

Wang Notation Tool: A Layout Independent Representation of Tables

by

Piyushee Jha

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the degree of

MASTER OF SCIENCE

Major Subject: ELECTRICAL ENGINEERING

Approved:

Dr. George Nagy, Thesis Adviser

Rensselaer Polytechnic Institute

Troy, New York

May, 2008

ii

CONTENTS

Wang Notation Tool: A Layout Independent Representation of Tables i

LIST OF TABLES ... v

LIST OF FIGURES ... vii

ACKNOWLEDGMENT .. ix

ABSTRACT .. x

1. Introduction .. 1

1.1 TANGO .. 1

1.2 Wang Notation ... 2

1.3 Tables ... 3

1.3.1 Categories as Trees .. 4

1.3.2 Well-formed Tables ... 5

1.3.3 Virtual Headers .. 5

1.3.4 Unique Categories .. 6

1.3.5 Factors Affecting Table Processing Time .. 8

1.3.6 Foreign Tables .. 9

1.4 Organization of Thesis ... 10

2. Literature Review .. 11

2.1 Detection, Extraction, Interpretation and Understanding 11

2.2 Perspectives on Table Processing .. 12

2.3 Wang’s Table Model .. 19

2.4 Techniques of Table Processing... 20

3. Description of Interactive System ... 30

3.1 Overview of System ... 30

3.2 Early Versions of System ... 31

3.3 Detecting Tables in HTML pages .. 31

iii

3.4 Generating Category Notation ... 32

3.4.1 Interactive Category Construction ... 33

3.4.2 Intermediate Category Processing.. 34

3.4.3 Error-Correction by User ... 36

3.4.4 Determining Final Category Notation .. 37

3.5 Generating Delta Notation ... 39

3.6 Generating XML Representation ... 39

3.6.1 Ontology to Describe Tables .. 40

3.6.2 XML Schemas .. 40

3.6.3 XML Generation in Matlab .. 41

3.7 Verifying Results with a GUI .. 42

3.8 System Logging ... 44

3.9 Matlab and WNT.. 44

3.10 Summary .. 45

4. Evaluation of WNT Methodology ... 47

4.1 Preliminary Testing .. 47

4.2 Training .. 48

4.3 Evaluation .. 48

5. Evaluation of WNT .. 50

6. Future Work ... 58

6.1 Aggregations and Annotations ... 58

6.2 Automation and Learning .. 58

6.3 Improved Training ... 59

7. Conclusion ... 60

References .. 62

iv

Appendix .. 64

A. Training Tables .. 64

B. Test Tables ... 66

C. Wang Notation ... 75

D. XML Representation .. 76

E. Log ... 82

F. Training PowerPoint .. 83

G. Quantitative Results ... 93

v

LIST OF TABLES

Table 1: Wang Table ... 2

Table 2: Number of Females with Degrees in Canada .. 6

Table 3: Original Population & Area Table .. 10

Table 4: Foreign Population & Area Table ... 10

Table 5: Distribution of Processing Time for T09, Average Over All Subjects 50

Table 6: Success Rate by Table, Average Over Subjects .. 51

Table 7: Average Times by Table ... 56

Table 8: University Degrees for Males (TRN1) .. 64

Table 9: Divorces by Province (TRN2) ... 64

Table 10: Economy of Mali (TRN3) ... 65

Table 11: Food Services for Nunavut (TRN4) .. 65

Table 12: Wang Table (TRN5) .. 65

Table 13: Induced Abortions by Province (T01) ... 66

Table 14: Deaths and death rate, by province (T02) ... 66

Table 15: Deaths and death rate, by province (T03) ... 67

Table 16: University Degrees (Females) by province (T04) ... 67

Table 17: Food and Drink for Alberta (T05) ... 67

Table 18: Food and drink for Newfoundland and Labrador (T06) 68

Table 19: Food and drink for Prince Edward Island (T07) ... 68

Table 20: Infant mortality rates by province (T08) ... 68

Table 21: Lakes of Canada (T09) .. 69

Table 22: Mountains of Canada (T10)... 70

Table 23: Administrative units of Utah (T11) ... 71

Table 24: American Indian/Alaska Native Populations (T12) .. 72

Table 25: General info for Angola (T13) .. 72

Table 26: Bodies of Water (T14) ... 73

Table 27: Economy of Albania (T15) .. 73

Table 28: Economy of New Zealand (T16) ... 73

Table 29: World population (T17) ... 74

vi

Table 30: Example Log ... 82

Table 31: Distribution of Processing Time for T01, Average Over All Subjects 93

Table 32: Distribution of Processing Time for T02, Average Over All Subjects 93

Table 33: Distribution of Processing Time for T03, Average Over All Subjects 93

Table 34: Distribution of Processing Time for T04, Average Over All Subjects 93

Table 35: Distribution of Processing Time for T05, Average Over All Subjects 94

Table 36: Distribution of Processing Time for T06, Average Over All Subjects 94

Table 37: Distribution of Processing Time for T07, Average Over All Subjects 94

Table 38: Distribution of Processing Time for T08, Average Over All Subjects 94

Table 39: Distribution of Processing Time for T10, Average Over All Subjects 95

Table 40: Distribution of Processing Time for T11, Average Over All Subjects 95

Table 41: Distribution of Processing Time for T12, Average Over All Subjects 95

Table 42: Distribution of Processing Time for T13, Average Over All Subjects 95

Table 43: Distribution of Processing Time for T14, Average Over All Subjects 96

Table 44: Distribution of Processing Time for T15, Average Over All Subjects 96

Table 45: Distribution of Processing Time for T16, Average Over All Subjects 96

Table 46: Distribution of Processing Time for T17, Average Over All Subjects 96

vii

LIST OF FIGURES

Figure 1: Tables as Trees ... 4

Figure 2: Virtual Header .. 5

Figure 3: Two Unique Categories (Example 1) ... 7

Figure 4: Four Unique Categories (Example 2) .. 7

Figure 5: Category Trees for Example 1 ... 7

Figure 6: Category Trees for Example 2 ... 7

Figure 7: Merged Cells .. 10

Figure 8: Split Cells ... 10

Figure 9: Models of Table Structure .. 13

Figure 10: Observations in Table Recognition Literature ... 14

Figure 11: Transformations in Table Recognition Literature .. 15

Figure 12: Classifiers ... 16

Figure 13: Segmenters and Parsers .. 16

Figure 14: Regions Within a Table .. 19

Figure 15: Flowchart of the design of Silvia et al. .. 21

Figure 16: Table Topologies .. 23

Figure 17: Results from [8] .. 23

Figure 18: Example of a Tree Model ... 24

Figure 19: Example of a DAG ... 24

Figure 20: Architecture for TINTIN system .. 25

Figure 21: Star Table ... 25

Figure 22: Layout Graphs .. 26

Figure 23: System of Green et al. .. 28

Figure 24: ASCII Version of Wang Table ... 32

Figure 25: Wang Table as Displayed in Matlab .. 33

Figure 26: Wang Table with Marked Categories .. 33

Figure 27: Wang Table After User Marks Categories ... 34

Figure 28: Control GUI for Selection of Categories ... 34

Figure 29: Category Tree ... 35

viii

Figure 30: Indented Notation ... 35

Figure 31: Table of Contents Representation .. 35

Figure 32: Error Correction GUI ... 37

Figure 33: Indented Notation as seen in Matlab .. 37

Figure 34: General Nonsense Tree .. 38

Figure 35: Equivalent Binary Tree with Pointers .. 38

Figure 36: Ontology of a General Table .. 40

Figure 37: Matlab Structure for XML ... 41

Figure 38: XML for Table Schema ... 42

Figure 39: Verifying Delta Cell (1) ... 43

Figure 40: Verifying Delta Cell (2) ... 43

Figure 41: Verifying Category Cell (1) ... 43

Figure 42: Verifying Category Cell (2) ... 44

Figure 43: WNT Flowchart ... 46

Figure 44: GUI to control tables .. 47

Figure 45: WNT Results by Subject .. 51

Figure 46: WNT Results by Table ... 52

Figure 47: Average Total Time by Table .. 56

Figure 48: Average Total Time by Subject ... 57

ix

ACKNOWLEDGMENT

I would like to express my gratitude for my adviser, Dr. George Nagy, for his valuable

assistance, guidance, and encouragement in all my endeavors. I want to offer thanks to

Dr. David Embley from Brigham Young University for his support and the hospitality he

showed me when I visited. I also want to thank my fellow graduate students for all their

help, in particular: Raghav Padmanabhan, Stephen Lynn, and Cui Tao. The Electrical,

Computer, and Systems Engineering department of Rensselaer Polytechnic Institute was

generous enough to support me through a teaching assistantship, one of the best

experiences of my collegiate career, and for that, I am deeply indebted. This research

was also funded by the National Science Foundation (Grant# 044114854). In addition,

this research would not have been possible without the subjects whom I used for

evaluation, thank you for taking so much time out of your day to help me.

