the specified

place for version. The value of the attribute xml:lang is recorded in the specified

place for xml:lang.

73

5.2.2 Element

Figure 5.2 shows definition details for element in XML Schema. Figure 5.3

shows an example using element in an XML-Schema instance, and Figures 5.4–5.6

show a C-XML translation of Figure 5.3. Figures 5.7 and 5.8 show an additional

example to demonstrate abstract and substitutionGroup attributes in the definition

of element.

<element id = ID

abstract = boolean : ‘false’

block = (‘#all’ | List of (‘extension’ | ‘restriction’ | ‘substitution’))

default = string

final = (‘#all’ | List of (‘extension’ | ‘restriction’))

fixed = string

form = (‘qualified’ | ‘unqualified’)

maxOccurs = (nonNegativeInteger | ‘unbounded’) : 1

minOccurs = nonNegativeInteger : 1

name = NCName

nillable = boolean : ‘false’

ref = QName

substitutionGroup = QName

type = QName>

Content: (annotation?, ((simpleType | complexType)?, (unique | key | keyref)*))

</element>

Figure 5.2: Element Declaration.

We translate an element in XML Schema to an object set that has the same

name as the element in XML Schema. In the following, we give the translation details

of the component parts of element.

• id. The id is not a conceptual component; it exists implicitly. Thus we do not

map it to C-XML.

• name. The name of the element becomes the name of the object set representing

that element in C-XML. For example, the object set in C-XML that represents

the element B declared in Line 6 in Figure 5.3 has the name B in Figure 5.4.

• minOccurs and maxOccurs. The default value for both minOccurs and max-

Occurs is 1. Whether by default or explicitly given, minOccurs and maxOccurs

become participation constraints. They are assigned to the connection between

74

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="A">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="B" type="BType"/>

7 <xs:element ref="C" minOccurs="1" maxOccurs="3"/>

8 </xs:sequence>

9 </xs:complexType>

10 </xs:element>

11 <xs:complexType name="BType">

12 <xs:sequence>

13 <xs:element name="B1" type="xs:string" minOccurs="1" maxOccurs="1"/>

14 <xs:element name="B2" type="B2type" minOccurs="0" maxOccurs="2"/>

15 <xs:element name="B3" minOccurs="1" maxOccurs="1">

16 <xs:simpleType>

17 <xs:restriction base="B2type">

18 <xs:maxLength value="2"/>

19 </xs:restriction>

20 </xs:simpleType>

21 </xs:element>

22 </xs:sequence>

23 </xs:complexType>

24 <xs:element name="C">

25 <xs:complexType>

26 <xs:choice>

27 <xs:element name="C1" type="xs:string" fixed="xy"/>

28 <xs:element name="C2" type="xs:string"/>

29 </xs:choice>

30 </xs:complexType>

31 </xs:element>

32 <xs:simpleType name="B2type">

33 <xs:restriction base="xs:string">

34 <xs:enumeration value="EW"/>

35 <xs:enumeration value="L"/>

36 </xs:restriction>

37 </xs:simpleType>

38 </xs:schema>

Figure 5.3: Example of Element Structure in XML Schema.

the relationship set and the component that represents the containing element.

For example, minOccurs=“0” and maxOccurs=“2” for B2 within the sequence

structure in Line 14 become the participation constraint 0:2 which is near the

sequence side of the connection between the sequence construct and B2 in Fig-

ure 5.4. In C-XML, for the most common participation constraints (0:1, 1:1,

0:*, and 1:*), we can use the special notation that obviates the need for a par-

ticipation constraint. Optional or mandatory participation respectively specify

whether objects in a connected relationship may or must participate in a re-

lationship set (an “o” on a connecting relationship-set line designates optional

while the absence of an “o” designates mandatory). Arrowheads on lines specify

functional constraints, which limits participation of objects on the tail side of an

arrow to be at most one. Thus, for example, the minOccurs=“0” of B2 within

the sequence yields an optional constraint for the sequence in the connection

75

1:3

C2C1

B

B3B2B1

C

A

0:2

Figure 5.4: Translated C-XML Model Instance of Figure 5.3

between the sequence construct and B2 in Figure 5.4. The constraints minOc-

curs=“1” and maxOccurs=“1” for B3 within the sequence structure in Line 15

become a mandatory constraint on the sequence side and functional constraint

on the object set B3 in the connection between the sequence construct and B3

in Figure 5.4.

• ref. The ref attribute in XML Schema provides for the use or reuse of a global

element in an XML-Schema instance in another local place inside the same

XML-Schema instance. In the translation to C-XML, we have an object set that

represents the global element. The object set connects into the overall structure

in the same way the local element that contains the ref attribute connects. For

example, element C in Line 7 refers to the global element C that appears in

Line 24. In the C-XML instance, the global element C becomes an object set

that takes on the relationship set and the constraints the local element in Line 7

has. Thus, the object set C will be connected to the sequence structure (which

represents the sequence starting in Line 5 nested under the element A in Line

3). The minOccurs=“1”and maxOccurs=“3” in Line 7 appear as a participation

constraint on the sequence structure side of the connection to C in C-XML.

• block, default, final, fixed, nillable, and form. These attributes are added to

the associated data frame of the object set that represents the element. For

example, Figure 5.5 shows the data frame associated with the object set C1 in

76

Figure 5.5: Data Frame for Element C1 in Figure 5.3

Line 27. Observe, for example, that the fixed attribute has the value“xy”, which

appears in the Fixed value field in Figure 5.5.

• type. The attribute type in an element declaration can be any one of the follow-

ing.

– built-in data type. The element becomes a lexical object set in C-XML. The

type is specified in the type name field of the data frame for the associated

object set. For example, in Figure 5.3, the element B1 in Line 13, which

has the built-in type xs:string, becomes a lexical object set in Figure 5.4.

The type xs:string of the element B1 is specified in the type name field of

the data frame that associates with the object set B1 as Figure 5.6 shows.

– simple data type. The element becomes a lexical object set in C-XML, and

the type is specified in the value phrase inside the associated data frame

as explained in Section 5.2.5. For example, the data frame associated with

77

Figure 5.6: Data Frame for Element B1 in Figure 5.3

the object set B2 contains the text in Lines 32–37 in its value phrase field,

except that we omit the name attribute and its value.2

– complex data type. The element becomes a nonlexical object set. The

connection between the object set and its children is determined according

to the content of the complexType structure.3 For example, the element B

in Line 6 in Figure 5.3 has the attribute type BType which references the

global complex type BType beginning on Line 11 that contains a sequence

of the elements B1, B2, and B3. The element B becomes a nonlexical

object set, and the sequence structure that appears in definition of BType

connects the object set B with its children B1, B2, and B3.

2We note that in OSM on which C-XML is built that the value expression is usually a regular
expression that generates the possible instance values. In C-XML we accept other well defined
syntaxes, but the purpose remains the same—to generate the possible instance values.

3See Section Section 5.2.6, which explains complexType.

78

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="Person">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="FirstName" type="xs:string"/>

7 <xs:element name="LastName" type="xs:string"/>

8 </xs:sequence>

9 </xs:complexType>

10 </xs:element>

11 <xs:element name="Student" substitutionGroup="Person"/>

12 <xs:element name="Professor" substitutionGroup="Person"/>

13 </xs:schema>

Figure 5.7: Example Using the Attribute substitutionGroup in Element.

Person

FirstName LastName

Student

Professor

Figure 5.8: Translated C-XML Model Instance of Figure 5.7

• abstract and substitutionGroup. When an element in XML Schema has a sub-

stitutionGroup attribute, the element can be substituted for the element men-

tioned in the substitutionGroup. Thus, a substitutionGroup becomes a general-

ization/specialization relationship set in C-XML, where the generalized object

set is the element in XML-Schema instance given as the value for the substitu-

tionGroup attribute and the specialized object set is the element in the XML-

Schema instance given as the value of the name attribute. For example, in Line

11 of Figure 5.7, Person is the value for the substitutionGroup attribute and

thus, Person is the generalized object set and Student is the specialized object

set. When several name attributes share the same substitutionGroup attribute,

they become a group of specialized object sets under a common generalized

object set. For example, in Line 11 in Figure 5.7, Person is the value for the

substitutionGroup attribute for element Student, and in Line 12 Person is the

value for the substitutionGroup attribute for element Professor ; thus, Person is

the generalized object set in a generaliztion/specialization and each of Student

and Professor becomes a specialized object set grouped under Person.

The abstract attribute controls whether the element may be used directly in an

instance document. The default value for the abstract attribute is false. When

79

the value of abstract attribute is set to true, the element must be substituted

through a substitution group in the instance document. In this case we add

a union constraint to the generalization/specialization, which in C-XML forces

every value present in the generalization to also be present in at least one of its

specializations.

5.2.3 Attribute

Figure 5.9 shows definition details for attribute in XML Schema. Figure 5.10

shows an example using attribute in an XML-Schema instance, and Figures 5.11 shows

a C-XML translation of Figure 5.10.

<attribute id = ID

default = string

fixed = string

form = (‘qualified’ | ‘unqualified’)

name = NCName

ref = QName

type = QName

use = (‘optional’ | ‘prohibited’ | ‘required’): ‘optional’>

Content: (annotation?, (simpleType?))

</attribute>

Figure 5.9: Attribute Declaration.

We translate an attribute in XML Schema to a lexical object set that has the

same name as the attribute in XML Schema. In the following, we give the translation

details of the component parts of attribute.

• id. As before, this is implicit—not mapped.

• name. The name of the attribute becomes the name of the object set repre-

senting that attribute in C-XML. For example, the object set in C-XML that

represents the attribute Language declared in Line 5 in Figure 5.10 has the

name Language in Figure 5.11.

• default, fixed, and form. These attributes are added to the associated data frame

of the object set that represents the attribute.

• use. The default value of the attribute use is optional. When an attribute is op-

tional, we introduce a 0:1 participation constraint. The participation constraint

80

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

2 <xs:element name="Employee">

3 <xs:complexType>

4 <xs:attribute ref="Status" use="optional"/>

5 <xs:attribute name="Language" type="LanguageType"/>

6 <xs:attribute name="EmployeeNumber" use="required">

7 <xs:simpleType>

8 <xs:restriction base="xs:string">

9 <xs:length value="9"/>

10 </xs:restriction>

11 </xs:simpleType>

12 </xs:attribute>

13 </xs:complexType>

14 </xs:element>

15 <xs:attribute name="Status" type="xs:string"/>

16 <xs:simpleType name="LanguageType">

17 <xs:restriction base="xs:string">

18 <xs:enumeration value="English"/>

19 <xs:enumeration value="Latin"/>

20 </xs:restriction>

21 </xs:simpleType>

22 </xs:schema>

Figure 5.10: Example of Attribute Structure in XML Schema.

Language

EmployeeNumberStatus Employee

Figure 5.11: Translated C-XML Model Instance of Figure 5.10.

of the attribute is for the object set representing the containing element of the

attribute in the relationship set between the lexical object set that represents

the attribute and the object set that represents the containing element of the

attribute. When use is prohibited the participation constraint is 0:0, and when

use is required the participation constraint is 1:1. In C-XML diagrams we can,

of course, use optional and functional notation for relationship sets to denote

the participation constraints as Figure 5.11 shows. Thus, for example, attribute

Status in Line 4 in Figure 5.10 whose use value is optional yields the optional

constraint for the object set Employee for the binary relationship set between

Employee and Status, and the attribute EmployeeNumber in Line 6 whose use

value is required yields the mandatory constraint.

• ref. This is the same as for element except that the reference must be an

attribute. Thus, we handle this attribute in exactly the same way we handle ref

in Section 5.2.2. For example, attribute Status in Line 4 of Figure 5.10 refers

to the global attribute Status that appears in Line 15. In the C-XML instance,

81

the global attribute Status becomes a lexical object set that takes the binary

relationship set and the constraints that the local element in Line 4. Thus, the

lexical object set Status will be connected to the object set Employee (which

represents the element Employee in Line 2). The optional value for the use

attribute in Line 4 appears as a participation constraint on the Employee side

of the connection to Status in C-XML.

• type. This is the same as for element except that the type can only be built-in

or simple. Thus, we handle this attribute in exactly the same way we handle

built-in data type and simple data type in Section 5.2.2. For example, the type

xs:string of the attribute Status in Line 15 of Figure 5.10 is specified in the type

name field of the data frame that associates with the lexical object set Status.

As another example, the element Language in Line 5 in Figure 5.10 has the

type LanguageType which references the global simple data type LanguageType

in Line 16. In the translation to C-XML, the data frame associated with the

object set Language contains the text in Lines 16–21 in its value phrase field

except that we omit the name attribute and its value.

5.2.4 Key, Unique and Keyref

Figure 5.12 shows definition details for key, unique, and keyref in XML Schema

and also definition details for selector and field, which are embedded in each key,

unique, and keyref declaration. The selector in XML Schema defines the element on

which a uniqueness constraint or key reference constraint (for keyref) applies within

the defined scope. The field in XML Schema defines the elements or attributes that

are constrained to be unique within the defined scope. XPath expressions identify the

location of elements or attributes. Figure 5.13 shows an example using key, unique,

and keyref in an XML-Schema instance. In the example, the key component in

Lines 16–19 constrains the element Student under the element School to have unique

StudentID values. The unique component in Lines 45–48 constrains the element Stu-

dent under the element Class to have unique NickName values. The key component

in Lines 49–53 constrains the element Student under the element Class to have unique

values for the pair FirstName and LastName. The keyref component in Lines 54–58

specifies that the set of pairs (StudentFirstName, StudentLastName) is a subset of

the set of pairs (FirstName, LastName).4

4We assume that this is the intended definition. Definitions in the XML Schema literature
are not clear and the validator we tried validated an XML document even though the set of

82

<unique

id = ID

name = NCName>

Content: (annotation?, (selector, field+))

</unique>

<key

id = ID

name = NCName>

Content: (annotation?, (selector, field+))

</key>

<keyref

id = ID

name = NCName

refer = QName>

Content: (annotation?, (selector, field+))

</keyref>

<selector

id = ID

xpath = a subset of XPath expression>

Content:(annotation?)

</selector>

<field

id = ID

xpath = a subset of XPath expression>

Content:(annotation?)

</field>

Figure 5.12: Identity-Constraint Declaration.

We translate key and unique components in XML Schema to C-XML as gen-

eralized co-occurrence constraints as follows. On the left-hand side of the generalized

co-occurrence constraint, we list the name of the element that embeds the key or

unique component and the names of elements or attributes in the field part of the key

or unique component. The right-hand side of the co-occurrence constraint consists

of the name of the element in the selector part of the key or unique component. For

example, in Figure 5.14, which shows the C-XML translation of Figure 5.13, we have

the following generalized co-occurrence constraints:

pairs (StudentF irstName, StudentLastName) is not a subset of the set of pairs (FirstName,
LastName). We assume that the validator is in error.

83

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="City">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element ref="School" maxOccurs="unbounded"/>

7 </xs:sequence>

8 </xs:complexType>

9 </xs:element>

10 <xs:element name="School">

11 <xs:complexType>

12 <xs:sequence>

13 <xs:element ref="Class" maxOccurs="unbounded"/>

14 </xs:sequence>

15 </xs:complexType>

16 <xs:key name="StudentIDKey">

17 <xs:selector xpath="./Class/Student"/>

18 <xs:field xpath="@StudentID"/>

19 </xs:key>

20 </xs:element>

21 <xs:element name="Class">

22 <xs:complexType>

23 <xs:sequence>

24 <xs:element name="Student" maxOccurs="40">

25 <xs:complexType>

26 <xs:sequence>

27 <xs:element name="FirstName" type="xs:string"/>

28 <xs:element name="LastName" type="xs:string"/>

29 <xs:element name="NickName" type="xs:string" minOccurs="0"/>

30 </xs:sequence>

31 <xs:attribute name="StudentID" type="xs:string"/>

32 </xs:complexType>

33 </xs:element>

34 <xs:element name="ReadingContest">

35 <xs:complexType>

36 <xs:sequence>

37 <xs:element name="StudentFirstName" type="xs:string"/>

38 <xs:element name="StudentLastName" type="xs:string"/>

39 <xs:element name="EarnedPoints" type="xs:integer"/>

40 </xs:sequence>

41 </xs:complexType>

42 </xs:element>

43 </xs:sequence>

44 </xs:complexType>

45 <xs:unique name="StudentNickNameUnique">

46 <xs:selector xpath="./Student"/>

47 <xs:field xpath="NickName"/>

48 </xs:unique>

49 <xs:key name="StudentNameKey">

50 <xs:selector xpath="./Student"/>

51 <xs:field xpath="FirstName"/>

52 <xs:field xpath="LastName"/>

53 </xs:key>

54 <xs:keyref name="StudentNameKeyref" refer="StudentNameKey">

55 <xs:selector xpath="./ReadingContest"/>

56 <xs:field xpath="StudentFirstName"/>

57 <xs:field xpath="StudentLastName"/>

58 </xs:keyref>

59 </xs:element>

60 </xs:schema>

Figure 5.13: Example of Identity Constraint Structures in XML Schema.