My deepest gratitude goes to my family for their unflagging support and encouragement.

To my father, who has advised me at every stage of life, you are my role model. He has

inspired me to enter a technical field despite my former misgivings and much of my

enthusiasm for learning can be attributed to him. To my mother, whose love and

attention are responsible for the person I am today. She has always encouraged me to

believe in myself, enjoy all aspects of life, and be strong and independent. To my

brother, who is following my path into electrical engineering, I couldn’t be more proud

of you. This section would not be complete without an acknowledgement of my friends,

who have been a valuable part of my life. In particular, I’d like to thank Nadeeka Yapa,

Sayuri Yapa, and Matthew Flack.

x

ABSTRACT

The Wang Notation Tool (WNT) is a semi-automatic, interactive tool that converts

tables from HTML pages to Wang notation and corresponding XML representation.

Both are layout independent representations of tables where all relationships between

cells are recorded in an abstract form that does not rely on the physical structure of

tables. WNT requires minimal interaction to delineate the categories in a table, from

which an intermediate category tree describing the relationships within each category is

determined. The category trees are shown to the user for correction and/or approval.

User correction at this step makes WNT robust because the user can modify the

automatically generated category tree in almost any way. The approved category trees

are used to generate a description of the relationship between each delta (content) cell

and the categories as well as an XML representation of tables based on an ontology

describing general trees. With current training methods, layout independent

representations were generated for 98% of all tables, and were generated correctly for

71% of all tables. Evaluation indicates that with further training, most users will be able

to rapidly and correctly generate a layout independent representation of tables using

WNT.

1

1. Introduction

The Semantic Web combines various technologies to supplement or replace the content

of web documents with descriptive data that will assist the user (human or automated

agent) in decision making and will address their specific needs and wants. This can only

be accomplished with an abundance of ontologically annotated data. However, creating

ontologies is a difficult process. The first step of TANGO [1], a project that creates

ontologies from the data found in tables, is to convert all the information in any given

table into a standard form for easy comparison and manipulation. This thesis describes

the creation of a semi-automatic tool – the Wang Notation Tool – that converts tables

from HTML pages to Wang notation [2] and XML representation.

1.1 TANGO

Table Analysis for Generating Ontologies (TANGO) is an interdisciplinary project that

aims to use conceptual modeling extraction techniques to convert structured data, such

as tables, into ontologies by “understanding” the tables. TANGO operates in four steps:

1. Recognize and normalize table information

2. Construct mini-ontologies from normalized tables

3. Discover inter-ontology mappings

4. Merge mini-ontologies into a growing application ontology

To implement TANGO, information from several tables in any given domain (i.e.,

geopolitical information) must be assembled. The first step of TANGO, and the work

reported in this thesis, is to recognize and normalize the tables. This is important

because the same concepts and relations can be presented within a table in different

ways. To create ontologies, it is necessary to separate the concepts and relations from the

physical structure of a table. This is done by converting physical tables (tables with a

visual structure) to Wang notation (and XML representation), which is consistent for all

tables with the same content.

The next steps are to construct ontologies for every table and discover the matching

concepts between mini-ontologies. These steps rely largely on lexical information. The

final step is to merge the mini-ontologies using the mappings discovered between them

2

and resolving conflicts between ontologies. These steps are implemented at Brigham

Young University in Provo, Utah.

1.2 Wang Notation

Wang proposed a layout-invariant representation of tables [2]. A table without physical

structure is called an abstract table. As per Wang [2], an abstract table is specified by an

ordered pair (C,δ) where C is a finite set of labeled domains (header, sub headers of

tables, etc) and δ is a mapping from C to the universe of possible values. In other words,

a table has two types of cells: category cells and delta cells. Category cells are the

headers and sub headers in a table that describe the content of the table. Delta cells

contain the content of the table. Wang Notation consists of two parts: category notation

and delta notation. Table 1 shows the table from Wang’s PhD thesis that was used as a

point of reference during the creation of the Wang Notation Tool (WNT).

Table 1: Wang Table

Year Term

Mark

Assignments Examinations
Grade

Ass1 Ass2 Ass3 Midterm Final

1991

Winter 85 80 75 60 75 75

Spring 80 65 75 60 70 70

Fall 80 85 75 55 80 75

1992

Winter 85 80 70 70 75 75

Spring 80 80 70 70 75 75

Fall 75 70 65 60 80 70

The Wang table has three dimensions and therefore, three categories, which are

shown below. Year is the first category with 1991 and 1992 as its subcategories. Term

is the next category with winter, spring, and fall as its subcategories. Mark is the most

complicated category with three subcategories (Assignments, Examinations, and Grade)

among which Assignments and Examinations have their own subcategories (Ass1, Ass2,

Ass3, and Midterm, Final, respectively).

(Year, {(1991,φ), (1992,φ)})

 (Term, {(Winter,φ), (Spring,φ), (Fall,φ)})

3

(Mark, {(Assignments, {(Ass1,φ), (Ass2,φ), (Ass3,φ)}), (Examinations, {(Midterm,φ),

(Final,φ)}), (Grade,φ)})

The delta notation shows which category cells are related to each of the individual

values within the table. The delta notation for the first two rows of the Wang table are

below. Every delta cell must be related to every category in the table, therefore, delta

notation is an aggregation of paths defining some content.

δ({Year.1991, Term.Winter, Mark.Assignments.Ass1}) = 85

δ({Year.1991, Term.Winter, Mark.Assignments.Ass2}) = 80

δ({Year.1991, Term.Winter, Mark.Assignments.Ass3}) = 75

δ({Year.1991, Term.Winter, Mark.Examinations.Midterm}) = 60

δ({Year.1991, Term.Winter, Mark.Examinations.Final}) = 75

δ({Year.1991, Term.Winter, Mark.Grade}) = 75

δ({Year.1991, Term.Spring, Mark.Assignments.Ass1}) = 80

δ({Year.1991, Term. Spring, Mark.Assignments.Ass2}) = 65

δ({Year.1991, Term. Spring, Mark.Assignments.Ass3}) = 75

δ({Year.1991, Term. Spring, Mark.Examinations.Midterm}) = 60

δ({Year.1991, Term. Spring, Mark.Examinations.Final}) = 70

δ({Year.1991, Term. Spring, Mark.Grade}) = 70

1.3 Tables

The Wang Notation Tool (WNT) consists of three main interactive tasks, all dependent

on understanding tables, categories, and the relationships between all the cells. The first

involves choosing categories within a table. The second corrects the categories. The

third step verifies whether the final processing was done correctly. It is important to

understand the nature of the relationships between cells of a tables because there is no

set way to make a table; tables are different from one author to the next.

4

1.3.1 Categories as Trees

A category consists of a set of cells that are related to each other. Those relations can be

represented as a tree. Figure 1 shows the tree representation of each category in Table 1.

It is beneficial to describe categories using tree notation and tree operations as explained

below.

Figure 1: Tables as Trees

• Forest/Table: F(T1, T2, … , Ti, … , Tn)

A table can be described as a forest

with n trees where n is the number of

categories. Each tree represents a

category.

• Tree/Category: Ti(s,d)

A category can be described as tree Ti

with s levels, d nodes and root F.

• Root: Ni(s1,c1,d1)

The root node of tree i is the only node

located on the top level which contains only one subtree.

• Level: SJ (c)

c is the index of the subtree in level SJ; sibling cells are distinguished from cousin

cells below because they are associated with different subtrees.

• Node/Cell: Ni(sJ,ct,dk)

A node is located in tree Ti on the SJ level of that tree. ct tells us which subtree of

that level (determined from left to right) the node is located in and dk (also

determined from left to right) is the node number within that subtree.

• Leaf Node: Li(sJ,ct,dk)

A leaf node can be located anywhere in the tree; even the root node can be a leaf

node if a category consists of only a single cell.