84

1:40

School, StudentID --> Student

StudentID

EarnedPoints

StudentLastNameStudentFirstName

NickName

LastNameFirstName

ReadingContestStudent

Class

School

City

for all x1 for all x2 for all y1 for all y2 (StudentFirstName(x1) has Order(1) in Sequence1(y1)
 and StudentLastName(x2) has Order(2) in Sequence1(y1) =>
 FirstName(x1) has Order(1) in Sequence2(y2)
 and LastName(x2) has Order(2) in Sequence2(y2))

Class, NickName --> Student

Class, FirstName, LastName -->Student

Figure 5.14: Translated C-XML Model Instance of Figure 5.13.

School, StudentID −→ Student (for the key constraint in Lines 16–19),

Class, NickName −→ Student (for the unique constraint defined in Lines 45–

48), and

Class, FirstName, LastName −→ Student (for the key constraint defined

in Lines 49–53).

Multiple paths for a generalized co-occurrence constraint are possible. This happens

when a C-XML hypergraph is cyclic. In this case, C-XML requires a high-level

relationship set that gives a unique path over which the generalized co-occurrence

85

constraint holds. Since the selector in XML Schema uniquely defines the scope, we

can translate this scope designation directly into an appropriate high-level relationship

set designator for the generated co-occurrence constraint. Indeed, all generalized

co-occurrence constraints associate with a high-level relationship set independent of

whether the path is ambiguous. We list the names of all relationship sets over the path

that leads from the object sets in the left hand side of the generalized co-occurrence

constraint to the object sets in its the right hand side. For example, we specify

the derived relationship set for School, StudentID −→ Student as the relationship

set that connects the object set School with a Sequence (the one that is between

School and Class), the relationship set that connects that Sequence with the object

set Class, the relationship set that connects the object set Class with a Sequence (the

one that is between Class, Student, and ReadingContest), and the relationship set

that connects that Sequence with the object set Student, and finally the relationship

set that connects the object set Student with the object set StudentID.

We translate keyref in XML Schema to C-XML as a general constraint specify-

ing that the n-tuples in the referencing part of the keyerf are a subset of the n-tuples

in the referenced part. For example, in Figure 5.14, which shows the C-XML trans-

lation of Figure 5.13, we have the following general constraints:

∀x1∀x2∀y1∀y2(StudentF irstName(x1) has Order(1) in Sequence1(y1) ∧

StudentLastName(x2) has Order(2) in Sequence1(y1) =⇒

FirstName(x1) has Order(1) in Sequence2(y2) ∧

LastName(x2) has Order(2) in Sequence2(y2)).

In the following, we give the translation details of the component parts for key,

unique, and keyref.

• id. As before, this is implicit—not mapped.

• name. This attribute represents the name of the key, unique, or keyref compo-

nent in an XML-Schema instance, and we do not map it.

• refer. This attribute only appears in keyref to represent the name of the key or

unique constraint referred by the keyref, and we do not map it.

5.2.5 Simple Type

Figure 5.15 shows definition details for simpleType in XML Schema. Simple

types use one of the three declaration methods: restriction to add new constraints to

a data type, list to define lists of values, and union to combine disparate data types

86

<simpleType

id = ID

final = (‘#all’ | (‘list’ | ‘union’ | ‘restriction’))

name = NCName>

Content: (annotation ?, (restriction | list | union))

</simpleType>

<list

id = ID

itemType = QName>

Content: (annotation ?, (simpleType ?))

</list>

<union

id = ID

memberTypes = List of QName>

Content: (annotation ?,(simpleType *))

</union>

<restriction

id = ID

base = QName>

Content: (annotation ?, (simpleType ?, (minExclusive |

minInclusive | maxExclusive | maxInclusive | totalDigits |

fractionDigits | length | minLength | maxLength | enumeration |

whiteSpace | pattern)*))

</restriction>

Figure 5.15: Simple Data Type Content Declaration.

into a single data type. Figure 5.16 5 shows an example of using a simpleType structure

in XML Schema. Lines 18–23 show an example of a declaration by restriction where

a simple type called sizebynumber is derived (by restriction) from the built-in type

positiveInteger to create an integer between 8 and 72. Lines 32-35 show an example

of creating a new list type sizelistbynumber based on the simpleType sizebynumber

to define a list of values of sizebynumber. Lines 14–16 show an example of creating

a union type from two simple types sizebynumber and sizebystringname. The union

type represents the size as an integer between 8 and 72 or one of the strings small,

medium or large.

We translate a simpleType to C-XML by adding all the content of the simple

type tags to the value phrase inside the associated data frame of the element or the

5Lines 18–30 are taken with modification from http : //www.smrtx.com/RS/xsd union.htm.

87

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="root">

4 <xs:complexType>

5 <xs:choice>

6 <xs:element ref="size"/>

7 <xs:element ref="MonitorSize"/>

8 <xs:element ref="document"/>

9 </xs:choice>

10 </xs:complexType>

11 </xs:element>

12 <xs:element name="size" type="sizebynumber"/>

13 <xs:element name="MonitorSize">

14 <xs:simpleType>

15 <xs:union memberTypes="sizebynumber sizebystringname"/>

16 </xs:simpleType>

17 </xs:element>

18 <xs:simpleType name="sizebynumber">

19 <xs:restriction base="xs:positiveInteger">

20 <xs:minInclusive value="8"/>

21 <xs:maxInclusive value="72"/>

22 </xs:restriction>

23 </xs:simpleType>

24 <xs:simpleType name="sizebystringname">

25 <xs:restriction base="xs:string">

26 <xs:enumeration value="small"/>

27 <xs:enumeration value="medium"/>

28 <xs:enumeration value="large"/>

29 </xs:restriction>

30 </xs:simpleType>

31 <xs:element name="document" type="mysizelist"/>

32 <xs:simpleType name="sizelistbynumber">

33 <xs:list itemType="sizebynumber">

34 </xs:list>

35 </xs:simpleType>

36 <xs:simpleType name="mysizelist">

37 <xs:restriction base="sizelistbynumber">

38 <xs:length value="2"/>

39 </xs:restriction>

40 </xs:simpleType>

41 </xs:schema>

Figure 5.16: Example of Using Simple Type in XML Schema.

attribute. In the translation to C-XML, we distinguish between the following two

cases.

• When an element or an attribute embeds or references a simple type, which is by

itself created from a built-in type, the simple type is specified in the value phrase

inside the associated data frame for the object set which represents that element

or attribute by adding all the content of the simple-type tags, except that we

omit the name attribute and its value.6 For example, in Figure 5.16 the element

size in Line 12 references the simpleType sizebynumber in Lines 18–23, and since

this simple type is created by restriction from the base xs:positiveInteger which

6The name attribute only appears when the simpleType is declared globally in order to reference
that simpleType through its name from other places inside the XML-Schema instance.

88

Figure 5.17: Data Frame for Element size in Figure 5.16

<xs:simpleType>

<xs:union>

<xs:simpleType>

<xs:restriction base="xs:positiveInteger">

<xs:minInclusive value="8"/>

<xs:maxInclusive value="72"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="small"/>

<xs:enumeration value="medium"/>

<xs:enumeration value="large"/>

</xs:restriction>

</xs:simpleType>

</xs:union>

</xs:simpleType>

Figure 5.18: Text Representing the Simple Type for MonitorSize in Figure 5.16.

<xs:simpleType>

<xs:restriction>

<xs:simpleType>

<xs:list>

<xs:simpleType>

<xs:restriction base="xs:positiveInteger">

<xs:minInclusive value="8"/>

<xs:maxInclusive value="72"/>

</xs:restriction>

</xs:simpleType>

</xs:list>

</xs:simpleType>

<xs:length value="2"/>

</xs:restriction>

</xs:simpleType>

Figure 5.19: Text Representing the Simple Type for mysizelist in Figure 5.16.

89

is a built-in type, the data frame associated with the object set size contains

the text in Lines 18–23 in its value phrase field as it appears in Figure 5.17.

• When an element or an attribute X embeds or references a simple type T, which

itself is created from another simpleType S, in the translation to C-XML we un-

fold the T by first obtaining all the content of the S tag except the attribute

name and its value and inserting that content into one line below where the base

or itemType or memberTypes attribute is mentioned. Second, we omit the base

or itemType or memberTypes attribute and its value in T. Third, we repeat these

first two steps until the representation of T contains a built-in value for a base

or itemType or memberTypes attributes. Fourth, the unfolded representation of

the simpleType belonging to X is specified in the value phrase inside the asso-

ciated data frame for the object set X. For example, in Figure 5.16, the element

MonitorSize in Line 13 embeds a simpleType in Lines 14–16. This simpleType

is derived from the two simple types sizebynumber and sizebystringname that

are mentioned inside memberTypes. Each of sizebynumber(Lines 18–23) and

sizebystringname(Lines 24–30) by itself is a simpleType. Thus, the text in Fig-

ure 5.18 is added to the value phrase inside the associated data frame of the

element MonitorSize.

The element document in Line 31 references the simple data type mysizelist.

The simpleType mysizelist (Lines 31–35) is derived from the simpleType sizelist-

bynumber (Lines 18–22). Thus, the text in Figure 5.19 is added to the value

phrase inside the associated data frame of the element document.

5.2.6 Complex Type

In XML Schema when an element includes or references a complexType, child

elements and/or attributes are expected. We translate these child elements and

attributes to object sets in C-XML and relate them to other object sets via rela-

tionship sets defined according to where the complexType declaration occurs in an

XML-Schema instance. The connection between the object set and its children is

determined according to the content of the complexType.

We have illustrated these translations in many of the examples we have already

introduced, such as Figure 5.3 and 5.4. In Figure 5.3 the element A in Line 3 includes

a complexType in Line 4 which itself includes a sequence of B and C. In the translation

in Figure 5.4 the object set A connects to the object sets B and C via sequence. The

element C in Line 24 embeds a complexType in Line 25 that represents a choice of C1

90

and C2. In the translation in Figure 5.4 the object set C is connected to the object

sets C1 and C2 via choice.

Figure 5.20 shows the definition details for complexType in XML Schema. In

the following we give the translation details of the component parts of complexType.

<complexType

id = ID

abstract = boolean : ‘false’

block = (‘#all’ | List of (‘extension’ | ‘restriction’))

final = (‘#all’ | List of (‘extension’ | ‘restriction’))

mixed = boolean : ‘false’

name=NCName>

Content: (annotation?, (simpleContent | complexContent |

((group | all | choice | sequence)?,

((attribute | attributeGroup)*, anyAttribute?))))

</complexType>

Figure 5.20: Complex Data Type Declaration.

• id. As always, this is implicit—not mapped.

• abstract. The abstract attribute in a complexType definition only appears when

the complex type is declared globally. The default value of this attribute is

false. When the value is set to true, an element cannot use this complex type

directly but may only derive other complex types from this one. Figure 5.22

shows a C-XML translation of Figure 5.21. In the translation to C-XML, the

element that references an abstract complexType is represented as a nonlexical

object set. In Figure 5.22 this element is Email. The object set is connected

to other object sets that represent the elements or attributes nested under the

abstract complexType. In Figure 5.22 this includes Title, Date, and Message.

In addition, if nested extension elements are present, we allow any one of these

to be chosen and associated with the complexType. Thus, in the translation

from XML Schema to C-XML we add a choice structure. The choice structure

connects to each extension of the complexType. As Figure 5.22 shows, there is

a choice of EmailTo and EMailFrom in the C-XML translation of Figure 5.21.

• block and final. We add these attributes to the associated data frame of the

object set representing the element that includes or references a complexType.

91

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="Document">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="Email" type="eMailCommon" maxOccurs="unbounded"/>

7 </xs:sequence>

8 </xs:complexType>

9 </xs:element>

10 <xs:complexType name="eMailCommon" abstract="true">

11 <xs:sequence>

12 <xs:element name="Title" type="xs:string"/>

13 <xs:element name="Date" type="xs:date"/>

14 <xs:element name="Message" type="xs:string"/>

15 </xs:sequence>

16 </xs:complexType>

17 <xs:complexType name="eMailOutGoing">

18 <xs:complexContent>

19 <xs:extension base="eMailCommon">

20 <xs:sequence>

21 <xs:element name="EmailTo" type="xs:string" maxOccurs="unbounded"/>

22 </xs:sequence>

23 </xs:extension>

24 </xs:complexContent>

25 </xs:complexType>

26 <xs:complexType name="eMailInComing">

27 <xs:complexContent>

28 <xs:extension base="eMailCommon">

29 <xs:sequence>

30 <xs:element name="EmailFrom" type="xs:string" maxOccurs="unbounded"/>

31 </xs:sequence>

32 </xs:extension>

33 </xs:complexContent>

34 </xs:complexType>

35 </xs:schema>

Figure 5.21: Sample of Using Abstract in Complex Type in XML Schema.

EmailFromEmailTo

MessageDateTitle

Document

Email

Figure 5.22: Translated C-XML Model Instance of Figure 5.21.

92

• mixed. When mixed is set to true, the object set representing the element in-

cluding or referencing that complexType in C-XML is mixed. Figure 5.23 shows

an example of mixed content of a complex type. In Figure 5.23, setting mixed

to true enables character data to appear between the child-elements of Order in

a complying XML document. Thus, the content of Order may, for example, be

“The order for <Name>Pat</Name> identified by <OrderID>123</OrderID>

was shipped on <ShipDate>2006-07-10</ShipDate>.” Figure 5.24 shows a

translation example.

<xs:element name="Order">

<xs:complexType mixed="true">

<xs:sequence>

<xs:element name="Name" type="xs:string"/>

<xs:element name="OrderID" type="xs:positiveInteger"/>

<xs:element name="ShipDate" type="xs:date"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 5.23: Sample of Mixed Content in XML Schema.

OrderIDName ShipDate

Order

Figure 5.24: Mixed Content Structure Corresponding to Figure 5.23.

• name. The name attribute in a complexType definition only appears when the

complex type is declared globally to be referenced from other local places inside

the XML-Schema instance. In our translation of complexType to C-XML, we

do not map the name attribute of the complexType in XML Schema to C-XML.

93

5.2.7 AttributeGroup

Figure 5.25 shows definition details for attributeGroup in XML Schema. The

attributeGroup declaration merely lets us reference a global group of attribute dec-

larations. Thus, to do the translation to C-XML, we simply replace the referencing

attribute declaration by the attribute declarations in the referenced attributeGroup

declaration. We then map these attribute declarations as explained in Section 5.2.3.

<attributeGroup id = ID

name = NCName

ref = QName >

Content:(annotation?, ((attribute | attributeGroup)*, anyAttribute?))

</attributeGroup>

Figure 5.25: AttributeGroup Declaration.

5.2.8 All

Figure 5.26 shows definition details for all in XML Schema. Figure 5.27 shows

an example using all in an XML-Schema instance, and Figure 5.28 shows a C-XML

translation of Figure 5.27.

<all

id = ID

maxOccurs = 1 : 1

minOccurs = (0 | 1) : 1>

Content:(annotation?, element*)

</all>

Figure 5.26: All Declaration.

We translate an all structure in XML Schema to C-XML by representing the

elements embedded in the all as object sets. In the translation, a binary relationship

set appears between the object set of the containing element of the all structure and

each of the object sets of the children elements of the all structure.

In the following, we give the translation details of the component parts of all.

• id. As always, this is implicit—not mapped.

94

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

2 <xs:element name="Person">

3 <xs:complexType>

4 <xs:all>

5 <xs:element name="Address" type="xs:string"/>

6 <xs:element name="ContactInfo" type="xs:string" minOccurs="0"/>

7 </xs:all>

8 </xs:complexType>

9 </xs:element>

10 </xs:schema>

Figure 5.27: Example of All Structure in XML Schema.

ContactInfo AddressPerson

Figure 5.28: Translated C-XML Model Instance of Figure 5.27

• minOccurs and maxOccurs. As usual, we translate minOccurs and maxOccurs

to participation constraints. In the all structure, the minimum number of oc-

currences must be 0 or 1 and the maximum number must be 1. The default

value for minOccurs is 1. Further, each child element of the all structure can

only occur between 0 and 1 times. In translating from XML Schema to C-XML,

if the minOccurs of the all structure is 0, the final minOccurs of each element

embedded in the all structure will be 0. If the minOccurs of the all structure

is 1, the final minOccurs of each element embedded in the all structure will

remain the same. The final maxOccurs of each element embedded in the all

structure will be 1. Thus, for example, in Figure 5.28, the binary relationship

sets are both functional. Since minOccurs in Line 6 in Figure 5.27 is 0 ; the

binary relationship that appears between Person and ContactInfo is optional

on the Person side.

5.2.9 Sequence

Figure 5.29 shows definition details for sequence in XML Schema. Figure 5.30

shows an example of sequence in XML Schema where an element ParentOrGuardian

contains one or two sequences of an optional PreferredName string, one FirstName

string, zero to two MiddleName strings, and one LastName string. Figure 5.31 shows

a C-XML translation of Figure 5.30.

We translate a sequence structure in XML Schema to C-XML as follows. In

C-XML, a bounded half circle with a directional arrow represents a sequence. The

sequenced child concepts connect to the curved side, and the parent concept that

95

<sequence id = ID

maxOccurs = (nonNegativeInteger | ‘unbounded’) : 1

minOccurs = nonNegativeInteger : 1>

Content: (annotation?, (element | group | choice | sequence | any)*)

</sequence>

Figure 5.29: Sequence Declaration.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

2 <xs:element name="ParentOrGuardian">

3 <xs:complexType>

4 <xs:sequence minOccurs="1" maxOccurs="2">

5 <xs:element name="PreferredName" type="xs:string" minOccurs="0" maxOccurs="1"/>

6 <xs:element name="FirstName" type="xs:string"/>

7 <xs:element name="MiddleName" type="xs:string" minOccurs="0" maxOccurs="2"/>

8 <xs:element name="LastName" type="xs:string"/>

9 </xs:sequence>

10 </xs:complexType>

11 </xs:element>

12 </xs:schema>

Figure 5.30: Example of Sequence Structure in XML Schema.

contains the sequenced child concepts connects to the flat, bounded side. In the

following, we give the translation details of the component parts of sequence.

• id. As always, this is implicit—not mapped.

• minOccurs and maxOccurs. The participation constraints for the entire se-

quence are for the connection to the parent concept. The participation con-

straints for each of the component children of the sequence are for the connec-

tion to the sequence symbol. The default value for minOccurs and maxOccurs

for both the entire sequence and for the component children of the sequence is 1.

As Figure 5.31 shows, for minOccurs=“1” and maxOccurs=“2” of the sequence

element in Line 4 we write the participation constraint 1:2 near the connection

ParentOrGuardian

0:2

1:2

FirstName MiddleName LastNamePreferredName

Figure 5.31: Translated C-XML Model Instance of Figure 5.30.

96

to ParentOrGuardian, and for minOccurs=“0” and maxOccurs=“2” of the child

component MiddleName in Line 7 we write the participation constraint 0:2 near

the sequence symbol.

5.2.10 Choice

Figure 5.32 shows definition details for the choice structure in XML Schema.

Figure 5.33 shows an example of choice in an XML-Schema instance where an element

Phone contains either one HomePhone or one CellPhone but not both. Figure 5.34

shows a C-XML translation of Figure 5.33.

<choice id = ID

maxOccurs = (nonNegativeInteger | ‘unbounded’) :1

minOccurs = nonNegativeInteger : 1>

Content: (annotation?, (element | group | choice | sequence | any)*)

</choice>

Figure 5.32: Choice Declaration.

The translation of the choice structure in XML Schema is almost identical to

the translation for sequence. Like sequence, we use a bounded half circle for choice in

C-XML. Instead of the arrow, however, we use a bar to indicate the choice structure.

In the following, we give the translation details of the component parts of choice.

• id. As always, this is implicit—not mapped.

• minOccurs and maxOccurs. The participation constraints for the entire choice

are for the connection to the parent concept. The participation constraints

for each of the component children of the choice are for the connection to

the sequence symbol. The default value for minOccurs and maxOccurs for

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

2 <xs:element name="Phone">

3 <xs:complexType>

4 <xs:choice>

5 <xs:element name="HomePhone" type="xs:string"/>

6 <xs:element name="CellPhone" type="xs:string"/>

7 </xs:choice>

8 </xs:complexType>

9 </xs:element>

10 </xs:schema>

Figure 5.33: Example of Choice Structure in XML Schema.

97

Phone

CellPhoneHomePhone

Figure 5.34: Translated C-XML Model Instance of Figure 5.33.

both the entire choice and for the component children of the choice is 1. As

Figure 5.34 shows, the default value for both minOccurs and maxOccurs of the

choice element in Line 4 which is 1 is translated to a functional edge from Phone

to the choice component, and the default minOccurs=“1” and maxOccurs=“1”

of the component child HomePhone of the choice is the functional edge from

the choice component to HomePhone.

5.2.11 Any and AnyAttribute

Figures 5.35 and 5.36 show definition details for any and anyAttribute respec-

tively in XML Schema. Figure 5.37 shows an example of any and anyAttribute in an

XML-Schema instance. The example shows a schema that describes a Customer ele-

ment containing a FirstName and a LastName element in sequence and a CustomerID

attribute. Additionally, the two any elements specify that zero or more elements from

the urn:xmlns:25hoursaday-com:customer namespace can appear after the customer’s

name elements followed by zero or more elements from any other namespace. The

attribute anyAttribute specifies that the Customer element can have attributes from

any namespace. Figure 5.38 shows a C-XML translation of Figure 5.38.

<any id = ID

maxOccurs = (nonNegativeInteger | ‘unbounded’) : 1

minOccurs = nonNegativeInteger : 1

namespace = ((‘##any’ | ‘##other’) | List of (anyURI |

(‘##targetNamespace’ | ‘##local’))) : ‘##any’

processContents = (‘lax’ | ‘skip’ | ‘strict’) : ‘strict’ >

Content: (annotation?)

</any>

Figure 5.35: Any Declaration.

98

<anyAttribute id = ID

namespace = ((‘##any’ | ‘##other’) | List of (anyURI |

(‘##targetNamespace’ | ‘##local’))) : ‘##any’

processContents = (‘lax’ | ‘skip’ | ‘strict’) : ‘strict’>

Content: (annotation?)

</anyAttribute>

Figure 5.36: AnyAttribute Declaration.

We translate occurrences of any and anyAttribute in XML Schema to high-

level object sets to indicate they contain some content from elsewhere. XML Schema

is not specific enough to designate which object set. We thus cannot specify which

object set. We therefore name these object sets “any”. Conceptually, in C-XML,

whether the object set is an attribute or an element does not matter, and we do not

distinguish between these cases. In the following, we give the translation details for

the component parts for any and anyAttribute.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cust="urn:xmlns:25hoursaday-com:customer"

targetNamespace="urn:xmlns:25hoursaday-com:customer"

elementFormDefault="qualified">

2 <xs:element name="Customer">

3 <xs:complexType>

4 <xs:sequence>

5 <xs:element name="FirstName" type="xs:string"/>

6 <xs:element name="LastName" type="xs:string"/>

7 <xs:any namespace="##targetNamespace" processContents="strict" minOccurs="0"

maxOccurs="unbounded"/>

8 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>

9 </xs:sequence>

10 <xs:attribute name="CustomerID" type="xs:integer"/>

11 <xs:anyAttribute namespace="##any" processContents="skip"/>

12 </xs:complexType>

13 </xs:element>

14 </xs:schema>

Figure 5.37: Example of the Any and anyAttribute Structures in XML Schema.

• id. As always, this is implicit—not mapped.

• namespace. This attribute specifies the namespaces that an XML validator

examines to determine the validity of an element in an XML instance, and it

is not a conceptual construct. Thus, we do not map it to C-XML. We can,

however, record it as a comment in C-XML.

99

CustomerID

FirstName

Customer

LastName

any

anyany

Figure 5.38: The Translated C-XML Model Instance of Figure 5.37.

• processContents. This attribute specifies how the XML processor should handle

validation against the elements specified by the any or anyAttribute, and is not

a conceptual construct. Thus, we do not map it to C-XML. We can, however,

record it as a comment in C-XML.

• minOccurs and maxOccurs. The default value for both minOccurs and max-

Occurs is 1. As usual, in the translation to C-XML, minOccurs and maxOc-

curs become participation constraints and are assigned to the connection of

the object set that represents the containing element of the any structure. For

example, the minOccurs=“0” and maxOccurs=“unbounded’ for any in Line 7

becomes 0:* represented by the many-many relationship set with an optional

descriptor on the sequence designator.

5.2.12 Group

Figure 5.39 shows definition details for the group structure in XML Schema.

Figure 5.40 shows an example of using a group structure in XML Schema. A global

group named group1 in Line 19 has a sequence of two elements, A1 and A2. The

group is referenced in Line 7 and Line 14. Another global group named group2 in

Line 25, which has elements B1 and B2 that can appear in any order, is referenced

in Line 17. Figure 5.41 shows a C-XML translation of Figure 5.40.

We translate the group structure in XML Schema to C-XML by representing

the content of the group only once and linking it in with a relationship set connection

for each reference to it. If the group is a sequence or a choice, that sequence or choice

represents the group. If the group is an all, only the elements embedded in the all

structure are translated to C-XML as object sets. Each object set representing an

element embedded in the all structure is connected through a binary relationship set

to the object set representing the containing element of the group.

100

<group id = ID

maxOccurs = (nonNegativeInteger | ‘unbounded’) : 1

minOccurs = nonNegativeInteger : 1

name = NCName

ref = QName >

Content: (annotation?, (all | choice | sequence)?)

</group>

Figure 5.39: Group Declaration.

• id. As always, this is implicit—not mapped.

• name. Since the name attribute can only appear in the global group declaration

and serves only to provide a reference name for the group, and since we unfold

the content of the global group in our translation to C-XML, we do not map

the name of the group in XML Schema to C-XML.

• ref. The ref attribute is used in XML Schema to reuse a global group in an XML-

Schema instance from other local places inside the same XML-Schema instance.

In the translation to C-XML, we unfold the content of the global group. The

unfolded content connects into the overall structure in the same way the local

group which contains the ref attribute in the XML-Schema instance connects.

For example, the global group group1 in Line 19 is referenced from the two local

groups in Line 7 and Line 14. In the C-XML instance, the global group group1

is represented via the sequence structure embedded in the group. The sequence

connects into the sequence representation in Line 6 in the same way the local

group in Line 7 connects. Also, the sequence connects into another object set

E1 that represents the element E1 in the same way that the local group in Line

14 connects. The global group group2 in Line 25 is referenced from the local

group in Line 17. In the C-XML instance, the global group group2 in Line 25 is

represented by the object sets B1 and B2, which represent the elements B1 in

Line 27 and B2 in Line 28, which are embedded in the all structure beginning

in Line 26. The object sets B1 and B2 connect to the object set E2 in the

same way the local group, group2 in Line 17, connects.

• minOccurs and maxOccurs. The minOccurs and maxOccurs attributes of the

group can only appear for local groups referencing the global groups. The

minOccurs and maxOccurs attributes may not appear as attributes for a global

group. Also, a sequence, choice, or all structure embedded in a global group may

101

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

2 <xs:element name="Document">

3 <xs:complexType>

4 <xs:choice minOccurs="1" maxOccurs="unbounded">

5 <xs:element name="E1" type="E1Type"/>

6 <xs:sequence>

7 <xs:group ref="group1" minOccurs="1" maxOccurs="2"/>

8 </xs:sequence>

9 <xs:element name="E2" type="E2Type"/>

10 </xs:choice>

11 </xs:complexType>

12 </xs:element>

13 <xs:complexType name="E1Type">

14 <xs:group ref="group1" minOccurs="2" maxOccurs="5"/>

15 </xs:complexType>

16 <xs:complexType name="E2Type">

17 <xs:group ref="group2" minOccurs="1" maxOccurs="3"/>

18 </xs:complexType>

19 <xs:group name="group1">

20 <xs:sequence>

21 <xs:element name="A1" type="xs:string"/>

22 <xs:element name="A2" type="xs:string" minOccurs="0" maxOccurs="2"/>

23 </xs:sequence>

24 </xs:group>

25 <xs:group name="group2">

26 <xs:all>

27 <xs:element name="B1" type="xs:string"/>

28 <xs:element name="B2" type="xs:string" minOccurs="0" maxOccurs="1"/>

29 </xs:all>

30 </xs:group>

31 </xs:schema>

Figure 5.40: Example of the Group Structure in XML Schema.

not have minOccurs and maxOccurs attributes. In the translation to C-XML,

when the global group embeds a sequence or choice structure, the minOccurs

and maxOccurs of the local group that references the global group become par-

ticipation constraints for the C-XML component that represents the containing

element of the local group in the XML-Schema instance. Note that the con-

taining element could be an object set, a sequence, or a choice. In Line 7, the

minOccurs=“1” and maxOccurs=“2” of the local group, group1, are translated

to the participation constraint 1:2 for the sequence beginning in Line 6. In Line

14, minOccurs=“2” and maxOccurs=“5” of the local group, group1, are trans-

lated to the participation constraint 2:5 for the object set E1 that represents

the element E1 in Line 9. When the global group embeds an all structure, each

minOccurs and maxOccurs of the local group that references that global group,

is multiplied by each minOccurs and maxOccurs of the elements embedded in

the all structure. These multiplication results become participation constraints

in the relationship set between each element embedded in the all structure and

the object set representing the containing element of the local group referenc-

ing that global group. In Line 17, minOccurs=“1” and maxOccurs=“3” of the

102

1:3

E2

B2B1

Document

E1

2:5

0:2

0:3

A2A1

1:2

Figure 5.41: Translated C-XML Model Instance of Figure 5.40

local group, group2, are respectively multiplied by minOccurs=“1” and maxOc-

curs=“1” for the element B1 in Line 27 to get the result minOccurs=“1” and

the maxOccurs=“3”, which translates into the participation constraint 1:3 for

the the object set E2 in the binary relationship set between E2 and B1. Also,

in Line 17, minOccurs=“1” and maxOccurs=“3” of the local group, group2, are

respectively multiplied by minOccurs=“0” and maxOccurs=“1” for the element

B2 in Line 28 to get the result minOccurs=“0” and maxOccurs=“3”, which

translates into the participation constraint 0:3 near the object set E2 in the

binary relationship set between E2 and B2.

5.2.13 Simple Content Complex Type

Figure 5.42 shows a declaration of simpleContent complexType in XML Schema.

As always the id is implicit—not mapped. As Figure 5.42 shows, in XML Schema we

provide the content of simpleContent either by restriction or extension. We explain

the translation of these elements respectively in the subsections below.

103

<simpleContent

id = ID>

Content: (annotation?, (restriction | extension))

</simpleContent>

Figure 5.42: Simple Content Declaration.

Derivation by Restriction of Simple Content

Figure 5.43 shows definition details for restriction of simpleContent for com-

plexType in XML Schema. Restriction allows the addition of constraints to both the

attributes and the text nodes in simple content elements. Restrictions reduce the

set of valid instances and structures. To restrict attributes, XML Schema provides

modifiers for attribute definitions. The controls applied to the attributes must result

in a restriction of their definitions. For example, a value may be fixed, or an attribute

that was optional may become either required or prohibited.

<restriction

id = ID

base = QName>

Content: (annotation?, (simpleType?, (minExclusive | minInclusive |

maxExclusive | maxInclusive | totalDigits | fractionDigits |

length | minLength | maxLength | enumeration | whiteSpace |

pattern)*)?, ((attribute | attributeGroup)*, anyAttribute?))

</restriction>

Figure 5.43: Restriction on simpleContent Content Declaration.

In Figure 5.44, Line 28 shows an element MensSize that references the com-

plex type MensSizeType. MensSizeType (defined in Lines 29–36) is a simple content

complex type derived by restriction from another simple content complex type Shoe-

SizeType (Lines 20–27), which in turn is also a simple content complex type derived by

extension from SizeType (Lines 12–18). SizeType provides the base, integer. MensSize

restricts the integer values to be greater than 6. Also, MensSize has an additional

restriction on the attribute HeelHeight listed in the base ShoeSizeType that removes

HeelHeight from MensSize by setting its use to prohibited. Figure 5.45 shows the

translation of Figure 5.44.