5

1.3.2 Well-formed Tables

A well-formed table or category is one that WNT can convert perfectly to Wang

notation. It is only when a table or category is not well-formed that user corrections are

needed. The following are requirements for well-formed tables.

1) Every table must have n categories, where n ≥ 2.

2) Every category must have a root (sometimes requiring the addition of virtual

headers, Section 1.3.3).

3) Every delta cell must be specified by n paths, one through each category tree.

4) Category trees cannot contain subcategory trees that are identical (discussed

further in Section 1.3.4).

5) Category cells only exist in the top-most rows and left-most columns of a table.

1.3.3 Virtual Headers

To correctly convert a category to Wang notation, the tree describing a category must be

complete. Often, this is not the case. Table 2 shows a table with two categories. The

first is the leftmost column and the second is found in the topmost rows. Neither

category has a root, making them “rootless” trees. When a category is “rootless”, a

virtual header must be added. Figure 2 shows one of the completed categories after the

addition of a virtual header.

Figure 2: Virtual Header

6

Table 2: Number of Females with Degrees in Canada

1.3.4 Unique Categories

To preserve consistency, every table should have unique categories determined by the

same guidelines. In general, differentiating between category cells and delta cells is

straightforward to a user with lexical knowledge. The category cells have to be picked

such that every delta cell can be uniquely designated by category cells. However, to

divide the category cells into separate categories is tricky. The categories should be

picked according to the guidelines detailed in Section 1.3.2. A combination of any path

from every category should lead to exactly one delta cell.

Figure 3 and Figure 4 show two tables that are the same structurally, but have

different categories. Figure 3 has two categories. One is a single cell category Pop. and

the other consists of the three leftmost columns (State, County, and Town, see Figure 5).

If the three leftmost columns were each a separate category, the guidelines discussed in

Section 1.3.2 will not be satisfied. It would not be possible to take a random path from

each category and expect them to lead to a delta cell. For example, if the random paths

were as follows: State > New York, County > San Diego County, and Town > Troy,

there is no delta cell that meets those criteria. The only possible solution is for the three

leftmost columns to be a single category. By contrast, if the three leftmost columns of

Figure 4 was one category, the identical subcategories mean that it is possible to break

7

up the category further. Therefore, Figure 4 has four categories (Figure 6). Each of the

three leftmost columns is a category on its own and Pop. is a single cell category. Any

combination of random paths will lead to a delta cell.

Figure 3: Two Unique Categories (Example 1)

Figure 4: Four Unique Categories (Example 2)

Figure 5: Category Trees for Example 1

Figure 6: Category Trees for Example 2

8

1.3.5 Factors Affecting Table Processing Time

There are many factors that affect table processing time: some have a large impact and

some not so much. All the factors that affect table processing time are user dependent,

because the computer time for WNT is a small fraction of total processing time.

Therefore, generating the category notation of a table is time consuming, whereas

generating the delta notation and XML representation are virtually instantaneous

because they require no user intervention. Considering all the factors together yields a

prediction of how long it will take to process a table.

1) Confusion factor: The confusion factor of a table is inversely proportional to how

well-formed the table is. It is a rough measure of the amount of time it takes a

user to decide what the categories are, how they would delineate the categories,

and what corrections need to be made. The confusion factor has the largest

impact on the processing time of a table; a simple table with a low confusion

factor can be processed quickly, but a complicated table that needs thought will

take much longer.

2) Number of Categories: The number of categories plays a bigger role in the time

taken to process a category than the size of categories. The user has to correct

and approve each category individually, so with more categories, the user has to

check, approve, and correct more categories.

3) Number of levels within categories: The number of levels is a factor in table

processing time because the probability of WNT interpreting a category

incorrectly increases with the number of levels, which results in more corrections

and time invested by the user.

4) Category Size: Category size (number of category cells) is a relatively minor

factor, because all it means is that a user spends a bit more time scrolling through

and looking at a larger category. A large category does not mean a complicated

category (which would be accounted for by the confusion factor) and in a

significant number of tables, large categories are simple.

9

1.3.6 Foreign Tables

Foreign tables are tables where the words are nonsense words and the relations within

the table must be determined using structural information only. This is an important

topic to discuss because WNT does not rely on lexical information and if WNT were to

be made fully automatic, it would have to be based on structural information only. To

explore the possibility of a fully automatic WNT, the following question has to be

answered: Is it possible for a user to differentiate between category and delta cells in a

foreign table?

To answer this question a table (Table 3) with its corresponding foreign table (Table

4) is shown. We assume that in all tables, the left-most column always consists of

category cells and topmost row always consists of category cells. The minimum

dimension of a table is two and conventionally, those two dimensions are located on the

left and top of the table. In Table 3, the left-most column headed by Country is the first

category and area sq. km., population, yearly growth, and today with a virtual header is

the second category.

The key concept that gives insight into which cells are category cells and which

cells are delta cells are merged cells. Figure 7 shows a table with two merged cells:

State and Information. Figure 8 shows the same table, but the merged cells are split so

that the table has m cells in every row and n cells in every columns. Splitting the cells

results in repeated cells. In Table 3, country, area sq. km., and population are merged

cells. If Table 3 was to be represented by n cells in every column and m cells in every

row (mxn), country, area sq. km., and population would have to be repeated. A merged

cell is always a category cell, because merged cells are a structural way of indicating that

there is a connection between the merged cell and the cells directly adjacent to it.

Therefore, going from the bottom right hand corner to the top left hand corner, a

category cell in encountered when it is either in the leftmost row or is adjacent to a

merged cell. This is a intuitive and fairly accurate way to differentiate between category

and delta cells in foreign tables. To implement a fully automatic WNT, many other

factors and exceptions would have to be explored and accounted for.

10

Figure 7: Merged Cells

Figure 8: Split Cells

Text here

Table 3: Original Population & Area Table

country area sq.km.

population

yearly

growth
today

World 510,072,000 1.14% 6,563,077,034

China 9,596,960 0.59% 1,317,924,274

India 3,287,590 1.38% 1,103,054,870

United

States of

America

9,631,418 0.91% 299,828,179

Indonesia 1,919,440 1.41% 247,216,367

Table 4: Foreign Population & Area Table

����������������������������
	�
	 	�
	 	�
	 	�
	
����������������

�����	���� �����	���� �����	���� �����	����

�
	��� �
	��� �
	��� �
	���
������������������������

���	����	����	����	�

����� ��� ��� ���

����	 ��� ��� !�

"���	 #�� �$� $!�

%���
�
&�	�
� �'
(�
���	

��$ ��� �!�

"����
��	 ��� ��� ��!

1.4 Organization of Thesis

Section 2 defines common terms in table processing literature and then discusses

relevant literature. Section 3 is a detailed description of the Wang Notation Tool:

overview, extraction of tables from HTML pages, the process of choosing categories, the

corrections done by the user, the generation of the Wang category and delta notation, the

generation of the XML representation, and the logging done in the background. Section

4 is a description of testing, including training the subject, preliminary testing, and final

testing. Section 5 presents the results quantitatively and then discusses the reasons for

those results. Section 6 discusses possible future work and Section 7 contains concluding

remarks. References can be found after Section 7 and finally, there is an Appendix

containing the tables used for evaluation and training as well as an example of Wang

notation, XML representation, and the log. Also in the Appendix is the PowerPoint used

for subject training.

11

2. Literature Review

There is a vast amount of literature concerning tables, most of which addresses how to

find and parse a table within a scanned document. The Wang Notation Tool (WNT)

interprets and attempts to understand web tables rather than merely detecting scanned

tables. Some literature groups table and form processing together. However, tables and

forms are inherently different. Tables have one author and are read by many people.

Forms, on the other hand, have several authors and are read by one person. The sections

below begin by defining the commonly used terms in table processing, then refer to

some surveys detailing perspective on table processing, discuss the work of Wang, and

finally discuss past literature to relate what has been done in table processing.

2.1 Detection, Extraction, Interpretation and Understanding

The words detection, extraction [3],[4],[5],[6],[7],[8], interpretation [7], and

understanding [9] often come up in table processing literature. However, there is no set

definition for these words; rather different people use these words in different senses.

This section will attempt to solidify the definitions of the words detection, extraction,

interpretation, and understanding with regard to table processing.

Detecting a table means locating the table and its cells and determining the size of

tables and its cells in a given document. Detection is not relevant to WNT since WNT

uses web tables. Web tables, written in HyperText Markup Language (HTML), have

well defined <table> tags that require a simple search of the source code to detect.