In the following, we give the translation details of the component parts for

restriction of simpleContent for ComplexType.

104

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="Document">

4 <xs:complexType>

5 <xs:choice minOccurs="0" maxOccurs="unbounded">

6 <xs:element ref="MensSize"/>

7 <xs:element ref="ShoeSize"/>

8 <xs:element ref="WomensSize"/>

9 </xs:choice>

10 </xs:complexType>

11 </xs:element>

12 <xs:complexType name="SizeType">

13 <xs:simpleContent>

14 <xs:extension base="xs:integer">

15 <xs:attribute name="Country" type="xs:string"/>

16 </xs:extension>

17 </xs:simpleContent>

18 </xs:complexType>

19 <xs:element name="ShoeSize" type="ShoeSizeType"/>

20 <xs:complexType name="ShoeSizeType">

21 <xs:simpleContent>

22 <xs:extension base="SizeType">

23 <xs:attribute name="Width" type="xs:string" />

24 <xs:attribute name="HeelHeight" type="xs:integer"/>

25 </xs:extension>

26 </xs:simpleContent>

27 </xs:complexType>

28 <xs:element name="MensSize" type="MensSizeType"/>

29 <xs:complexType name="MensSizeType">

30 <xs:simpleContent>

31 <xs:restriction base="ShoeSizeType">

32 <xs:minExclusive value="6"/>

33 <xs:attribute name="HeelHeight" type="xs:integer" use="prohibited"/>

34 </xs:restriction>

35 </xs:simpleContent>

36 </xs:complexType>

37 <xs:element name="WomensSize" type="WomensSizeType"/>

38 <xs:complexType name="WomensSizeType">

39 <xs:simpleContent>

40 <xs:extension base="ShoeSizeType">

41 <xs:attribute name="Fashion" type="xs:string"/>

42 <xs:attribute name="Quality" type="xs:string"/>

43 </xs:extension>

44 </xs:simpleContent>

45 </xs:complexType>

46 </xs:schema>

Figure 5.44: Examples of Simple Content Nested under Complex Type in XML
Schema.

105

0:0

QualityFashion

Country

ShoeSize

HeelHeight

Document

MensSize WomensSize

Width

Figure 5.45: Translated Simple Content Instance of Figure 5.44.

• id. As always, this is implicit—not mapped.

• base. When the value of the base attribute in a restriction of simple content

complex type T1 matches the value of a name attribute of a simple content

complex type T2 and there is an element E1 whose type is T1 and an element

E2 whose type is T2, in the translation to C-XML E1 becomes a nonlexical

specialized object set S1 of the nonlexical object set S2 that represents E2. In

Figure 5.44, T1 = MensShoeType, T2 = ShoeSizeType, E1 = MensSize, E2 =

ShoeSize, S1 = MensSize, and S2 = ShoeSize. Thus, as Figure 5.45 shows, the

object set MensSize is a specialization of the object set ShoeSize. S1 connects

via binary relationship sets to each lexical object set that represents one of the

restricted attributes nested under T1. Thus, as Figure 5.45 shows, MensSize

connects to HeelHeight. The restriction on the values of the element E1 whose

type is T1 appears in the the data frame associated with E1. We take the

content of the restriction component nested under simpleContent in T1 and

delete from that content any attribute declarations and add to the beginning of

that content an open tag of simpleType and add to the end of that content a

closed tag of simpleType. We unfold the base; if the base contains another base

106

with a built-in value, then we add this value as the base value of our constructed

simpleType. Otherwise, we repeat the unfolding step until we get a base with a

built-in value. Thus, to specify that the value of MensSize has an integer value

greater than 6, we add the text in Figure 5.46 to the value phrase inside the

associated data frame of the element MensSize. In the text, we get the built-

in value xs:integer of the base by tracing from the base in the complex type

MensSizeType (Lines 29–36) through the base in ShoeSizeType (Lines 20–27) to

the base in SizeType (Lines 12–18).

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minExclusivevalue="6"/>

</xs:restriction>

</xs:simpleType>

Figure 5.46: The text Representing the Simple Type for MensSize in Figure 5.44

Derivation by Extension of Simple Content

Figure 5.47 shows definition details for extension of simpleContent for com-

plexType in XML Schema. The base attribute specifies the type to extend, and the

list of attributes to add to the content is given as attribute, attributeGroup, and any-

Attribute embedded in the extension.

<extension

id = ID

base = QName>

Content:(annotation?,((attribute | attributeGroup)*, anyAttribute?))

</extension>

Figure 5.47: Extension on a simpleContent Content Declaration.

Figure 5.44 shows two examples of derivation by extension of the simple con-

tent complex type. The first example (Lines 37–45) shows an element WomensSize

(Line 37) that references the complex type WomensSizeType (Line 38). Womens-

SizeType is a simple content complex type derived by extension from another simple

content complex type ShoeSizeType (Lines 20–27). ShoeSizeType references another

element ShoeSize (Line 19). In a complying XML document, WomensSize has the

107

same attributes, Width and Height, that ShoeSize has, but WomensSize also has

attributes Fashion and Quality that are nested under the extension content in the

complex type WomensSizeType. Ultimately, WomensSize has the type integer as

specified in SizeType. The second example (Lines 19–27) shows an element Shoe-

Size (Line 19) that references the complex type ShoeSizeType. In this case, however,

although ShoeSizeType (Lines 20–27) is a simple content complex type derived by ex-

tension from another simple content complex type SizeType (Lines 12–18), SizeType

is not referenced by any element in the schema instance. Thus, ShoeSize needs to

include the attribute Country that SizeType has. ShoeSize also has the attributes,

Width and HeelHeight, that are nested under ShoeSizeType. ShoeSize has the type

integer, the base in SizeType. Figure 5.45 shows the translation of Figure 5.44.

In the following, we give the translation details of the component parts for

extension of simpleContent for complexType.

• id. As always, this is implicit—not mapped.

• base. We distinguish between two situations:

– When the value of the base attribute in an extension of simple content

complex type T1 matches the value of a name attribute of a simple con-

tent complex type T2 and there is an element E1 that references T1 and

there is an element E2 that references T2, then in the translation to C-

XML, the element E1 that references T1 becomes a nonlexical specialized

object set S1 of the object set S2 that represents the element E2 referencing

T2. In Figure 5.44, T1 = WomensSizeType, T2 = ShoeSizeType, E1 =

WomensSize, E2 = ShoeSize, S1 = WomensSize, and S2 = ShoeSize.

Thus, as Figure 5.45 shows, the object set WomensSize is a specialization

of the object set ShoeSize. S1 connects via binary relationship sets to each

lexical object set that represents one of the attributes that are nested un-

der the extension in T1. Thus, as Figure 5.45 shows, WomensSize connects

to Fashion and Quality. The built-in type of the object set that represents

the element referencing T1 is specified in the type name field of the data

frame that associates with the object set. We get the built-in type by

unfolding the base in T1. If it contains a base with a built-in value, then

we add this value to the type name field in the data frame. Otherwise, we

repeat the unfolding step until we get a base with a built-in value. Thus, to

get the type for WomensSize, we trace from the base in WomensSizeType

108

through the base in ShoeSizeType to the base in SizeType and set the type

to xs:integer.

– When the value of the base attribute in an extension of simple content

complex type T1 matches the value of a name attribute of a simple content

complex type T2, and there is an element E1 that references T1 and there

is no element that references T2, in the translation to C-XML, the object

set S1 for E1 connects via binary relationship sets to each lexical object set

that represents one of the attributes nested under T2. In Figure 5.44, T1

= ShoeSizeType, T2 = SizeType, E1 = ShoeSize, and S1 = ShoeSize.

Thus, as Figure 5.45 shows, ShoeSize connects to the lexical object set

Country. The object set S1 also connects via binary relationship sets to

each lexical object set that represents one of the attributes nested under T1.

Thus, as Figure 5.45 shows, the non-lexical object set ShoeSize connects

to the lexical object sets Width and HeelHeight. As before, we get the

built-in type for the object set S1 by unfolding the base in T1.

5.2.14 Complex Content Complex Type

Figure 5.48 shows a declaration of complexContent complexType in XML Schema.

Figure 5.49 shows an example of using complexContent in an XML-Schema instance,

and Figure 5.50 shows a translation of Figure 5.49. In the following, we give the

translation details of the component parts of complexContent.

<complexContent

id = ID

mixed = boolean>

Content:(annotation?,(restriction | extension))

</complexContent>

Figure 5.48: Complex Content Declaration.

• id. As always, this is implicit—not mapped.

• mixed. The default value for this attribute is false. The value of the mixed at-

tribute of a complex content component in the extension of a complex content

complex type T1 must match the value of the mixed attribute of the complex

content T2 that matches the name in the base of T1. In Figure 5.49, T1 =

109

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="OrderForm">

4 <xs:complexType>

5 <xs:choice>

6 <xs:element name="Order" type="OrderType"/>

7 <xs:element name="BookOrder" type="BookOrderType"/>

8 </xs:choice>

9 </xs:complexType>

10 </xs:element>

11 <xs:complexType name="OrderType" mixed="true">

12 <xs:sequence>

13 <xs:element name="Name" type="xs:string"/>

14 <xs:element name="OrderID" type="xs:positiveInteger"/>

15 <xs:element name="ShipDate" type="xs:date"/>

16 </xs:sequence>

17 </xs:complexType>

18 <xs:complexType name="BookOrderType">

19 <xs:complexContent mixed="true">

20 <xs:extension base="OrderType">

21 <xs:sequence>

22 <xs:element name="BookName" type="xs:string"/>

23 <xs:element name="Author" type="xs:string"/>

24 <xs:element name="PublicationDate" type="xs:date"/>

25 </xs:sequence>

26 </xs:extension>

27 </xs:complexContent>

28 </xs:complexType>

29 </xs:schema>

Figure 5.49: Example of Extension of Complex Content under Complex Type in XML
Schema.

BookOrderOrder

PublicationDateAuthorBookNameShipDateOrderIDName

OrderForm

Figure 5.50: Translated C-XML Model Instance of Figure 5.49

110

BookOrderType (Lines 18–28), T2 = OrderType (Lines 11–17); the mixed at-

tribute of both is set to true. When the value of the attribute mixed is set to

true in the complex content component of a complex type T1, in the translation

to C-XML the object set E1 that references the complex type T1 becomes mixed.

In Figure 5.49, T1 = BookOrderType, E1 = BookOrder. Thus, as Figure 5.50

shows, the object set BookOrder is mixed.

As Figure 5.48 shows, in XML Schema we provide the content of complexCon-

tent either by restriction or extension. We explain the translation of these elements

respectively in the subsections below.

Derivation by Restriction of Complex Content

Figure 5.51 shows definition details for restriction of complexContent for com-

plexType in XML Schema. Restriction allows the addition of new constraints to both

the attributes and child elements in complex content structures. The new content

is entirely described under restriction and must represent a restriction of what was

allowed by the base content model (i.e., any content valid for the restricted type must

also be valid for the base type).

<restriction

id = ID

base = QName>

Content: (annotation?,(group | all | choice | sequence)?,

((attribute |attributeGroup)*,anyAttribute?))

</restriction>

Figure 5.51: Restriction on Complex Content Declaration.

Figure 5.52 shows an XML Schema example using complexType by restriction.

An element Canadian-Address in Line 7 has a complexType, Canadian-AddressType.

The complexType, Canadian-AddressType, in Lines 19–30 is a complexType derived by

restriction from another complexType, AddressType. The complexType AddressType

in Lines 11–18 has a sequence of the following elements: Street, City, PostalCode, and

Country. The complex type Canadian-AddressType in Lines 19–30 has the same ele-

ments that complex type AddressType in Lines 11–18 has with additional restrictions.

Street in Line 13 is optional, while in Line 23 it is required. PostalCode in Line 15 is

111

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="Document">

4 <xs:complexType>

5 <xs:choice>

6 <xs:element name="Address" type="AddressType"/>

7 <xs:element name="Canadian-Address" type="Canadian-AddressType"/>

8 </xs:choice>

9 </xs:complexType>

10 </xs:element>

11 <xs:complexType name="AddressType">

12 <xs:sequence>

13 <xs:element name="Street" type="xs:string" minOccurs="0"/>

14 <xs:element name="City" type="xs:string"/>

15 <xs:element name="PostalCode" type="xs:integer"/>

16 <xs:element name="Country" type="xs:string"/>

17 </xs:sequence>

18 </xs:complexType>

19 <xs:complexType name="Canadian-AddressType">

20 <xs:complexContent>

21 <xs:restriction base="AddressType">

22 <xs:sequence>

23 <xs:element name="Street" type="xs:string"/>

24 <xs:element name="City" type="xs:string"/>

25 <xs:element name="PostalCode" type="xs:positiveInteger"/>

26 <xs:element name="Country" type="xs:string" fixed="Canada"/>

27 </xs:sequence>

28 </xs:restriction>

29 </xs:complexContent>

30 </xs:complexType>

31 </xs:schema>

Figure 5.52: Example of Restriction of Complex Content under Complex Type in
XML Schema.

integer, while in Line 25 it is positiveInteger. Country in Line 16 can be any string,

while in Line 26 it is fixed to be Canada.

In the following, we give the translation details of the component parts of the

derivation of complexContent complexType by restriction.

• id. As always, this is implicit—not mapped.

• base. When the value of the base attribute in a restriction of complex content

complex type T1 matches the value of a name attribute of a complex type T2

and there is an element E1 whose type is T1 and an element E2 whose type is

T2, in the translation to C-XML, E1 becomes a nonlexical specialized object

set S1 of the nonlexical object set S2 that represents E2. In Figure 5.52, T1 =

Canadian-Address, T2 = AddressType, E1 = Canadian-Address, E2 = Address,

S1 = Canadian-AddressType, and S2 = Address. Thus, as Figure 5.53 shows,

the object set Canadian-Address is a specialization of the object set Address.

The object set S1 connects to object sets that represent elements or attributes

nested under the restriction content in T1. Thus, as Figure 5.53 shows, the

112

="Canada"

1Country

PostalCodeCity

Street

Canadian-AddressAddress

Country

PostalCode

City

Street

Document

Figure 5.53: Translated C-XML Model Instance of Figure 5.52

object set Canadian-Address connects to the object sets Street, City, Postal-

Code, and Country via a sequence. The object set S2 connects to object sets

that represent elements or attributes nested under the extension content in T2.

Thus, as Figure 5.53 shows, the object set Address connects to the object sets

Street, City, PostalCode, and Country via a sequence. Each element or attribute

that has restrictions in T2 becomes a specialization object set that represents

its corresponding element or attribute in T2. Thus, as Figure 5.53 shows, gen-

eralization/specialization constraints appear between the object set Street that

connects by sequence to the object set Address and the object set Street that

connects by sequence to the object set Canadian-Address, between the object

set PostalCode that connects by sequence to the object set Address and the

object set PostalCode that connects by sequence to the object set Address, and

between the object set Country that connects by sequence to the object set

Address and the singleton object set Country (fixed to the object “Canada”)

that connects by sequence to the object set Canadian-Address.

113

Derivation by Extension of Complex Content

Figure 5.54 shows definition details for the derivation of complexContent com-

plexType by extension in XML Schema which allows the addition of elements and

attributes to the base type. Figure 5.49 shows an example using derivation of com-

plexContent complexType by extension, where an element BookOrder in Line 7 has

complex type BookOrderType. BookOrderType in Lines 18–28 is a complex type

that embeds a complexContent derived by extension from another complexType,

OrderType. The OrderType in Lines 11–17 has a sequence of three elements:

Name, OrderID, and ShipDate. BookOrderType, in addition being an extension

of OrderType, it also has a sequence of three elements BookName, Author, and

PublicationDate. Figure 5.50 shows a C-XML translation of Figure 5.49.

<extension

id = ID

base = QName>

Content: (annotation?, ((group | all | choice | sequence)?,

((attribute | attributeGroup)*, anyAttribute?)))

</extension>

Figure 5.54: extension on Complex Content Declaration.

• id. As always, this is implicit—not mapped.