However, table detection is an important step when working with scanned image or

ASCII tables with no markup language [5],[7],[10],[11]. Detection requires layout

analysis to find the grid structure that is common to tables and further processing on

rulings and white spaces to detect the locations of cells within a table.

Extracting a table is done after detection. Extraction goes beyond simple detection

and separates the table from the rest of the document or image. Information is stored in a

separate form: a separate file, separate image, or even a separate interpretation. In

addition, extraction can mean separating and storing just the table’s layout and structure

or separating and storing both table structure and table content. The latter usually

12

involves OCR unless the source is initially electronic. The word recognition

[8],[10],[11],[12],[13] is also widely used. Recognition consists of both detection and

extraction; it is the input needed for interpretation.

Interpretation is the next level of table processing. Interpreting a table means

obtaining the original information from a table and presenting the information within the

table in a different way [3]. Interpretations of tables usually are layout independent.

WNT interprets tables in multiple ways: as trees, XML, and Wang notation.

Interpretation can also mean creating table models, among which Wang’s table model

[2] is the most complete.

Understanding is the final step of table processing, one that has been explored much

less than detection, extraction, and interpretation. Understanding a table means going

beyond detection, extraction, interpretation and putting the information from one table

into a greater context. Humans understand by gathering information from within a table

and connecting that information to all the other information they know subconsciously.

Understanding is a difficult task to accomplish with computers; however projects like

TANGO [1] are ongoing attempts at understanding tables. Information from all tables

processed within TANGO will be conglomerated into a comprehensive ontology that

describes the relations within and between each table, thus enabling a computer to

“understand” the tables.

2.2 Perspectives on Table Processing

To briefly summarize the perspectives on table processing and familiarize the reader

with a high-level overview of past work in table processing, perspectives from some

research surveys [9],[14] are cited.

Tables have physical and logical structure [14]. Physical structure allows table

detection and describes the regions where parts of a table are located within a file or

image. Logical structure is the goal of extracting, interpreting and understanding tables.

Logical structure defines the types of regions within a table and their relationship to each

other at several levels. The highest level of logical structure describes how the header

cells are related to the body cells. The lowest level of logical structure consists of a

13

single cell. In the middle there are levels of logical structure describing groups of cells

(cells in the same row or column) and arrangements of cells, such as cell topology,

which are often described by a table grid (allowing easy indexing of tables).

Most table processing papers use table models [14] that statically or adaptively

define the physical and logical structure of tables. Complete table models, such as

Wang’s [2], can be used to generate physical tables from given logical structure.

Wang’s model separates table structures into three parts. The first is an abstract

indexing scheme that relates the header and the body cells, the second is a topology

defining the placement and ordering of dimensions in various cells, and the third is

formatting attributes such as fonts and separators. To be useful for the extraction and

interpretation of tables, table models should be able to detect tables and then separate

them into regions. Figure 9 from [14] details the different types of structures that have

been used in the past.

Figure 9: Models of Table Structure

There are three sets of procedures used to make table models: observations,

transformations, and inferences. Observations gather the information needed to

recognize a table. Observations can be taken from physical structure (images, ASCII

files), logical structure (description of tables), descriptive statistics (set of existing

observations), or parameters associated with tables. Figure 10 from [14] lists the types

of observations found in table recognition literature.

14

Figure 10: Observations in Table Recognition Literature

Transformations restructure observations to emphasize features of a data set to

make the next set of observations easier or more reliable. WNT uses a tree

transformation to represent categories and splits merged cells. Examples of the types of

transformations used in past literature can be seen in Figure 11 from [14].

15

Figure 11: Transformations in Table Recognition Literature

Lastly, inferences decide whether a document contains the physical and logical

structure of a table model by generating and testing a hypothesis using one of three

different techniques. Classifiers assign structure and determine relations between table

models and data. Segmenters determine if it is possible for a type of table model

structure to exist in the data. Parsers return graphs on structures according to table

syntax (which are defined in table models). Figure 12 and Figure 13 from [14] show the

classifiers, segmenters, and parsers that were used in the past.

16

Figure 12: Classifiers

Figure 13: Segmenters and Parsers

17

To determine if a table has been processed accurately, most table processing papers

include a performance evaluation section [14] which details how fast a system is, what

kinds of errors the system makes, and how a particular system compares to other

systems. Performance evaluation is generally done by establishing a ground truth where

the physical and logical structures of tables (determined by another table model) are

encoded into a file. Documents with ground truth are separated into training and testing

sets using one of three methods [14]. All documents are used to train and test a system

in the resubstitution method. In the leave-one-out method, each document is tested once

with all other documents used to train the system and finally, training and testing sets

can be assigned randomly.

Some generalized paradigms for table processing can be found in [9]. Tables can be

found everywhere, however the formal definition of “tabularity” is elusive because some

forms of data share similarities with tables but are not actually tables. Past research has

mainly been on the extraction of low-level geometric information from scanned images

of tables with growing research on electronic tables. Recently, research has been done on

table analysis and composition, which has furthered understanding of different aspects of

tables.

To briefly describe a table: a table consists of a finite set of labels and

corresponding to each label is a set called the domain of the label. A complete table is a

set of functions from the labels to their corresponding domains where each function is an

element of the table and each label is an element of its domain [9]. Forming an ontology

(“a formal, explicit specification of a shared conceptualization”) of a table is a way to

automatically understand a table. As per [9] understanding a table means having the

ability to recover the label-value pairs from the representation of a given table. Formal

definitions of tables also leads to generalizations.

There are various table models in literature, but the majority of the table models do

not demonstrate table interpretation or understanding. Most table models are aimed at

detecting and extracting a table. Low-level models make use of the rulings, white space,

grids, and characters to find and extract a table [9]. Some models describe specific

tables and some models are geared towards sets of similar tables. High-level models are

18

more useful for editing tables and describe both the physical and logical aspects of a

table. Wang’s table model is the most complete [9],[14]. Some applications of table

processing are: converting similar large tables from an old form (usually typed) to a

usable form (electronic) [3],[4],[7], mining data from large tables of different types

[5],[8], making a database of individual data, interactively obtaining information from

large tables, rendering a text table into an audio format, manipulating existing tables, and

modifying tables to fit different displays. Commercially, low-end OCR systems, such as

ScanSoft’s Omni-Page, find table location and segmentation features for tables which

have explicit grids. Companies like XML Cities capture table data, try to index data

properly, and include features for validation and correction by humans, as does WNT.

There are three broad types of inputs into table processing systems: ASCII files (text,

HTML and XML) [3],[5],[6],[7],[8],[11],[13] which consist solely of linguistic content

and character-level spacing, page-descriptor files (Word, PDF, Latex, Postscript) with

linguistic content and formatting, and bitmap files (images, scanned tables) [4],[12].

Tables in ASCII format are represented only by characters, white space, and carriage

returns. In WNT the derived ASCII file includes various delimiters to separate rows and

columns and to account for tables with merged cells. Mark-up language such as HTML

can be misused and abused because of their flexibility, which is something we noticed

during the work on WNT. It was necessary to separate <table> tags into tags that

represent tables from tags that were used for layout purposes.

Different types of table require different table processing paradigms. Steps for all

these paradigms can be found in [9]. The simplest paradigm is for simple tables, then

compound tables with blank lines, compound tables without blank lines, tables with

rulings, tables with simple headers, tables with nested headers, nested tables with row

and column headers, and finally n-dimensional tables. Most of the tables in the dataset

used for testing WNT have nested headers, oftentimes in the rows and columns, and

tables that exceed two dimensions.

19

2.3 Wang’s Table Model

Wang notation [2], (Section 1.2), ontologies and the semantic web [15] are very relevant

to our work on WNT, which is an integral part of TANGO [1], (Section 1.1). Wang’s

table model [2], discussed in several table-processing papers [8],[11],[14], is a means to

describe tables or to help a particular table processing system. Figure 14, from Wang’s

thesis, delineates the different parts of a row-column structured table.

Figure 14: Regions Within a Table

Wang provides a set of guidelines for creating a table such that its underlying

logical structure is obvious and tabular items are located and interpreted easily. The

following three guidelines should be followed while deciding the content of a table: 1)

The table should only contain necessary information, 2) Table should be presented as an

explicit structure, and 3) The number of categories and subcategories should be reduced

whenever possible. Once the content is decided, the following guidelines can be used to

clearly show the logical structure of the table: 1) Place related items close together, 2)

Avoid using two dimensions (using both column and row headings) whenever possible,

3) Place the most frequently referenced items at the top or left, 4) Vertically arrange

items to be compared, and 5) Arrange items in a meaningful order. Finally, Wang offers

sets of guidelines for the presentation of the table, which include separating and aligning

20

related parts of the table, spanning items, rounding numbers, and using appropriately

sized fonts.

2.4 Techniques of Table Processing

The following papers, even if they don’t seem directly related to this thesis, are

nevertheless relevant because these papers discuss the structure of tables and the

arrangement of columns and rows, which in addition to providing valuable insights, will

be useful for automatically, rather than semi-automatically, determining the Wang

notation for a table.

Silva et Al. [7] design, but not fully implement, an end-to-end system to

automatically extract information from financial statements of companies to be used by

various software agents. An extensive section on table-related research argues that table

processing can be separated into five parts: location (detecting tables), segmentation

(physical description of tables), functional analysis (classifying different tables areas),

structural analysis (connecting category and content cells), and interpretation

(understanding tables in context with each other). These five steps are followed in the

design presented by Silva et al. (illustrated in Figure 15).

A document of any type is first converted to an ASCII document. The steps listed

above are then implemented non-linearly (see Figure 15) to increase the confidence of

all decisions made and allow the system to correct errors in the light of new information.

Once an ASCII file is generated, the tables within that ASCII file are located and

segmented into cells. These cells are then separated into two different types of cells

(called content and data cells, equivalent to category and delta cells in WNT) and a

relation between them is identified. Lastly, the results are interpreted and extracted to a

database. Since WNT begins with a HTML table, WNT simply scans the source code to

find tags defining tables and cells and then converts those tables to an ASCII file with

specific delimiters. The segmentation of cells in WNT is assisted by the user, but the

interpretation is done by the computer.

21

Figure 15: Flowchart of the design of Silvia et al.

Watanabe et al. [12] propose a system to recognize the layout structures of many

kinds of well-formed (containing horizontal and vertical rulings) table-form document

images. The recognition system does not detect a table within a document; rather the

different parts of an already isolated table are extracted and used to build a knowledge-

system of table structures. Classification trees are used to manage the relationships

among different classes of layout systems. The recognition system has two modes:

layout knowledge acquisition (table-form document images are distinguished according

to classification tree and description trees are generated automatically) and layout

structure recognition (individual fields are extracted and are classified by searching the

classification tree and interpreting the structure description tree.

A knowledge-based method that uses binary trees represents the logical information

within a table, including layout structures of table-form documents. A table is

represented by two types of trees: global structure trees and local structure trees. The

global structure tree describes relationships between blocks (sets of related cells) in the

table while the local structure tree describes the relationships within the blocks.

Classification trees contain information about sets of table-form documents that are

physically similar and can, therefore, be identified by the same layout knowledge. Trees

are used very differently in the recognition system of Watanabe et al. and WNT.

Watanabe et al. use trees to describe the possible structures of a table whereas WNT uses

22

trees to describe the specific structure of a specific table. WNT also uses binary trees to

represent the relationship between category cells.

Gatterbauer et al. [8], similar to WNT, focus their attention on web tables. A

modification of the 2-D visual box used by browsers (visual box representation) is used

to display pages rather than <table> tags and a tree-based representation (DOM trees) of

web pages. The problem of extracting information from large-scale, domain independent

sources is tackled by moving away from linguistic techniques to a “2-D pattern

recognition problem using a variation of the CSS2 visual box model”. Previously,

natural language processing techniques were used to extract information from web

tables.

The information in web pages can be represented either by DOM trees or visual box

representations. There are three types of nodes in a DOM tree: text nodes, element

nodes, and edge nodes which define the relationship between text and element nodes.

WNT describes the tables within web pages similarly to DOM trees (with category cells,

delta cells, and a path describing the relationship between category and delta cells). A

visual box representation makes use of Cascading Style Sheets (CSS), which govern the

style or layout on all web pages associated with it.

Most web pages topologically form a frame in the visual box model. Gatterbauer et

al. divide web tables into multiples types of topologies (Figure 16). The first task is to

find the table location (identifying tables and their cells), second to recognize the table

(identify spatial relationships between cells) and third to interpret the table (extract and

save information in a format that retains relevant table information). Table extraction is

done by finding all the frames (areas containing tables) in a given web page, then

matching these frames with pre-defined tables and determining which 2D grids are

semantically significant. The table is then transferred, following a set of rules, into a

topological grid. Finally, an interpretation of the table using Wang’s table model is

provided.

WNT aims to determine the number of categories (dimension of table) based on the

structure of the table. Gatterbauer et al., on the other hand, use lexical information to

determine the dimensions which do not correspond with WNT dimensions. The

23

difficulty in using lexical information to identify categories arises when the lexical

information in unknown or in a different language. The results from the method of

Gatterbauer et al. are shown in Figure 17. 57% of tables are interpreted correctly,

compared to 68% for WNT.

Figure 16: Table Topologies

Figure 17: Results from [8]

Hu et al. [11] describe a way to recognize the structure of a table within a region

that is already known to contain a table. Column segmentation is a key component of

recognizing table structure. Hu et al. attempt improvements on previous work that

segment columns by creating white-space profiles, or histograms, of each column of

pixels or characters. The peaks and valleys in the histogram roughly indicate where a

column began and ended.

Hu et al. apply hierarchical clustering to all the words in the detected table region to

identify groupings (columns). These groupings are represented by binary trees

(constructed bottom-up) where the root is the entire body, leafs are the words, and

intermediate nodes are groupings at different levels. The binary trees describe the entire

table and make no distinction between category and delta cells. The binary trees in

WNT, on the other hand, are used solely to describe the relationships between category

cells. Hu et al. process tables with simple categories and thus, eliminate the need to

ascertain in detail the relationship between the cells belonging to a category; oftentimes,

there are a minimal number of category cells. WNT, on the other hand, primarily

processes tables with numerous category cells and complicated structure.

After the columns are segmented, spatial and lexical information is used to

differentiate category cells (also called headers) from content cells using the following

information: 1) the header for each column is roughly aligned with the column and 2) the

24

hierarchical headers are centered over the columns they describe. Using these and other

assumptions (row headers are always in the left-most column) headers are classified both

on the left and on top. Finally, row segmentation is done using more heuristics.

A graph model (Directed Acyclic Graph, Figure 19), rather than a tree model

(Figure 18), is utilized to describe tables. DAGs are more general than tree models

because several parents can share the same children. DAGs can be split into two types of

nodes: leaf nodes have no children and composite nodes have children. A tool called

Daffy was developed to browse and edit table DAGs. Daffy can display and edit

graphical mark-up, define new mark-up types, examine hierarchical structure, print and

save PS page images, and run algorithm animation scripts to visualize the results of

document analysis. Inputs can be images or text. WNT also has user interaction, but

with trees instead of graphs.

Figure 18: Example of a Tree Model

Figure 19: Example of a DAG

Pyreddy et al. [6] developed a system called TINTIN (Table INformation-based

Text INquery) that identifies tables and their component fields using structural

information and then lets users query the fields. TINTIN uses heuristic methods to

25

extract structural elements and separate tables from text. The results are indexed and

users can query the new database of indexed documents. Figure 20 shows the basic

architecture for TINTIN.

Figure 20: Architecture for TINTIN system

During pre-processing TINTIN extracts table data from plain text documents and

tags the components of a table. Table extraction is done by looking for aligned white

spaces. However, since tables are not always uniform, TINTIN makes use of a data

structure called the Character Alignment Graph (CAG). The CAG is a histogram of the

number of characters that appear at a certain location. The table structure is extracted

from the CAG in the form of a text table. WNT also extracts a text table from HTML

source code, but in a different manner.

Figure 21: Star Table

The component tagger was difficult to

implement because different people make tables

differently. Primarily, syntactic heuristics were

used (i.e. <table>, <caption> tags). Each

character in the table was replaced with a star to

make a corresponding star table (Figure 21), which clearly shows which segments of

stars belong to the header and which segments contain content (similar to the discussion

of foreign tables presented in the Introduction). Using star tables, sets of heuristics were

developed to classify each component. After the pre-processing is completed, the

resulting table is indexed.