• base. When the value of the base attribute in an extension of complex content

complex type T1 matches the value of a name attribute of a complex type T2

and there is an element E1 whose type is T1 and an element E2 whose type

is T2, in the translation to C-XML E1 becomes a nonlexical specialized object

set S1 of the nonlexical object set S2 that represents E2. In Figure 5.49, T1

= BookOrderType, T2 = OrderType, E1 = BookOrder, E2 = Order, S1 =

BookOrder, and S2 = Order. Thus, as Figure 5.50 shows, the object set Book -

Order is a specialization of the object set Order. The object set S1 connects

to object sets that represent elements or attributes nested under the extension

content in BookOrderType. Thus, as Figure 5.50 shows, the object set Book -

Order connects to the object sets BookName, Author, and PublicationDate via

a sequence. The object set S2 connects to object sets that represent elements

114

or attributes nested under the extension content in OrderType. Thus, as Fig-

ure 5.50 shows, the object set Order connects to the object sets Name, OrderID,

and ShipDate via a sequence.

5.3 Conclusion

In this chapter we discussed in detail the translation of XML Schema to C-

XML. For each component of XML Schema, we gave a suitable mapping for it and

for each of its attributes. Thus, we can automatically convert any XML-Schema

instance to a C-XML conceptual-model instance. Hence, we can view the structural

components graphically in a two-dimensional layout, and we can access type details

for each component by displaying its data frame as a filled-in form. We therefore can

view an XML-Schema instance graphically and at a higher level of abstraction.

115

116

Chapter 6

Translating Conceptual XML to XML Schema

6.1 Introduction

XML, XML Schema, and the web have precipitated a change in information

systems design. Many designers have shifted their work from traditional conceptual

models to XML Schema to create XML-based applications. But XML Schema suffers

from the same problem as other low-level data-definition languages such as SQL—it

lacks a sufficiently intuitive two-dimensional visualization of object sets, relationship

sets, and constraints for modeling real-world data, and it does not raise the level

of abstraction beyond a linear list of textual statements with which designers can

envision their data. Designers need conceptual models to graphically represent XML

data at a higher level of abstraction, but they also need to be able to translate their

conceptual models to XML Schema.

Elsewhere, we [Chapter 4] and others [14, 34] have adapted and defined suitable

conceptual models for use with XML. Here we present a methodology to automati-

cally translate a conceptual model to W3C XML Schema. The methodology guaran-

tees that the XML-Schema instance resulting from the translation of a conceptual-

model instance properly captures and represents both the data contained within the

conceptual-model instance and, to the extent possible, the constraints imposed over

the data.

The particular conceptual model we consider here for translation is C-XML

[Chapter 2, Chapter 4]. C-XML has a rich set of modeling constructs, and it is fully

compatible with XML Schema. Indeed, we can represent any XML-Schema instance

in C-XML and preserve both containers for its data instances and all its constraints

[Chapter 5]. C-XML is also equivalent in modeling power to both ER-XML [Chap-

ter 4] and UML-XML [Chapter 4], which are both fundamentally grounded in C-XML.

Thus, by translating C-XML to XML Schema, we also provide a way to translate ER-

XML and UML-XML to XML Schema.

117

A number of other researchers have studied how to transform conceptual mod-

els into XML Schema. Both Carlson [10] and Routledge, et al. [32] describe how to

translate a UML model instance into an XML Schema instance. In another study

Bird, et al. explain how to translate Object Role Modeling into XML Schema [5].

A study by Pigozzo and Quintarelli [30] describes how to translate an ER model in-

stance into an XML Schema instance. Comparing our approach to translation with

these approaches, we observe the following.

• Their work explains how to translate one of the traditional conceptual models,

UML, Object Role Modeling, or ER, to XML Schema. These traditional con-

ceptual models have a number of limitations (see Chapter 4) when it comes to

describing some of the conceptual structures that XML Schema provides; they

are unable to (1) order lists of concepts, (2) choose alternative concepts from

among several, (3) declare nested hierarchies of information, (4) specify mixed

content, and (5) use content from another data model. We use an augmented

conceptual model (C-XML) that includes the common data-modeling features

found in traditional conceptual models, as well as these conceptual structures

found in XML Schema.

• Their work fails to address and discuss many translation details. They only

discuss the translation to XML Schema in a general way without walking the

reader step-by-step through the process of generating a valid XML Schema

instance.

• They fail to provide implementations for their work. Our implementation fully

translates any C-XML model instance into a valid XML-Schema instance.

In the translation from C-XML to W3C XML Schema we must consider the

following challenging issues:

• XML Schema has a hierarchical structure, while a particular conceptual-model

instance may have no explicit hierarchal structure. Converting non-hierarchial

structure to a hierarchial structure presents some interesting challenges espe-

cially if we wish to be able to guarantee properties such as making the hierar-

chical structures as large as possible without introducing redundancy.

• XML Schema often does not mesh well with conceptual-modeling structures.

Translations resulting in a valid XML-Schema instance sometimes need extra ar-

tifacts to satisfy XML Schema’s syntactic requirements (e.g. a sequence among

118

data items when the conceptual-model instance has no requirement for a se-

quence). Also, because of XML-Schema limitations the translation sometimes

cannot capture all the constraints of a C-XML model instance (e.g. some car-

dinality constraints).

• The conceptual-model instance may contain a variety of conceptualizations:

hypergraphs representing interrelated object and relationship sets; generaliza-

tion/speialization hierarchies with union, mutual-exclusion, and partition con-

straints; hierarchies of sequence and choice structures; and mixed textual/con-

ceptual structures. Translating these conceptualizations individually is a chal-

lenge, and translating conceptual-model instances with a mixture of these con-

ceptualizations presents an even greater challenge.

• Often multiple translations are possible. Deciding on a default translation is

sometimes difficult because the alternatives are equally reasonable. Having the

user decide whenever there is an alternative is likely to be overburdensome.

Having the user choose broadbased defaults in advance may help, but does not

allow for fine-grained tuning. In our discussion here we point out the alterna-

tives, but our implementation only allows the user to have fine-grained control

over a few of them.

We address these issues and present our contribution of translating from C-

XML to XML Schema as follows. Section 6.2 gives the translation when C-XML

has basic conceptual structures, which include object sets and binary and n-ary re-

lationship sets. Section 6.3 presents the translation of generalization/specialization

hierarchies. Section 6.4 presents the translation when the conceptual model instance

has sequence and choice structures. Section 6.5 summarizes, gives the status of our

implementation, and considers future work.

6.2 Basic Conceptual Structures

In this section we present our translation from a basic C-XML model instance

to an XML-Schema instance. A basic C-XML model instance contains object sets and

binary and n-ary relationship sets. An XML-Schema instance generated from a basic

C-XML model instance must provide for the objects and relationships representable

in the C-XML object and relationships sets and must capture all possible C-XML

model-instance constraints.

C-XML is a hypergraph-based conceptual model that defines structure in terms

of object sets, relationship sets, and constraints over these object and relationship sets.

119

FacultyMember

Semester

Instructor

Location

Department

StudentID

StudentName

Grade

Course

Student

Figure 6.1: Basic C-XML Model Instance.

Figure 6.1 shows an example. An object set with a solid border is a nonlexical object

set (e.g. Student in Figure 6.1); an object set with a dashed border is a lexical

object set (e.g. Course in Figure 6.1). With each object set we can associate a

data frame to provide a rich description of its value set and other properties. Lines

connecting object sets are relationship sets (e.g. the line connecting Student and

Name and the hyper-line connecting the object sets Student, Course, Grade, and

Semester in Figure 6.1). A participation constraint specifies how many times an

object in an object set may participate in relationships in a connected relationship

set. For the most common participation constraints (0:1, 1:1, 0:*, and 1:*), C-XML

uses graphical notation as a shorthand. An “o” on a connecting relationship-set line

designates optional participation, while the absence of an “o” designates mandatory

participation. Thus, for example, the C-XML model instance in Figure 6.1 declares

that an Instructor must teach at least one Course in some Semester but that a Course

need not be taught by any Instructor in a specific Semester. An arrowhead specifies

a functional constraint, limiting participation of objects on the tail side of the arrow

to participate at most once. Thus, Figure 6.1 declares that a Student has one Name

and that the Department has one Location. It also declares that the Student object

set is in a one-to-one correspondence with the StudentID object set.

Our translation method starts by applying an algorithm, labeled HST, to

convert a conceptual-model hypergraph to a forest of scheme trees [21].1 By observing

many-one cardinality constraints, the HST algorithm finds hierarchical structures,

making them as large as possible without introducing redundancy. By observing

mandatory/optional constraints, the algorithm also ensures that all values populating

a C-XML model instance can be represented in instance trees complying with the

scheme-tree forest.

1To avoid the long explanation, each time we refer to the algorithm in this chapter, we designate
it the HST algorithm (Hypergraph-to-Scheme-Tree translation algorithm).

120

An application of the HST algorithm to the C-XML model instance in Fig-

ure 6.1 generates the forest of scheme trees in Figure 6.2(a). Starting with Student,

the HST algorithm adds StudentID and Name in the same node as Student. Both

functionally depend only on Student and cannot cause redundancy. Since, Course-

Semester-Grade triples do not functionally depend on Student, we form a node with

these triples and make it a child node of the root node. The algorithm then begins

building a new scheme tree starting with Department. The algorithm adds Location

in the same node, as it functionally depends on Department. Since Course does not

functionally depend on Department, Course becomes a child node of the root node

Department. Because the relationship between Department and Course is one-many,

we may continue along relationship-set lines and add an additional node below the

Course node. We thus add in a new child node consisting of Semester and Instructor.

Since FacultyMember does not functionally depend on Department, FacultyMember

becomes a child node of the root node Department. We thus obtain the scheme

tree forest in Figure 6.2(a). Figure 6.2(b) shows the textual representation of this

scheme-tree forest.

The HST algorithm allows several degrees of freedom in forming a scheme-

tree forest. Depending on where the algorithm starts, the algorithm can generate

different scheme trees. If we start first with Department, the algorithm would continue

on from Course by adding the node (Student, Semester, Grade)* below the node

whose only element is Course. This is satisfactory in the sense that the scheme tree

permits no redundancy, but may not be satisfactory for a user who may expect to

view the data about the courses students have taken from a student’s perspective.

Our implementation allows designers to choose starting nodes. For our example, we

assume that a designer first chooses Student as a starting node, and then after the

algorithm produces the first scheme tree, chooses Department as the next starting

node.

The HST algorithm also permits alternative node configurations for non-functional

n-ary (n≥3) relationship sets. There is no redundancy penalty, for example, for split-

ting the node (Semester, Instructor)* into two nodes (Semester, (Instructor)*)*. Our

current implementation does not give designers this flexibility, choosing instead by

default, to group object sets into a fewer number, rather than a greater number, of

nodes.

After generating the scheme tree forest, we construct the XML-Schema in-

stance. We explain how the construction works bottom-up as follows. We first ex-

plain how to translate an individual object set. We next explain how to translate an

121

Figure 6.2: Generated Forest of Scheme Trees for Figure 6.1.

individual node in a scheme tree. Since an individual node may have children, which

are included in the translation of an individual node, the translation leads to the

translation of an individual scheme tree. We then explain how to create a root node

for the generated XML-Schema instance, which ties all the scheme trees together.

Finally, we explain how to add global uniqueness constraints.

Individual Object Sets

In our implementation, we usually translate a lexical object set to an XML-

Schema attribute, and we always translate a nonlexical object set to an XML-Schema

element. An alternative to translating lexical object sets as attributes is to translate

them as elements. Sometimes, when the structure dictates, we must use elements

for lexical objects sets, but our preference is to use attributes whenever possible. A

nonlexical object-set element has a complexType container for its content. As part

of the content, we choose to generate an OID attribute to represent the objects

within the nonlexical object set. If a lexical object set appears more than once in the

scheme-tree forest, we declare the translated XML-Schema attribute globally in the

generated XML-Schema instance, and we reference it using the attribute ref for each

local appearance in the XML-Schema instance. If a nonlexical object set appears

122

<xs:attribute name="Grade" type="xs:string"/>

(a)

<xs:attribute name="Course" type="xs:string"/>

(b)

<xs:attribute ref="Course"/>

(c)

<xs:element name="Student">

<xs:complexType>

...

<xs:attribute name="StudentOID">

</xs:complexType>

</xs:element>

(d)

Figure 6.3: Translation of Several Individual Object Sets.

more than once in the scheme-tree forest, we declare the attribute OID nested within

the translated XML-Schema element for that nonlexical object set globally in the

generated XML-Schema instance, and we reference it using the attribute ref for each

local appearance in the XML-Schema instance.

To complete the declaration for an object set, we obtain information from its

associated data frame. Every object set in a C-XML model instance has an associated

data frame that contains the fields Type name, Default value, Fixed value, Block, Final,

Form, and Nillable. When a field F has a value v, we add to the translated attribute

or element declaration the qualifying attribute for F and the value v.

Figure 6.3 shows how we translate several individual object sets. Figure 6.3a

shows the translation of the lexical object set Grade as a simple attribute declaration;

its name is its object set name, and its type is string. Figure 6.3 also shows the

translation of the object set Course, which appears twice in the scheme-tree forest.

Figure 6.3b shows its global definition, and Figure 6.3c shows its local definition with a

ref attribute, which references the global definition. Figure 6.3d shows the translation

of the nonlexical object set Student as an element with complexType content. Observe

that its OID attribute has the name StudentOID, a concatenation of the name of the

nonlexical object set and“OID”. We form all OID names by concatenating the object

set name and “OID”.

123

Nodes

Since each scheme-tree node denotes a set of tuples, we must have a container

for the set as well as a container for an individual tuple. Each container requires a

name. Although we could use arbitrary names or let the user select names, we attempt

to select a reasonable name for each container automatically. Since a key for a set

of tuples identifies individual tuples, we choose keys as names for individual tuples

and plurals of these names for sets of tuples. (We always form plurals by adding the

letter s even when adding an s does not yield the proper English plural.) Thus, for

example, since the key for the Department-Location node in Figure 6.2 is Department,

we name the container for its individual tuples Department and the container for its

set of tuples Departments. Similarly, since the key for the Semester -Instructor node

in Figure 6.2 is the composite key consisting of Semester and Location, we name the

container for its individual tuples Semester -Instructor and the container for its set

of tuples Semester -Instructors. If a node has multiple, minimal keys, we choose one

arbitrarily except that we prefer nonlexical keys over lexical keys. Thus, for example,

we choose Student and Students as the names for the Student-StudentID-StudentName

node in Figure 6.2.

Each container has some content. Thus, the container element has complex-

Type content. The container element for a node must provide for a set of tuples.

We introduce them with a sequence structure, even though the sequence structure

has the extra, perhaps unwanted, constraint of requiring its children to be ordered.

The sequence structure is the only choice available to us; we cannot choose the all

structure because it allows its children to appear at most one time within the all

structure. The container element for an individual tuple, on the other hand, contains

at most one instance of each object set and each child of the tuple. We thus use the

all structure for the elements representing the child nodes of the node being built.

If a node contains a nonlexical object set, it is usually the key for the node. If so,

its translation, which is an element with complexType content containing an OID at-

tribute to represent its objects, serves as the container for the individual tuple. If not,

an OID attribute alone is sufficient to represent the nonlexical object set. We add

any such OID attributes along with attributes for lexical object sets in the complex-

Type content of the container element for an individual tuple. Figure 6.4, for example

shows the construction of the Student scheme tree in Figure 6.2a. Since Student is

nonlexical (see Figure 6.1) and is a key for the root node (see Figure 6.2), Student

becomes the container for the individual tuples of the root node. The complexType

124

1 <xs:element name="Students">

2 <xs:complexType>

3 <xs:sequence>

4 <xs:element name="Student" maxOccurs="unbounded">

5 <xs:complexType>

6 <xs:all>

7 <xs:element name="Course-Semester-Grades">

8 <xs:complexType>

9 <xs:sequence>

10 <xs:element name="Course-Semester-Grade" minOccurs="0" maxOccurs="unbounded">

11 <xs:complexType>

12 <xs:attribute ref="Course" use="required"/>

13 <!--C-XML: forall x (Course(x) =>

exists [0:*] <y, z, w> (Course(x)Student(y)Semester(z)Grade(w)))-->

14 <xs:attribute ref="Semester" use="required"/>

15 <xs:attribute name="Grade" type="xs:String" use="required"/>

16 </xs:complexType>

17 </xs:element>

18 </xs:sequence>

19 </xs:complexType>

20 </xs:element>

21 </xs:all>

22 <xs:attribute name="StudentOID" type="xs:string" use="required"/>

23 <xs:attribute name="StudentID" type="xs:string" use="required"/>

24 <xs:attribute name="StudentName" type="xs:string" use="required"/>

25 </xs:complexType>

26 </xs:element>

27 </xs:sequence>

28 </xs:complexType>

29 </xs:element>

Figure 6.4: Portion of XML-Schema Instance that Represents the Content of the first
scheme tree.

structure under Student provides for the information for a single student. The par-

ent structure for Student is Students, which provides for the set of students. The

node has one child node, the Course-Semester-Grade node, which we formulate as

another node nested under the all structure of the Student element. The remaining

lexical object sets, StudentID and Name, become attributes nested under the Student

structure.

The structure of the generated scheme trees plus the optional constraints of

the input C-XML model instance dictate the cardinality constraints. Every XML-

Schema element declaration specifies its cardinality with respect to its parent as a

minOccurs value and a maxOccurs value. The default value for both minOccurs and

maxOccurs is “1”. Every XML-Schema attribute declaration specifies whether it is

“required” or “optional” in its use attribute. The default value for the attribute use

is optional. We now explain how we obtain the values for minOccurs, maxOccurs,

and use for (1) the container element for a set of tuples for a node, (2) the container

element for an individual tuple for a node, and (3) attributes inside a node.

125

1. Container elements for a set of tuples. Since there is exactly one instance of

the container element for a set of tuples for a node, the assigned values for

minOccurs and maxOccurs are both “1”, the default. In Figure 6.4, neither the

element Students and nor the element Course-Semester-Grades has minOccurs

or maxOccurs, which indicates that the default values must hold.

2. Container elements for an individual tuple for a node. Normally, a set of in-

dividual tuples may contain one or more tuples. Thus, minOccurs is “1” and

maxOccurs is “unbounded”, unless the conceptual model constrains the set to

have a different minimum or maximum number of tuples. For example, the

minOccurs value for Student in Figure 6.4 is “1” (the default), and the max-

Occurs value for Student is “unbounded”. On the other hand, the minOccurs

value for Course-Semester-Grade in Figure 6.4 is “0” and the maxOccurs value

for Course-Semester-Grade is “unbounded”. We obtain the value “0” for the

minOccurs by observing that the node Course-Semester-Grade is a child node

for the node Student-StudentID-StudentName; then since Student has an op-

tional connection to the object sets Course, Semester, and Grade the minOc-

curs value is zero.

3. Attributes inside a node. Normally, the value for use is “required” unless the

conceptual model constrains the use to be “optional”. For example, in Fig-

ure 6.4, the use for the attributes StudentID and Name is “required” because in

Figure 6.1 Student has mandatory constraints in the relationship sets between

Student and StudentID and between Student and Name. The Course-Semester-

Grade container that includes Course, Semester, and Grade has minOccurs=“0”

to account for the optional participation of the Course-Semester-Grade relation-

ship set. Each instance of the relationship set, however, requires a connection

among Student, Course, Semester, and Grade and thus the use for each of the

attributes Course, Semester, and Grade is “required”.

Since XML Schema has a hierarchial structure, we can only capture partici-

pation constraints in the conceptual model instance for parent elements. By default,

the nesting structure in an XML-Schema instance makes the participation constraint

for a child element within a parent element have a minimum constraint of one and

a maximum constraint of unbounded. XML Schema provides no way to capture any

constraint other than this default constraint. Thus, we capture constraints that differ

from the default in a special comment. We prefix special comments with C-XML so

that we can know to process them if we wish to enforce the constraint or if we wish

126

to restore the original C-XML model instance from the XML-Schema instance. So

that we can know what constraint to enforce or restore, we write the constraint for-

mally using predicate-calculus syntax. (All constraints in C-XML have an equivalent

predicate-calculus expression [18].) For example, to declare that the participation of

Course in the n-ary relationship set in Figure 6.1 among Students, Course, Semester,

and Grade is optional, we write the comment that appears in Line 13 of Figure 6.4.

The comment

forall x (Course(x) =>

exists [0:*] <x, y, w> (Course(x)Student(y)Semester(z)Grade(w)))

establishes the constraint that each element x in Course may have zero or more tuples

<y, z, w> in the relationship set Course(x)Student(y)Semester(z)Grade(w).

Root Elements

Each XML-Schema instance must have a single root element. When the num-

ber of scheme trees in the generated forest is one, we do not generate a root element

because the container element for the set of tuples for the root node in that scheme

tree can serve as the root element. When the number of scheme trees in the gener-

ated forest is more than one, we generate a root element. We choose to give the root

element the name Root, but a user may rename it, choosing a name that represents

the entire conceptual model.

When we introduce a root element, we must nest the elements beneath the

root element that represent the sets of tuples for each generated scheme tree. Thus,

the root element is of complexType. Since there is no reason to sequence the scheme

trees in any particular order and since there is only one instance of a scheme tree, we

choose the all structure to nest the elements representing the scheme trees. Within

the all structure, we nest the container element for the set of tuples for the root node

of each generated scheme tree.

In our implementation we choose to declare the container element for the set

of tuples for the root node of each generated scheme tree by using the ref attribute.

We declare the entire content of the container element for the set of tuples for the root

node of each generated scheme tree globally under the schema element and outside

the Root element. The ref attribute references the container element for the set of

tuples for the root node of each generated scheme tree. For example, the generated

forest in Figure 6.2 has two scheme trees. Thus, as Figure 6.5 shows, we generate

the root element Root and declare elements Students and Departments under the all

127

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Root">

<xs:complexType>

<xs:all>

<xs:element ref="Students"/>

<xs:element ref="Departments"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="Students">

<xs:complexType>

...

</xs:complexType>

...

</xs:element>

<xs:element name="Departments">

<xs:complexType>

...

</xs:complexType>

...

</xs:element>

</xs:schema>

Figure 6.5: The Root Element for the Generated XML-Schema Instance.

structure using the ref attribute. The ref attribute references the global declarations

Students and Departments under the schema element.

An alternative way of nesting each generated scheme tree is to place the entire

content of the container element for the set of tuples for the root node of each gener-

ated scheme tree directly inside the all structure. We prefer referencing the scheme

trees and declaring them outside the Root because this provides a quick and easy way

for the reader to see the major structures of the XML-Schema instance.

Uniqueness Constraints

For each generated forest, we need to determine the uniqueness constraints

and express them in the generated XML-Schema instance. Every key for each node

is unique within the container element for that node. We determine the scope of

uniqueness of a key K within a node N by computing the functional closure of K,

K+, in the C-XML model instance. By definition of K being a key, K+ includes the

object sets of N. In addition, it may include the object sets in ancestor nodes of N.

The scope of a key K is the highest level ancestor node A such that K+ includes

all object sets in all ancestor nodes of the node N in which K appears up to and

including node A. A equal to N is common and happens when K+ does not include

the object sets in its parent. Because we construct scheme trees hierarchically, A is

128

Node Key Functional Closure Scope Element

Student-StudentID- StudentOID and StudentID Student, StudentID, Students
StudentName StudentName
Course-Semester- Course-Semester-Grade Course, Semester, Grade, Course-Semester-
Grade Department, Location Grades
Department-Location Department Department, Location Departments
Course Course Course, Department, Departments

Location
FacultyMember FacultyMember FacultyMember, Departments

Department, Location
Semester-Instructor Semester-Instructor Semester, Instructor Semester-Instructors

Table 6.1: Keys for Figure 6.2.

often the root node of a scheme tree. In our example, we compute the closure for

each key in each node in each scheme tree as Table 6.1 shows.

From Table 6.1, we can immediately create a key declaration as follows. We

create the key structure within the scope element since the values of the key have

to be unique within that element. Thus, for example, we create the key structure

for FacultyMembers in Departments and the key structure for Semester-Instructor in

Semester-Instructors. We list the key components in the field attributes in the key

structure. When a key component is an attribute in an XML-Schema instance, it is

prefixed with“@”. Thus, the field component of the key declaration for “StudentOID”

is “@StudentOID” and for “StudentID” is “@StudentID”, and the field component for

“Semester-Instructor” are the field components “@Semester” and “@Instructor”. The

selector field in the key structure specifies the scope. Since the key structure resides in

the designated scope element, the path“.”at the beginning of the xpath in the selector

denotes the scope element. The remainder of the xpath consists of the container names

down to, and including, the individual tuple for the key. Thus, for example, the xpath

for the selector for Semester-Instructor is “./Semester-Instructor”, and the xpath for

the FacultyMember is “./Department/FacultyMembers/FacultyMember”. The key

structure has a name attribute—we concatenate the name of the key and Key with a

hyphen between them. In our example there are seven keys to declare. As a complete

example of one of them, Figure 6.6 shows the key structure for FacultyMember nested

in the element Departments.

129

<xs:element name="Departments">

<xs:complexType>

...

</xs:complexType>

<xs:key name="FacultyMember-Key">

<xs:selector xpath="./Department/FacultyMembers/FacultyMember"/>

<xs:field xpath="@FacultyMember"/>

</xs:key>

</xs:element>

Figure 6.6: Generated Key Structure.

(c)

(b)

(a)

ScholarshipStudentWorkStudyStudent

PhDStudent

GradStudentUndergradStudentAdvisor

MSStudent

FacultyMember

Instructor

Student

InstructorAdvisor

GradInAidStudent

Prerequisite

Course

Figure 6.7: Several C-XML Generalization/Specialization Hierarchies.

6.3 Generalization/Specialization

Figure 6.7 shows several C-XML generalization/specialization hierarchies. The

main idea in generalization/specialization is that a generalization object set is a super-

set of each of its specialization object sets. We choose to model this central idea using

referential integrity constraints. In XML Schema, referential integrity constraints are

declared by a keyref structure. Using keyref enables us to specify that the set of

values in a specialization element is a subset of the set of values in a generalization

element.

Since XML-Schema requires us to make keyref declarations outside the scope

of referenced key declarations, we create the keyref structure within the scope of the

XML-Schema root element. Consider, for example, the keyref structure for Prereq-

uisite. We list the keyref components in the field attributes in the keyref structure.

130

When a keyref component is an attribute in an XML-Schema instance, it is prefixed

with “@”. The field component of the keyref declaration for “Prerequisite”, for exam-

ple, is “@Prerequisite”. The selector field in the keyref structure specifies the scope.

Since the keyref structure resides in the root element, the path “.” at the beginning

of the xpath in the selector denotes the root element. The remainder of the xpath

consists of the container names down to, and including, the individual tuple for the

keyref. Thus, for example, the xpath for the selector for the element Prerequisite is

“./Prerequisites/Prerequisite”. The refer attribute in a keyref structure specifies the

corresponding key definition. Thus, for example, the refer attribute for Prerequisite

is Course-Key. To construct the name attribute, we concatenate the name of the

keyref ’s corresponding element with the string “-Keyref”, Figure 6.9 shows the keyref

structure for Prerequisite. The keyref declaration in Lines 10–13 references the key

declaration in Lines 25–28. Hence, values for the Prerequisite attribute declared in

Line 35 must be a subset of values for the Course attribute declared in Line 20.

When the generalization/specialization hierarchy has a union constraint, the

set of objects in the generalization is a union of the specialization object sets. In XML

Schema, there is no way to declare this constraint, but we can insert a comment line

in an XML-Schema instance to indicate that the union constraint holds. For the

generalization G with specializations S1, ..., Sn we insert the comment

<! --C-XML: forall x (G(x) => (S1(x) or ... or Sn(x))-->.

For the union constraint in Figure 6.7(c), for example, we write the constraint

<! --C-XML: forall x (GradStudentOID(x) =>

(MSStudentOID(x) or PhDStudentOID(x))-->.

When the generalization/specialization hierarchy has a mutual-exclusion con-

straint, the pairwise intersection of the specialization object sets must be empty. Since

there is no way to declare this constraint in an XML-Schema instance, we insert a

comment line to indicate that the mutual-exclusion constraint holds. For the gener-

alization G with specializations S1, ..., Sn we insert the comment

<! --C-XML: forall x (S1(x) => not S2(x) and not S3(x) and ... and not Sn(x))

and ... and forall x (Sn−1(x) => not Sn(x))-->.

For the mutual-exclusion constraint in Figure 6.7(c), for example, we insert the com-

ment

<! --C-XML: forall x (WorkStudyStudentOID(x) => not ScholarshipStudentOID(x)

and not GradInAidStudentOID(x)) and

forall x (ScholarshipStudentOID(x) => not GradInAidStudentOID(x))-->.

131

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

3 <xs:element name="Root">

4 <xs:complexType>

5 <xs:all>

6 <xs:element ref="Courses"/>

7 <xs:element ref="Prerequisites"/>

8 </xs:all>

9 </xs:complexType>

10 <xs:keyref name="Prerequisite-Keyref" refer="Course-Key">

11 <xs:selector xpath="./Prerequisites/Prerequisite"/>

12 <xs:field xpath="@Prerequisite"/>

13 </xs:keyref>

14 </xs:element>

15 <xs:element name="Courses">

16 <xs:complexType>

17 <xs:sequence>

18 <xs:element name="Course" minOccurs="1" maxOccurs="unbounded">

19 <xs:complexType>

20 <xs:attribute name="Course" use="required"/>

21 </xs:complexType>

22 </xs:element>

23 </xs:sequence>

24 </xs:complexType>

25 <xs:key name="Course-Key">

26 <xs:selector xpath="./Course"/>

27 <xs:field xpath="@Course"/>

28 </xs:key>

29 </xs:element>

30 <xs:element name="Prerequisites">

31 <xs:complexType>

32 <xs:sequence>

33 <xs:element name="Prerequisite" minOccurs="1" maxOccurs="unbounded">

34 <xs:complexType>

35 <xs:attribute name="Prerequisite" use="required"/>

36 </xs:complexType>

37 </xs:element>

38 </xs:sequence>

39 </xs:complexType>

40 </xs:element>

Figure 6.8: XML-Schema Instance for the Translated Content for Figure 6.7(a).

132

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="Root">

4 <xs:complexType>

5 <xs:all>

6 <xs:element ref="Students"/>

7 ...

8 </xs:all>

9 </xs:complexType>

10 <xs:keyref name="UndergradStudentOID-Keyref" refer="StudentOID-Key">

11 <xs:selector xpath="./Students/Student"/>

12 <xs:field xpath="@UndergradStudentOID"/>

13 </xs:keyref>

14 <xs:keyref name="GradStudentOID-Keyref" refer="StudentOID-Key">

15 <xs:selector xpath="./Students/Student"/>

16 <xs:field xpath="@GradStudentOID"/>

17 </xs:keyref>

18 <!--C-XML:forall x (StudentOID(x) => UndergradStudentOID(x) or GradStudentOID(x))-->

19 <!--C-XML:forall x (UndergradStudentOID(x) => not GradStudentOID(x))-->

20 </xs:element>

21 <xs:element name="Students">

22 <xs:complexType>

23 ...

24 </xs:complexType>

25 <xs:key name="StudentOID-Key">

26 <xs:selector xpath="./Student"/>

27 <xs:field xpath="@StudentOID"/>

28 </xs:key>

29 </xs:element>

30 <xs:element name="UndergradStudents">

31 ...

32 </xs:element>

33 <xs:element name="GradStudents">

34 ...

35 </xs:element>

37 </xs:schema>

Figure 6.9: Translation of a Partition Constraint.

133

A partition constraint imposes both union and mutual exclusion conditions.

We thus represent a partition constraint by inserting special C-XML comments for

both union and mutual exclusion. Figure 6.9 shows the translation of the part of

the generalization/specialization hierarchy in Figure 6.7(c) partitioning the Student

object set into the UndergradStudent and GradStudent object sets. The keyref decla-

ration in Lines 10–13 ensures that the set of UndergradStudentOID values is a subset

of the set of values of StudentOID and the set of values of GradStudentOID is a sub-

set of the set of the StudentOID values. We declare the union part of the partition

constraint in Line 18 and the mutual-exclusion constraint in Line 19.

When an object set in a generalization/specialization hierarchy has multi-

ple generalizations, the values of the specialization object set should be a subset of

the values in each generalization object set. Figure 6.7(b) shows an example with

multiple generalizations for the object set InstructorAdvisor, whose generalization

object sets are Instructor and Advisor. Using two keyref declarations, we are able

to constrain the values of objects in the specialization object set also to be values of

objects in each generalization object set. In addition, when an object set in a gen-

eralization/specialization hierarchy has multiple generalizations with an intersection

constraint, as is the case in Figure 6.7(b), the set of objects in the specialization must

be exactly the intersection of the generalization object sets. Since in an XML-Schema

instance there is no way to express this constraint, we insert a comment in the XML-

Schema instance to declare it. Thus, for our example in Figure 6.7(b), we would add

the comment

<! --C-XML: forall x (Instructor(x) and Advisor(x) =>

InstructorAdvisor(x))-->.