For retrieval, a system called INQUERY (“a probabilistic retrieval engine”) is used

to obtain tables from structured documents. The user can type in a query to get a table

26

that hopefully answers their query. A matching compares what was typed with words

present in the table; words that appear in captions of the structured documents get more

weight. One of the goals of TANGO (Query By Table) is similar to the INQUERY

system.

Rahgozar et al. [10] describe a

bottom-up method of detecting table

structures in documents by converting

all documents to layout graphs (Figure

22) where boundary regions enclose the

separate parts of a document and the

arrows between parts of the document

Figure 22: Layout Graphs

show how those boundary regions are related. Once this graph is obtained, it is rewritten

using a set of rules that are based on apriori knowledge of documents. The rewritten

graph gives a logical view of the documents and can be parsed to extract tables. Graphs

represent complex multidimensional information, but are usually computationally

taxing.

Rahgozar et al. propose a computationally efficient four-step method of graph

rewriting to recognize table structures. Segmentation divides the documents into non-

overlapping regions of text, images, line-drawings, and halftones. Graph construction

transforms the segmented document into a graph with relations between the different

types of regions. Entity recognition is used to label each section of the graph by its

contents (C, W, L, TR, IR for character, word, line, text region, and image region

respectively). Finally graph rewriting extracts the logical structure of the document from

its layout graph.

Pinto et al. [5] use Conditional Random Fields (CRFs) to detect and extract tables

from plain text government statistical reports with a 92% success rate. The CRF method

uses both layout and content information to locate tables in plain-text documents and

label each of the documents’ constituent lines with tags (i.e., header, sub-header, data,

separator).

27

Table extraction is broken into six overlapping problems: locate the table, identify

the row positions and types, identify the column positions and types, segment the table

into cells, tag the cells as data or headers, associate data cells with their corresponding

headers. The method presented by Pinto et al. focuses on locating the table and

identifying the row positions and types by employing a conditional probability Markov

model to label lines and thus determine whether the lines are part of a table.

There are four major types of line labels. Non-extraction labels are lines where no

information about table cells is found (nontable, blankline, separator). Header labels

contain metadata for table cells and are related to lines below (title, superheader,

tableheader, subheader, sectionheader). Data row labels mark rows containing content

information (datarow, sectiondatarow). Caption labels mark rows that are found below

or above the proper table but are still related to the table (tablefootnote, tablecaption).

The CRF and Hidden Markov Models (HMM) are compared. CRFs and HMMs are

configured using the same set of features and are trained the same way on the same set

of inputs. The feature sets associated with the CRFs and HMMs are white-space

features, text features, and separator features. Each feature is represented by a binary

value and a threshold is set to determine what each feature means in terms of table

location and extraction. The CRF model has a higher rate of success than the HMMs.

Chandran et al. [4] present a simple method to convert paper tables into electronic

tables. A table is extracted from a scanned document by performing binarization and de-

skewing operations. The image is then scanned for horizontal and vertical lines and

white streams. The table must contain the minimum number of lines needed to determine

the boundaries of the table and one perfectly horizontal line before any skewed lines.

Pre-processing is done by de-skewing the image using an affine transformation.

Horizontal lines are detected by brute force, while intersection points with vertical lines

are simultaneously identified. Missing lines are then inferred using white-stream profiles

and finally, the cells in the table are labeled based on some very simple assumptions.

28

Figure 23: System of Green et al.

Green et al. [13] recognize the cells of a

table in a two-dimensional binary document

image by extending the methods of one-

dimensional parsing. Grammars (production

rules) are used, however since grammars are

inherently one-dimensional, they have to be

modified to account for the two-dimensional

nature of tables. One-dimensional grammars are modified by scanning both horizontal

and vertical directions within the same production rule. Figure 23 shows the system

diagram along with the purpose of each type of grammar (lexical, syntactic, semantic).

Similar to the method of Chandran et. al. [4], the input consists of binary images or table

that are horizontal, not skewed, and contain vertical rulings. Lexical and syntactic

analysis further defines the different portions of a table. WNT also uses “grammars” or

sets of rules to determine various characteristics of tables.

Kornfield et al. [3] detect and extract tabular data from ASCII files, in particular

financial tables, using a modified version of the LR(k) parsing algorithm [16]. Since

table construction is often sloppy, users are allowed to quickly correct defects in the

source document (similar to WNT). Kornfield et al. optimized their system for

commercial application, specifically EDGAR, which is an electronic means of filing

financial reports in ASCII. The plain format increases distributability but hampers

readability. The ASCII files are parsed to obtain the implicit hierarchical structure from

which several derivative data streams are generated and put into readable templates,

creating a basic interpretation of the table. The original ASCII file is very hard for

financial experts to understand but once the information is put into a template file – the

output – it is much easier to comprehend.

A parse tree shows the hierarchical structure of a table containing financial

information. The parse tree is displayed with indentations, similar to the indented

notation for each category used in WNT. Each node on the tree is called a unit and can

either be a primitive unit (terminal node) or a compound unit (non-terminal node).

29

Parsing is done by “a single–stack non-backtrack parser analogous to an LR(k) parser”

which is described by Kornfield et al. The parser processes 85% of the tables correctly;

for the rest manual intervention is needed. The algorithm is constructed such that when

an error is discovered it’s shown to the user in a human–readable way to ease the

correction process. Most errors occur in the form of typos and arithmetic mistakes.

WNT detects, extracts, interprets, and readies tables for understanding. Detection is

simpler in WNT than in most of the methods discussed above. The input to WNT

consists of HTML pages containing tables. HTML pages are easily parsed to discover

the location of tables. Extraction is also simple with HTML pages; HTML tags specify

the types of cells within the table and lead to easy extraction. The majority of the

methods discussed above had images of tables for their inputs; images make the

detection and extraction problem much more challenging. Interpretation is not

commonly investigated in table processing paradigms. The main goal of WNT is the

complete interpretation of tables into a layout-independent form, which also leads to the

understanding of tables.

30

3. Description of Interactive System

The Wang Notation Tool (WNT) was developed to convert a variety of physical web

tables to abstract tables. The primary advantages of having a tool generate Wang

notation rather than manually writing it are: speed and a lower propensity for error. It

would take a person much longer to type the Wang notation for a table (particularly the

delta notation) and their chances of error would be relatively high due to typos. WNT,

on the other hand, generates notation relatively fast and there is no typing involved.

WNT was also made to be robust, able to handle a variety of tables, both in shape and

size. The end result is a tool that is mostly automatic and able to handle numerous types

of tables.

3.1 Overview of System

There were many early versions of WNT; each successive version was more automatic

and robust. The current version of WNT goes through many steps to determine the

Wang notation and XML representation of a table. The first step is to acquire the table

from an HTML page. This is done via a short program written in Java that searches for

tables in HTML pages. The rest of WNT is executed in Matlab.

After the output of the Java program is recognized by Matlab, the table is displayed

as a Graphical User Interface (GUI). Each cell in the table is clickable and the user can

click the cells they believe to be category cells. Some intermediate category processing

follows, where WNT tries to determine the correct category trees. The user then has a

chance to either correct or approve those category trees. Processing the categories

determines the Wang category notation, from which the Wang delta notation and XML

representation are derived automatically.

The user has a chance to check if the relations within the table were determined

correctly with the aid of another clickable GUI that changes the colors of related to the

cell that was clicked. If the users finds the results to be incorrect, the GUI offers an

option to process the table again. Throughout the entire process, a log is maintained in

the background that records every button click by the user and the time between each

step.

31

3.2 Early Versions of System

WNT evolved over a period of many months and as such, there were many earlier

versions of the tool [17]. The first version of the tool was very limited and involved user

intervention. It asked the user questions about the category and delta cells and had them

type in responses. There was a limit on the number of levels within categories and no

provision for user correction. For Table 1, 46 interventions were required to enter the

categories and 36 interventions were required to enter the delta cells. All of these

interventions were typed by the user.

The second version of WNT had clickable GUIs, which eliminated the need to type

and thus, reduced the chance of typos. Version 2 did not have any provision for

correction either. The second version generated delta notation automatically after asking

the user some questions to convert a table to its symmetric form (a symmetric table is a

table where all the category cells pertaining to a delta cell are in either the same row or

same column as that delta cell [17]). For Table 1, roughly 50 interventions were needed

to generate the category notation and none to generate the delta notation. All of these

interventions were button clicks.