When we intermix generalization/specialization with other C-XML structures,

we must be careful to ensure that we can continue to use keyref in XML Schema to

express subset/superset constraints. We can if we ensure that every generalization

element has a key structure. Hence, when we apply the HST algorithm, each gen-

eralization object set must be a key for its node. When forming a node within a

scheme tree, if a generalization object set is to be added to the node and the object

set is not a key within that node, the algorithm builds a new scheme tree starting

with that generalization object set. This ensures that the generalization object set is

a key inside the root node for the generated scheme tree, and also ensures that the

XML-Schema instance has a key structure for the keyref structure.

An application of the HST algorithm to the C-XML model instance in Fig-

ure 6.10 generates the forest of scheme trees in Figure 6.11. Observe that the second

134

InstructorAdvisor

Prerequisite

DatePassedQual

ScholarshipStudentWorkStudyStudent GrandInAidStudent

PhDStudent

GradStudentUndergradStudent

Advisor

MSStudent

FacultyMember

Semester Instructor

Location

Department

Grade

Course

Student

Rate HoursPerWeek

StudentID

Name

Figure 6.10: C-XML Model Instance Combining Basic Conceptual Structures and
Generalization/Specialization Hierarchies.

(Student, StudentID, StudentName, (Course, Semester, Grade)*)*

(Department, Location, (Course,(Prerequisite)*)*, (FacultyMember)*)*

(WorkStudyStudent, HoursPerWeek, Rate)*

(Advisor, (GradStudent)*)*

(PhDStudent, DatePassedQual)*

(UndergradStudent)*

(MSStudent)*

(ScholarshipStudent)*

(GrandInAidStudent)*

(InstructorAdvisor)*

(Instructor, (Course, Semester)*)*

Figure 6.11: Generated Scheme Tree for Figure 6.10.

135

scheme tree (Department, Location, (Course,(Prerequisite)*)*, (FacultyMember)*)*

does not include the node Semester-Instructor under Course as does the scheme tree

in Figure 6.2. If we add the node Semester-Instructor under Course, the generaliza-

tion object set Instructor is not a key within this node. Instead, we generate a new

scheme tree (Instructor, (Course, Semester)*)* where the generalization object set

Instructor is a key.

After generating the forest of scheme trees, we first construct the XML-Schema

instance as explained in Section 6.2. We then add keyref structures under the Root

element of the generated XML-Schema instance as explained in Section 6.3.

6.4 Sequence and Choice

Figure 6.12 shows an example of a C-XML model instance that contains se-

quence and choice structures along with some other C-XML structures. Initially, it

might appear that because C-XML sequence and choice structures are essentially

XML-Schema sequence and choice structures, the translation should be straight-

forward. Unfortunately, two major differences make the translation far less than

straightforward. These differences include (1) our desire to translate so that the re-

sulting XML-Schema instance allows no possible redundancy and (2) complications

that arise because C-XML permits richer sequence and choice structures and richer

constraints in sequence and choice structures than XML Schema. For redundancy,

for example, observe that in Figure 6.12 if two students have the same address, and

if we write corresponding XML-Schema structures with Address nested under Stu-

dent and City, State, and ZipCode nested under Address, then the City, State, and

ZipCode values will appear redundantly, once for each shared address. For richer

structures, for example, observe that in Figure 6.12 the object set Student is a parent

of two sequence/choice hierarchies. Moreover, observe also in Figure 6.12 that in a

C-XML model instance an object set that is a child of a sequence or choice struc-

ture can connect to other object sets via binary or n-ary relationship sets. Neither

of these structures is possible in XML-Schema. For richer constraints, unlike XML

Schema, C-XML allows for sequence and choice structures to have a minimum and

maximum number of occurrences within the relationship set between the parent and

the sequence or choice. It also allows for a sequence’s or a choice’s child to have a

minimum and maximum number of occurrences within the relationship set between

the sequence or choice and the child. The optional constraint near the State side in

the relationship set between the sequence and the State in Figure 6.12 is an example

of a child having a declared minimum occurrence of zero.

136

0:*

0:2

0:*

2:3

1:2

LastNameMiddleNameFirstName

AuthorizedPerson

StateNickname

Address

ZipCodeStateCity

PhoneNumber

Email

ContactInfo

StudentID

StudentName

Student

Figure 6.12: Sample Sequence and Choice Structures.

All these difficulties cause the translation of sequence and choice structures

to differ markedly from standard XML Schema sequence and choice structures. The

basic idea for translation is to consider sequence and choice structures as ordinary

relationship sets. This lets us run the HST algorithm in the usual way, which leads

to a resolution of both the redundancy problem and the structural problems. To

resolve the constraint problems, the system keeps track of the original sequence and

choice structures so that they can be appropriately inserted, and it keeps track of

the original minimum and maximum occurrences so that, when possible, they can

be appropriately inserted, and, when not possible, they can be recorded as special

C-XML comments.

To do the translation correctly, we first replace sequence and choice structures

between a parent object set P and a child object set C with a binary relationship set

that connects P and C. Figure 6.13 shows Figure 6.12 with binary relationship sets

in place of sequence and choice structures. We compute the participation constraints

between P and C by considering the constraints on the path of one or more sequence

and choice structures between P and C.

To compute the participation constraint for the parent side, we multiply the

minimums of the participation constraints along the path from parent to child. Sim-

ilarly, we multiply the maximums to compute the maximum. For the child side we

do the same—multiply minimums together for the minimum and maximums together

for the maximum. To obtain the participation constraint of 0:2 on the Student side

137

2:3

2:3

1:2

LastName

MiddleName

FirstName

AuthorizedPerson

StateNickname

Address

ZipCodeStateCity

PhoneNumber

Email

ContactInfo

StudentID

StudentName

Student
0:2

Figure 6.13: Sequence and Choice Structures Replaced with Binary Relationship Sets.

in the binary relationship set between Student and MiddleName, for example, we

multiply respective minimums and maximums in Figure 6.12 of 1:1 (for Student in

the relationship set between the Student and the choice), 1:1 (for the choice structure

in the relationship set between the choice and the sequence structures), and 0:2 (for

the sequence structure in the relationship set between the sequence structure and

the object set MiddleName). Similarly, to obtain the participation constraint of 1:*

on the MiddleName side in the binary relationship set between Student and Middle-

Name, we multiply respective minimums and maximums of 1:* (for MiddleName in

the relationship set between the sequence structure and the object set MiddleName),

1:* (for the sequence structure in the relationship set between the choice and sequence

structures), and 1:* (for the choice structure in the relationship set between Student

and the choice structure). (Multiplying “*” by anything greater than 0, of course,

results in “*”.)

Next, we apply the HST algorithm. When applying the HST algorithm, we

must be sure to make it possible to reinsert the sequence and choice structures. We

do so by making each object set in the C-XML model instance that is a parent of

138

(Student, StudentID, StudentName, FirstName, LastName, ContactInfo,

(MiddleName)*, (Address)*)*

(Address, City, State, ZipCode, (AuthorizedPerson)*)*

(ContactInfo, (Email)*, (PhoneNumber)*, (AuthorizedPerson)*)*

(State, (StateNickname)*)*

Figure 6.14: Generated Forest of Scheme Trees for Figure 6.12.

a sequence or choice structure the starting object set for a scheme tree. Figure 6.14

shows the forest of scheme trees generated for Figure 6.12.

After generating the forest of scheme trees, we construct the XML-Schema in-

stance. Figure 6.15, as an example, shows the translation of the scheme tree (Student,

StudentID, StudentName, FirstName, LastName, ContactInfo, (MiddleName)*, (Ad-

dress)*)*. The algorithm is basically the same as the algorithm in Section 6.2. The

insertion of sequence and choice structures, however, makes the translation different

in the following ways.

• Since sequence and choice structures cannot nest attributes, the system trans-

lates any lexical object set in a C-XML model instance that is a child of a

sequence or choice structure and that would otherwise be translated to an at-

tribute as an XML-Schema element rather than as an attribute. For example, in

the C-XML model instance in Figure 6.12, the lexical object sets StudentName,

FirstName, and LastName are translated to elements instead of attributes in

Lines 8, 10, and 22 in Figure 6.15.

• Because we will be introducing sequence and choice structures, we replace the

all structure that is nested within the container element for an individual tuple

in a node by a sequence structure. For example, in Figure 6.14 the object set

Student is the container element for an individual tuple for the node Student-

StudentID-StudentName-FirstName-LastName-ContactInfo in the scheme tree

(Student, StudentID, StudentName, FirstName, LastName, ContactInfo, (Mid-

dleName)*, (Address)*)*, and it is a parent of a choice and sequence structure.

In this case the all structure that we used to nest the content for an individual

tuple in a node in the subsection Nodes in Section 6.2 cannot work because

the all structure can only nest elements and cannot nest sequence or choice

structures. Thus, we replace the all structure with a sequence structure. In

Figure 6.15, for example, we declare a sequence in Lines 6 through 37. Notice

that the elements StudentName, FirstName, and LastName that were attributes

in Section 6.2 are now nested under this sequence.

139

1 <xs:element name="Students">

2 <xs:complexType>

3 <xs:sequence>

4 <xs:element name="Student" maxOccurs="unbounded">

5 <xs:complexType>

6 <xs:sequence>

7 <xs:choice>

8 <xs:element name="StudentName" type="xs:string"/>

9 <xs:sequence>

10 <xs:element name="FirstName" type="xs:string"/>

11 <xs:element name="MiddleNames">

12 <xs:complexType>

13 <xs:sequence>

14 <xs:element name="MiddleName" minOccurs="0" maxOccurs="2">

15 <xs:complexType>

16 <xs:atribute name="MiddleName" type="xs:string" use="required"/>

17 </xs:complexType>

18 </xs:element>

19 </xs:sequence>

20 </xs:complexType>

21 </xs:element>

22 <xs:element name="LastName" type="xs:string"/>

23 </xs:sequence>

24 </xs:choice>

25 <xs:sequence>

26 <xs:element name="Address" maxOccurs="2">

27 <xs:complexType>

28 <xs:attribute ref="AddressOID"/>

29 </xs:complexType>

30 </xs:element>

31 <xs:element name="ContactInfo">

32 <xs:complexType>

33 <xs:attribute ref="ContactInfoOID"/>

34 </xs:complexType>

35 </xs:element>

36 </xs:sequence>

37 </xs:sequence>

38 </xs:complexType>

39 <xs:attribute name="StudentOID" type="xs:string" use="required"/>

40 <xs:attribute name="StudentID" type="xs:string" use="required"/>

41 </xs:element>

42 </xs:sequence>

43 </xs:complexType>

44 </xs:element>

Figure 6.15: XML-Schema Instance for Student.

140

• Since we are guaranteed that children of sequence or choice structures are nested

with their parent in the same scheme tree, we can properly reinsert sequence and

choice structures in an XML-Schema instance for the elements that are children

of sequence or choice structures in the original C-XML model instance. For ex-

ample, in Figure 6.15, elements FirstName (Line 10), MiddleNames (Line 11),

and LastName (Line 22) are nested within a sequence structure (Lines 9–23).

The sequence structure itself and the element StudentName (Line 8) are nested

within the choice structure (Lines 7–24). Address (Lines 26–30) and Contact-

Info (Lines 31–35) are nested within another sequence structure (Lines 25–36).

(Since both Address and ContactInfo appear in multiple scheme trees, we define

them by referring to global elements.)

Unlike XML Schema, C-XML allows for sequence and choice structures to have

a minimum and maximum number of occurrences within the relationship set between

the parent and the sequence or choice. It also allows for a sequence’s or a choice’s

child to have a minimum and maximum number of occurrences within the relationship

set between the sequence or choice and the child. For both of these cardinality

constraints, the default minimum constraint is one and the maximum is unbounded.

XML-Schema provides no way, in general, to capture these non-default cardinality

constraints. Thus, when these cardinalities differ from the default, we capture them in

special C-XML comments. For example, to declare that the participation constraint

for the child State is optional, we can write the comment

<! --C-XML: forall x (State(x) =>

exists [0:∗] y (State(x) has Order(2) in Sequence-k(y))) -->.

This comment declares that the minimum cardinality for the second child in the

kth sequence, which is State, is zero. (To keep track of which of the potentially

many sequences the constraint references, we give each sequence a number, k in this

example).

Although there is no way, in general, to capture these cardinality constraints in

XML Schema there is an alternative in one special case when the cardinality constraint

for the child is optional. In our example the cardinality constraint for the child State

of the sequence structure that is connected to Address is optional. In this case, we can

replace the optional constraint with a mandatory constraint and make the child State

a specialization of a new object set which we also call State. The generated forest

of scheme trees will be the same as in Figure 6.14. The State in the scheme tree

(Address, City, State, ZipCode, (AuthorizedPerson)*)*, however, is the specialized

State, and the State in the scheme tree (State, (StateNickname)*)* is the generalized

141

State. To allow for the subset constraint to be represented by keyref as we do for

any generalization/specialization, we must (and always can) make the generalization

a key. In our example, State is a key in the scheme tree (State, (StateNickname)*)*,

and we add a keyref from State in the address to State for state nickname.

6.5 Conclusion

In this chapter we discussed in detail the translation of C-XML to XML

Schema. Our prototype implementation, which corresponds to our discussion in

this chapter, can automatically convert any C-XML conceptual-model instance to

an XML-Schema instance. Our goals for the translation were (1) to make the transla-

tion information and constraint preserving and (2) to make the translation reasonably

pleasing for the end user.

Our translation preserves information. Our translation provides a place for

each object instance of any C-XML object set. The HST algorithm guarantees that

each object set finds its way into a scheme tree, and our translation from scheme tree

to XML Schema guarantees that any object instance will have a place for its represen-

tation in an XML-Schema document. Similarly, our translation provides a place for

each relationship instance of any C-XML relationship set. The HST algorithm guar-

antees that each relationship set appropriately finds its way into a scheme tree, either

within a node or as a parent-child link between nodes. Furthermore, our translation

algorithm guarantees that any relationship-set instance will have an appropriate place

for its representation in an XML-Schema document—appropriate in the sense that a

relationship will be represented either as a direct connection between an element and

the element’s attribute or a direct connection between an element and one or more of

its nested elements.

Our translation preserves constraints as long as we count the comments that we

insert to capture the C-XML constraints that XML Schema is not able to represent.

We preserve superset/subset constraints of a generalization/specialization hierarchy

by using keyref declarations, which guarantee that each specialization instance is also

an instance of its generalization(s). We can, however, only capture constraints on

generalization/specialization hierarchies (union, mutual-exclusion, partition, and in-

tersection constraints) in special C-XML comments. We preserve sequence or choice

structures that appear in C-XML model instances, by properly inserting them in

XML-Schema instances over their child elements. We preserve uniqueness constraints

by deriving them from given cardinality constraints and expressing them in the gen-

erated XML-Schema instance using key declarations. From the data frame associated

142

with each object set in C-XML, we are able to obtain, either directly or by default,

type information for instances as well as other information needed to complete the

declaration of XML-Schema attributes or elements. Finally, we preserve participa-

tion constraints for any object and relationship sets and for sequence and choice

structures that appear in a C-XML model instance by expressing them directly in an

XML-Schema instance via minOccurs and maxOccurs or use, or by expressing them

in special C-XML comments.

Although our translation preserves information and constraints, it does intro-

duces two artifacts (unnecessary structures and constraints needed to satisfy the syn-

tax requirements of XML Schema). (1) XML Schema requires a root element. (2) The

translation sometimes imposes a sequence among data items when the conceptual-

model instance has no requirement for a sequence. This is because all in XML Schema

is limited to only nest elements that appear at most one time, but the translation

sometimes requires the nesting of elements that appear more than once.

Although whether something is pleasing is subjective and varies from one user

to another, we believe that our translation is likely to be pleasing to the end user

for the following reasons. (1) Our translation generates an XML-Schema instance

that allows no redundancy and is reasonably compact. (2) Our translation allows

the user to choose the starting nodes to form a scheme-tree forest so that users can

guarantee that important application concepts can be at or near the top of nested

XML structures. (3) The structure of the generated XML-Schema instance makes

XML documents that validate with respect to the generated XML-Schema easy to

read. We obtain this easy-to-read structure by providing and appropriately naming

a container element for an individual tuple and for a set of tuples for each node in

each scheme tree. (4) We generate an OID attribute to explicitly represent objects

within the nonlexical object sets. Thus, since objects in lexical object sets also have

an explicit representation, every object instance in any XML document that complies

with a generated XML-Schema instance will have an explicit representation in the

document.