WNT, as it is now, is built upon version three. The number of interventions for

choosing categories was reduced from 50 to 7 for Table 1, with the generation of delta

notation remaining automatic. The XML representation, log, user correction, and

verification were added to this version, making the program much more robust. User

correction increased the number of interventions, but the number of interventions still

stayed significantly below 50. In addition, prior methods of determining delta notation

were simplified.

3.3 Detecting Tables in HTML pages

HTML has specific tags to denote tables, rows, and columns. Anything between the

<table> and </table> tags is within a table. The <tr> and </tr> tags denote rows and

the <td> and </td> tags denote columns. The words colspan and rowspan within the

<tr> or <td> tags indicate merged columns or rows. Using this information, a Java

program was written to find tables within an HTML page by parsing an HTML file and

32

looking for the <table>, <td>, and <tr> tags. The Java program is interactive because

some HTML pages use the table tags for layout purposes, rather than to display a table.

There is also provision to enter the table title, caption, and citation of the table. This

information is later recorded in the XML representation.

Once the Java program finds a table, the table is saved as an ASCII file with specific

delimiters, that will later guide the Matlab routines of WNT to recreate the original table

as a Matlab array. Figure 24 shows the ASCII representation of Table 1. The long row

of stars indicates the beginning and end of a table. Five stars are placed at the end of

each row and two stars are placed between each column. The words rowspan and

colspan indicate how many rows or columns are merged.

Figure 24: ASCII Version of Wang Table

3.4 Generating Category Notation

Generating the category notation is the most significant part of WNT because it requires

user intervention and the delta notation and XML representation stem directly from the

category notation. The category notation records all the cells within a table that are

category cells and the relationships between those cells. It is not necessary for category

cells to be related lexically; instead, they must be related structurally. For example, in

Table 2, one of the categories consists of the years and the words ‘Female’ and

‘number’. The years are not related to ‘female’ and ‘number’ lexically, but in Table 2,

they are related structurally and therefore, part of the same category.

33

3.4.1 Interactive Category Construction

The first step for generating category notation is to display the original table as an

interactive GUI in Matlab, using the ASCII representation of the table. Matlab displays

the original table as a mxn table where every column has m rows and every row has n

columns. This means that all merged cells are split and repeated (Figure 25).

Figure 25: Wang Table as Displayed in Matlab

Next, the user indicates which cells are category cells and which categories they

belong to. To reduce the number of interventions, it is assumed that all the cells

pertaining to any one category falls within a specific rectangle within the table, as

illustrated in Figure 26. This assumption has held for every table tested thus far.

Figure 26: Wang Table with Marked Categories

For rectangular categories, it is only necessary to click the top leftmost cell and the

bottom rightmost cell to mark a category (Figure 27). The cells clicked are marked in

black and the gray/blue cells in between are interpolated by WNT. If a cells is selected

by mistake, it can be unselected by clicking on it again. While selecting cells, the user

34

has to keep in mind the points discussed in Section 1.3.4, for correct category

construction. If a category consists of a single cell (a rare case), the GUI shown in Figure

28 can be used to enter a single-cell category. Once the selection of categories is deemed

correct and completed, ‘DONE entering categories’ is clicked in the GUI shown in

Figure 28 to move on to the next step.

Figure 27: Wang Table After User Marks Categories

Figure 28: Control GUI for Selection of Categories

3.4.2 Intermediate Category Processing

At this point, WNT only knows which cells belong to which categories; the relationships

between those cells are unknown. Therefore, WNT does some intermediate category

processing to determine the relationships between the cells of each category. These

intermediate relationships are displayed in the next step to be corrected and approved.

The intermediate processing cleans up each of the categories by deleting repeated

values, blank cells, and nonsense cells (with a few minor exceptions determined by

extensive testing of tables). WNT then creates trees describing the relationships within

each category. These trees (Figure 29) are represented as indented notation (Figure 30).

35

In addition to the indented notation, a corresponding Table of Contents representation

(Figure 31) is also determined.

Figure 29: Category Tree

Figure 30: Indented Notation

Figure 31: Table of Contents Representation

Included in the intermediate processing is the special case of virtual headers. There

is no way to conclusively say that a category needs a virtual header by looking at the

category trees. Section 1.3.3 discusses virtual headers using Table 2 as an example. The

intermediate processing output for both the categories of Table 2 are shown below (both

categories require correction). It is obvious that the category on the left requires a virtual

header, but it is not obvious that the category on the right also requires a virtual header.

2000

 Female

 Number

2001

 Number

2002

 Number

2003

 Number

2004

 number

Canada

 Newfoundland and Labrador

 Prince Edward Island

 Nova Scotia

 New Brunswick

 Quebec

 Ontario

 Manitoba

 Saskatchewan

 Alberta

 British Columbia

36

The category on the right requires a virtual header because there are delta cells

associated directly with the entry Canada. In section 1.3.2, it was established that delta

cells are specified by paths through category trees. Canada, as shown above, is a root

and therefore, not a path. For this reason, the category on the right requires a virtual

header with Canada and the provinces as its children. However, if after the indented

notation is determined, the first column has more than one entry (as in the category on

the left), a virtual header must be added. This is done automatically by WNT to save

time.

3.4.3 Error-Correction by User

Due to the variety of tables found on the web, there is no guarantee that the intermediate

processing by WNT will be correct. To make WNT more robust, error-correction must

be an integral part of the process. If the categories were chosen correctly, it is almost

always possible to correct the Wang notation with the error correction GUI. Notation is

not generated when the user creates an invalid indented table (i.e., more than one entry

per row).

The error-correction GUI appears on-screen after the intermediate indented table for

each category is determined (Figure 32). To correct the relationships within a category,

the incorrect indented notation (tree) for that category is corrected. The user corrects and

approves each category separately (Figure 33). The error-correction GUI has enough

options for every possible change to be executed, although some changes require

multiple actions. A list of the functions of the buttons in the error-correction GUI

follows:

• Undo Last: Reverts to the indented notation before the last correction was made.

• Add Row: A blank row is added above the row clicked.

• Add Column: A blank column is added to the left of the column clicked.

• Delete Row: Entire row containing the cell clicked is deleted.

• Delete Column: Entire column containing the cell clicked is deleted.

• Clear Cell: Clicked cell is cleared.

37

• Rename cell: Clicked cell can be renamed (pushbutton becomes a textbox to type

a new name).

• Add Virtual Header: A root is added to the indented notation with a textbox in

the root spot to be renamed.

• Notation is Correct: Clicked when the indented notation is deemed correct.

Figure 32: Error Correction GUI

Figure 33: Indented Notation as seen in Matlab

3.4.4 Determining Final Category Notation

Wang category notation has a specific order for the keywords and different types of

parenthesis that show the relationships within trees. The order of the keywords and the

parentheses can be determined by a pre-order traversal (or depth-first traversal) of the

category trees. To simplify the implementation of pre-order traversal of trees, the general

trees are converted to binary trees. Converting general trees to binary trees preserves all

relations, but the nodes in binary trees have, at most, two children, which makes the pre-

order traversal algorithm simpler [18].

The leftson in a binary tree is the firstson of the father in the general tree. The

rightson in a binary tree is the rightsibling of the preceding son in the general tree. The

order of the nodes does not matter, only the pointers. Each node has three pointers. The

38

first pointer is to the father of the current node, the second pointer is to the leftson of the

current note, and the third pointer is to the rightson of the current node. The binary tree

is represented in a structure array with fields nodename and pointers. A function was

written to convert a table of contents representation (obtained directly from indented

notation) to a binary tree. Figure 34 is an example of a general tree. Figure 35 is the

equivalent binary tree with the node numbers, pointers, and Wang symbols shown.

Figure 34: General Nonsense Tree

Figure 35: Equivalent Binary Tree with Pointers

Once the binary tree for each category is determined, a recursive function traverses

the trees depth-first to determine the order of the keywords for the Wang category

notation. In addition to the depth-first traversal of the keywords, the category notation

contains delimiters such as parentheses, curly parentheses, and commas that define the

39

relation between the cells of a category. Rules were developed for correct insertion of

all delimiters.

3.5 Generating Delta Notation

Delta notation describes how a particular cell is related to the category cells by listing

the delta cells along with a path from every category describing those cells. In a well-

formed table, there is exactly one delta cell associated with every possible combination

of paths from all the category trees. Generating the delta notation starts by fusing all

categories into a single tree describing the entire table. Complete indented notation and a

corresponding table of contents for the whole table are also generated.