143

144

Chapter 7

Conclusions and Future Work

In this research we have introduced a conceptual model for XML, called C-

XML. C-XML is an answer for the new need for system analysts who wish to store

their data using XML—the need for a simple conceptual model that works well for

XML-based development.

This work has produced several contributions (Section 7.1) and has led to sev-

eral observations and insights (Section 7.2). The work accomplished also establishes

the basis for interesting future work (Section 7.3).

7.1 Contributions

In this research we have extended the conceptual modeling language OSM,

resulting in the development and implementation of C-XML. We argued that C-XML

is a good candidate for a conceptual modeling language for XML because. It satisfies

the requirements for conceptual modeling for XML presented by others who have

studied the problem [28, 35, 42]. These requirements include: a graphical notation, a

formal foundation, structural independence, reflection of the mental model, n-ary re-

lationship sets, views, logical-level mapping, cardinality for all participants, ordering,

allowance for irregular and heterogeneous structure, and document-centric data.

We have implemented an automatic conversion from XML Schema to C-XML

that preserves information and constraints. Thus, we can view an XML Schema in-

stance graphically at a higher level of abstraction. We have also implemented an

automatic conversion from C-XML to XML Schema. Our translations preserve infor-

mation and constraints as long as we count the C-XML comments that we insert in

an XML-Schema instance to capture the constraints in C-XML that are not repre-

sentable in XML Schema. We also explained how to apply the hypergraph-to-scheme-

tree translation algorithm to generate XML-Schema instances whose complying XML

documents do not have redundancy and are reasonably compact.

145

Based on our implemented translations, we have explored the equivalence of

C-XML and XML Schema. We discovered that both our translation from XML

Schema to C-XML and from C-XML to XML Schema are injective. Therefore, reverse

translations exist. We implemented these translations as well. We also discovered,

however, that our basic translations to and from C-XML and XML Schema are not

inverses of one another. Not only does an application of one after the other not

yield the original model instance, but continued successive application of one after

the other actually diverges, yielding ever more object sets in C-XML and ever more

complex-type containers in XML Schema. We, of course, can stop the divergence at

any point in time (usually after the first conversion) by using the reverse translations

based on our injective translations instead.

7.2 Observations and Insights

As a result of studying and implementing translations to and from C-XML

and XML-Schema, we offer the following insights and recommendations.

• C-XML is more expressive in several ways than is XML Schema for the following

reasons.

– XML Schema sometimes artificially imposes a sequence among elements

in an XML-Schema instance when there is no need for a sequence. This is

because the all structure in XML Schema is limited to only nest elements

that appear at most one time.

– XML Schema does not support union, mutual-exclusion, or partition con-

straints for generalization/specialization hierarchies. It also does not sup-

port an intersection constraint for multiple generalizations.

– Because XML Schema has a hierarchial structure, it only allows the specifi-

cation of participation constraints for parent elements. It does not provide

for participation constraints for child elements except for the default—one-

many.

We recommend extending XML Schema in two ways.

– Extend the all structure so that it can nest elements that appear more

than one time and so that it can nest sequence and choice structures.

146

– Extend XML Schema so that it provides for a declaration of union, mutual-

exclusion, and partition constraints for generalization/specialization hier-

archies, and also provides for a declaration of intersection constraints for

multiple generalizations.

• XML Schema is more expressive in several ways than is the hypergraph-based

conceptual model from which we built C-XML. Hypergraph-based OSM con-

sists of lexical and non-lexical object sets; binary and n-ary (n>2) relation-

ship sets; generalization/specialization with union, mutual-exclusion, partition,

and intersection constraints, and several cardinality constraints—functional (in-

cluding multidimensional functions whose domains consist of multiple object-

sets), optional/mandatory participation, and min-max bounded participation

constraints (for non-functional relationship sets). Hypergraph-based OSM, like

other traditional conceptual models, does not support the following features

that XML Schema supports: sequence, choice, mixed-content, and any and any-

Attribute structures.

We recommend enriching conceptual model languages by giving them the ability

to: (1) order lists of concepts, (2) choose alternative concepts from among

several, (3) specify mixed content, and (4) use content from another data model.

7.3 Future Work

It would be interesting to mathematically prove properties about the trans-

formations included within the C-XML/XML-Schema mappings. Our implemented

translations constitute constructive proofs of equivalence and non-equivalence under

various assumptions, but these constructive proofs are complex. The mathematical

proof proposed as future work would be based on mathematical model theory.

To make our prototype tools practical, we need to build interface tools to

work synergistically with users. We imagine that these tools would have standard

graphical interfaces and would provide drop-down menus and tools to facilitate user

interactions.

The translation work accomplished in connection with this research establishes

the basis for several fundamental activities in system analysis, design, development,

and evolution. We thus could continue with this work in several directions.

147

• XML Database Design and Development. The conversion from C-XML to XML

Schema constitutes a standard design and development paradigm for XML data-

bases. We could integrate our work with the work of others to establish a

complete workbench for XML database design and development.

• Reverse Engineering. The conversion from XML Schema to C-XML constitutes

a standard kind of reverse engineering. We can reverse engineer XML-based

systems to understand, maintain, and evolve them.

• Integration. The conversion between C-XML and XML Schema allows us to

handle integration at the conceptual level, rather than at the XML-Schema level.

Thus, to integrate two XML repositories each described by an XML schema,

we first translate each XML schema to C-XML. We then integrate the two C-

XML model instances to create an integrated C-XML model instance, and we

then translate the integrated C-XML model instance back into an XML-Schema

instance to create an integrated XML schema for the original XML schemas.

148

Bibliography

[1] R. Al-Kamha. Translating XML Schema to Conceptual XML. Technical Report,

Computer Science Department, Brigham Young University, November 2006.

[2] R. Al-Kamha. Translating Conceptual XML to XML Schema. Technical Report,

Computer Science Department, Brigham Young University, May 2007.

[3] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,

D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Description Logic

Handbook, chapter 2, pages 43–95. Cambridge University Press, Cambridge, UK,

2003.

[4] C. Batini, S. Ceri, and S.B. Navathe. Conceptual database design: an Entity-

relationship approach. Benjamin-Cummings, Redwood City, California, USA,

1992.

[5] L. Bird, A. Goodchild, and T. Halpin. Object role modelling and XML-schema.

In Proceedings of the Ninteenth International Conference on Conceptual Modeling

(ER2000), pages 309–322, Salt Lake City, Utah, October 2000.

[6] J. Biskup and D.W. Embley. Extracting information from heterogeneous infor-

mation sources using ontologically specified target views. Information Systems,

28(3):169–212, 2003.

[7] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison-Wesley, Reading, Massachusetts, 1999.

[8] S.D. Camillo, C.A. Heuser, and R. dos Santos Mello. Querying heterogeneous

XML sources through a conceptual schema. In Proceedings of the 22nd Interna-

tional Conference on Conceptual Modeling (ER2003), Lecture Notes in Computer

Science 2813, pages 186–199, Chicago, Illinois, October 2003.

[9] M. Carey. Enterprise information integration—XML to the rescue! In Proceed-

ings of the 22th International Conference on Conceptual Modeling (ER2003),

149

Lecture Notes in Computer Science 2813, page 14, Chicago, Illinois, October

2003.

[10] D. Carlson. Modeling XML Applications with UML: Practical e-Business Appli-

cations. Addison-Wesley, Menlo Park, California, 2001.

[11] P.P. Chen. The entity-relationship model—toward a unified view of data. ACM

Transactions on Database Systems, 1(1):9–36, March 1976.

[12] Y.B. Chen, T.W. Ling, and M.L. Lee. Designing valid XML views. In Proceedings

of the 21st International Conference on Conceptual Modeling (ER’02), pages

463–477, Tampere, Finland, October 2002.

[13] Y.B. Chen, T.W. Ling, and M.L. Lee. Automatic generation of XQuery view

definitions from ORA-SS views. In Proceedings of the 22nd International Con-

ference on Conceptual Modeling (ER2003), Lecture Notes in Computer Science

2813, pages 158–171, Chicago, Illinois, October 2003.

[14] R. Conrad, D. Scheffner, and J.C. Freytag. XML conceptual modeling using

UML. In Proceedings of the Ninteenth International Conference on Conceptual

Modeling (ER2000), LNCS 1920:558–571, 2000.

[15] E. M. Dashofy. Issues in generating data bindings for an XML schema-based

language. In Proceedings of the of the Workshop on XML Technologies and

Software Engineering (XSE2001), Toronto, Ontario, Canada, May 2001.

[16] B. Daum. Modeling Business Objects with XML Schema. Morgan Kaufmann,

San Francisco, California, 2003.

[17] L. Dodds. Reconstructing DTD best practice, June 2000.

http://www.xml.com/pub/a/2000/06/xmleurope/schemas.html.

[18] D.W. Embley. Object Database Development: Concepts and Principles. Addison-

Wesley, Reading, Massachusetts, 1998.

[19] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Analy-

sis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey,

1992.

[20] D.W. Embley, S.W. Liddle, and R. Al-Kamha. Enterprise modeling with concep-

tual XML. In Proceedings of the 23rd International Conference on Conceptual

Modeling(ER2004), pages 150–165, Shanghai, China, November 2004.

150

[21] D.W. Embley and W.Y. Mok. Developing XML documents with guaranteed

‘good’ properties. In Proceedings of the 20th International Conference on Con-

ceptual Modeling (ER2001), pages 426–441, Yokohama, Japan, November 2001.

[22] A Formal Semantics for UML, October 2006.

http://www.cs.queensu.ca/ stl/internal/uml2/MoDELS2006/.

[23] R.C. Goldstein and V.C. Storey. Some findings on the intuitiveness of entity-

relationship constructs. In Proceedings of the Eighth International Conference on

Entity-Relationship Approach (ER’89), pages 9–23, Toronto, Canada, October

1989. North-Holland.

[24] S.W. Liddle, D.W. Embley, and S.N. Woodfield. Cardinality constraints in se-

mantic data models. Data & Knowledge Engineering, 11(3):235–270, 1993.

[25] S.W. Liddle, D.W. Embley, and S.N. Woodfield. An active, object-oriented,

model-equivalent programming language. In M.P. Papazoglou, S. Spaccapietra,

and Z. Tari, editors, Advances in Object-Oriented Data Modeling, pages 333–361.

MIT Press, Cambridge, Massachusetts, 2000.

[26] M. Mani, D. Lee, and R.R. Muntz. Semantic data modeling using XML schemas.

In Proceedings of the 20th International Conference on Conceptual Modeling

(ER2001), pages 149–163, Yokohama, Japan, November 2001.

[27] R. Miller, L. Haas, and M.A. Hernandez. Schema mapping as query discovery.

In Proceedings of the 26th International Conference on Very Large Databases

(VLDB’00), pages 77–88, Cairo, Egypt, September 2000.

[28] M. Necasky. Conceptual modeling for XML: A survey. In Proceedings of the

DATESO 2006 Annual International Workshop on Databases, Texts, Specifica-

tions and Objects (DATESO 2006), pages 40–53, Desna, Czech Republic, April

2006.

[29] Visual Studio.NET, Microsoft. http://www.msdn.microsoft.com/vstudio.

[30] P. Pigozzo and E. Quintarelli. An algorithm for generating XML schemas from

ER schemas. In Proceedings of the Thirteenth Italian Symposium on Advanced

Database Systems (SEBD2005), pages 192–199, Brixen-Bressanone, Italy, June

2005.

151

[31] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema

matching. The VLDB Journal, 10:334–350, 2001.

[32] N. Routledge, L. Bird, and A. Goodchild. UML and XML schema. In Proceedings

of the Thirteenth Australasian Database Conference (ADC2002), pages 157–166,

Melbourne, Australia, January 2002.

[33] A. Sengupta and S. Mohan. Formal and Conceptual Models for XML

Structures—The Past, Present, and Future. Technical Report 137–1, Indiana

University, Information Systems Department, Bloomington, Indiana, April 2003.

[34] A. Sengupta, S. Mohan, and R. Doshi. XER — extensible entity relationship

modeling. In Proceedings of XML 2003, Philadelphia, Pennsylvania, December

2003.

[35] A. Sengupta and E. Wilde. The Case for Conceptual Modeling for XML. Tech-

nical Report No. 242, Computer Engineering and Networks Laboratory, ETH

Zurich, February 2006.

[36] J. M. Smith and D. C. P. Smith. Database abstractions: Aggregation and gen-

eralization. ACM Trans. Database Syst., 2(2):105–133, 1977.

[37] XMLSpy, Altova. http://www.xmlspy.com.

[38] Stylus Studio. http://www.stylusstudio.com/xml schema editor.html.

[39] I. Tatarinov and A. Halevy. Efficient query reformulation in peer data manage-

ment systems. In Proceedings of the 2004 ACM SIGMOD International Confer-

ence on Management of Data, 2004. (to appear).

[40] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational

databases using the extended entity-relationship model. ACM Computing Sur-

veys, 18(2):197–222, June 1986.

[41] UML 2.0 superstructure specification, August 2005.

[42] E. Wilde. Towards conceptual modeling for XML. In Proceedings of the Berliner

XML Tage 2005 (BXML2005), pages 213–224, Berlin, Germany, September 2005.

[43] XQuery 1.0: An XML Query Language, November 2003.

http://www.w3.org/TR/xquery/.

152

[44] XML Schema Part 0: Primer: W3C Recommendation, May 2001.

http://www.w3.org/TR/xmlschema-0/.

[45] XML Schema - structures quick reference, 2003.

http://www.xml.dvint.com/docs/SchemaStructuresQR-2.pdf.

153

	Title Page
	Abstract
	Contents
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Enterprise Modeling with Conceptual XML
	2.1 Introduction
	2.2 C-XML: Conceptual XML
	2.3 Translation between C-XML and XML Schema
	2.3.1 Translation from C-XML to XML Schema
	2.3.2 Translation from XML Schema to C-XML
	2.3.3 Information and Constraint Preservation

	2.4 C-XML Views
	2.4.1 High-Level Abstraction in C-XML
	2.4.2 C-XML XQuery Views
	2.4.3 XQuery Integration Mappings

	2.5 Concluding Remarks

	Chapter 3 Representing Generalization/Specialization in XML Schema
	3.1 Introduction
	3.2 Generalization/Specialization Mechanisms in XML Schema
	3.2.1 Derived Types
	3.2.2 Substitution Groups
	3.2.3 Abstract Elements and Types

	3.3 Representing Generalization/Specialization in XML Schema
	3.3.1 Straightforward Cases
	3.3.2 Problematic Cases in XML Schema
	3.3.3 The Problem of Multiple Generalizations

	3.4 Resolving the Conceptual Modeling Issues
	3.4.1 Post-Processing to Enforce Constraints
	3.4.2 Proposed Extensions to XML Schema

	3.5 Conclusion

	Chapter 4 Augmenting Traditional Conceptual Models to Accommodate XML Structural Constructs
	4.1 Introduction
	4.2 XML Modeling Criteria
	4.3 Missing Modeling Constructs
	4.4 C-XML
	4.5 Augmenting ER and UML
	4.5.1 ER
	4.5.2 UML
	4.5.3 ER-XML, UML-XML, and C-XML

	4.6 Conclusion
	4.7 Appendex
	4.7.1 Sequence
	4.7.2 Choice
	4.7.3 Mixed Content
	4.7.4 Generalized Co-Occurrence

	Chapter 5 Translationg XML Schema to Conceptual XML
	5.1 Introduction
	5.2 Translation Details
	5.2.1 Schema
	5.2.2 Element
	5.2.3 Attribute
	5.2.4 Key, Unique and Keyref
	5.2.5 Simple Type
	5.2.6 Complex Type
	5.2.7 Attribute Group
	5.2.8 All
	5.2.9 Sequence
	5.2.10 Choice
	5.2.11 Any and AnyAttribute
	5.2.12 Group
	5.2.13 Simple Content Complex Type
	5.2.14 Complex Content Complex Type

	5.3 Conclusion

	Chapter 6 Translating Conceptual XML to XML Schema
	6.1 Introduction
	6.2 Basic Conceptual Structures
	6.3 Generalization/Specialization
	6.4. Sequence and Choice
	6.5 Conclusion

	Chapter 7 Conclusions and Future Work
	7.1 Contributions
	7.2 Observations and Insights
	7.3 Future Work

	Bibliography