For each delta cell, the program searches the original table for all the leaf cells in the

same row and column as the delta cell. For example, if a table has three categories, there

should be three leaf cells that are in the same row or column as every delta cell in that

table. Tables with multiple leaf cells of the same name are accommodated. The paths

that correspond to every delta cell are determined by working backwards in the fused

table of contents – starting with the leaf cells and working up to the root. Finally, all the

paths are associated with the right delimiters to generate delta notation (Section 1.2).

3.6 Generating XML Representation

In the next steps of TANGO (creating mini-ontologies, discovering inter-ontology

mappings, and merging ontologies), tables are represented in XML, a legible mark-up

language. Therefore, it was necessary to generate an XML representation of every table

in addition to Wang notation. The XML representation of tables captures all the

information contained in Wang notation (category cells, delta cells and their relations),

but also has provisions for recording the table title, caption, citation, and an identifying

number. More importantly, it has provisions to record annotations such as footnotes and

augmentations.

40

3.6.1 Ontology to Describe Tables

The XML representation stems from an ontology developed by the contributors to

TANGO. This ontology describes the structure of any table (Figure 36). It has four

schemas (table, categoryparentnode, datacell, and augmentation) which are discussed in

Section 3.6.2.

Figure 36: Ontology of a General Table

3.6.2 XML Schemas

There are four XML schemas with their own scheme trees, that set the guidelines for the

XML representation of tables. All the schemas are derived directly from the ontology

that describes a general table (Figure 36). The first XML scheme tree, called Table,

includes the Table, Number, Document Citation, Title, Caption, and CategoryNode

boxes. This schema provides basic information about the table (title, caption, citation)

and lists the category nodes with their labels. Each non-lexical element (solid box) is

given an OID (Object IDentifier). Label is a lexical element (dashed box) connected to

each category node.

41

The second XML scheme tree is CategoryParentNodes. This contains the

CategoryNode, CategoryLeafNode, and CategoryParentNode boxes. This schema

describes the tree structure of the table, similar to Wang’s category notation. The

CategoryParentNode’s are treated as fathers and all their children are recorded. Some

category nodes are both children and fathers. The category leaf nodes are never fathers,

only children.

The third XML scheme tree is DataCells. This schema contains the DataCell,

DataValue, CategoryLeafNode, CategoryParentNode, CategoryNode and Aggregate

Node boxes. This schema describes how each data cell is related to the table by stating

the leaf nodes that correspond to a data cell, similar to Wang’s delta notation. It also has

a provision for distinguishing aggregate nodes. The final scheme tree is for

Augmentations. This includes the Augmentation, FootNoteReference, and the box being

augmented. An augmentation with no FootNoteReference means that the augmentation

is an annotation. Currently, the fourth schema is not represented in WNT.

3.6.3 XML Generation in Matlab

With all the schemas acting as guidelines for the XML representation, generating the

XML is straightforward and automatic with the Matlab XMLToolbox. Using the table

of contents for the entire table, every category and delta cell was assigned an OID. For

each schema, a corresponding structure was generated in Matlab and then passed

through the XML toolbox to convert it to XML. An example of the Table schema for

Table 1 is shown below.

x.Table.ATTRIBUTE.Title = “Wang Table”

x.Table.ATTRIBUTE.Caption = “Students Grades”

x.Table.ATTRIBUTE.TableOID = 'Table2';

x.Table.ATTRIBUTE.Number = '2';

x.Table.ATTRIBUTE.Citation = 'Wang’s PhD Thesis';

x.Table.CategoryNodes.CategoryNode(1).ATTRIBUTE.CategoryNodeOID = 'C1';

x.Table.CategoryNodes.CategoryNode(1).ATTRIBUTE.Label = 'Year';

x.Table.CategoryNodes.CategoryNode(2).ATTRIBUTE.CategoryNodeOID = 'C11';

x.Table.CategoryNodes.CategoryNode(2).ATTRIBUTE.Label = '1991';

x.Table.CategoryNodes.CategoryNode(3).ATTRIBUTE.CategoryNodeOID = 'C12';

x.Table.CategoryNodes.CategoryNode(3).ATTRIBUTE.Label = '1992';

xmlstr_Table = xml_formatany(x)

Figure 37: Matlab Structure for XML

42

<root xml_tb_version="3.1">

 <Table Title=“Wang Table” Caption=“Students Grades” TableOID="Table2"

Number="2" Citation=“Wang’s PhD Thesis”>

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1" Label="Year">

 </CategoryNode>

 <CategoryNode CategoryNodeOID="C11" Label="1991">

 </CategoryNode>

 <CategoryNode CategoryNodeOID="C12" Label="1992">

 </CategoryNode>

 </CategoryNodes>

 </Table>

</root>
Figure 38: XML for Table Schema

To generate the above automatically, especially for the CategoryParentNode schema

that determined the trees for the entire table, some guidelines were developed to

determine when a node is a parent node and what its children are. In the table of

contents, a node (x,y) is a parent node if and only if the node(x,y) ~= 0 AND if

node(x,y+1) = 0 AND node(x+1,y+1) ~= 0. The children of this parent node are nodes

for which length(parentnode)+1 AND Child(1,1:length(parentnode)) = parentnode.

3.7 Verifying Results with a GUI

A method for verifying the output of WNT was devised to make WNT more robust.

Directly verifying the Wang notation or XML representation is time-consuming and

difficult, therefore, a visual method of verification was implemented. Complete

verification requires access to the original table, therefore a GUI containing the original

table pops up after all the relationships between cells are established and all the

processing is done. The user can then click on any cell any number of times to verify

any cell-to-cell relationship.

The cell clicked by the user turns blue. If the cell clicked was a delta cell, all the

category cells corresponding to it turn red (Figure 39 & Figure 40). If the cell clicked

was a category cell, all the delta cells corresponding to that category cell turn green and

all the other category cells in the same category as the cell clicked, turn red (Figure 41 &

Figure 42).

43

The table of contents for the entire table is used to decide the color of each cell

depending on what was clicked. Therefore, if there is a mistake in the table of contents,

the verifying GUI will “light-up” cells incorrectly, in which case the user can process the

table again.

Figure 39: Verifying Delta Cell (1)

Figure 40: Verifying Delta Cell (2)

Figure 41: Verifying Category Cell (1)

44

Figure 42: Verifying Category Cell (2)

3.8 System Logging

Evaluating WNT requires recreation and times of user attempts. Such an evaluation

(Section 5) requires a detailed log that records time and button clicks. There are two

types of time: user time and computer time. User time is the time a user spends selecting

categories, correcting them, and verifying them. Computer time is the time taken by the

computer for processing. User time accounts for most of the table processing time.

Every button click while selecting or unselecting categories and making corrections is

recorded. An example of the log is shown in Appendix E.

3.9 Matlab and WNT

Matlab was chosen because it was the language the author of this thesis is most familiar

with. Matlab was well-suited to WNT because tables can be easily represented as arrays

(all tables are mxn arrays). Creating interactive GUIs is simpler with Matlab than with

other programs and Matlab can interact easily with HTML pages to display the original

tables, text files for the ASCII representation, and saving Wang notation and XML, and

Excel to save logs for evaluation. Matlab, however, is not ideal for WNT because it has

limited facilities for handling strings.

To compensate, a corresponding array of numbers, instead of strings, was generated

for every table, indented notation, and table of contents. Every empty cell was given the

value of 0 and every non-empty cell was assigned an integer. For the indented notation,

the integer was always 1. For the table of contents, the integers reflected the level and

45

position of the cell. For a table, every delta cell was given the value of 0 and every

category cell was labeled by number. WNT derives its layout independent

representations based on the structure of the tables, rather than the content, of the tables,

so an array of numbers was enough to determine relationships. It was also much easier to

search through arrays of numbers than through arrays of strings. Overall, the advantages

of Matlab outweighed the disadvantages and WNT was successfully created.

3.10 Summary

WNT is a complete system for converting web tables to layout-independent form. User

interaction allows WNT to accommodate several types of tables successfully. However,

there are still improvements to be made. The process of converting an HTML page to an

ASCII table is not thorough and errors in this process have to be fixed manually. Further

user interaction can be implemented to rectify ASCII tables. WNT fails completely in

some instances because the indented table sent to the final processing stage is incorrect.

This occurs often if the user makes many corrections. The indented table could be tested

after the error-correction process and a warning issued if the indented table is invalid.

Figure 43 shows a flowchart illustrating the system.

46

Figure 43: WNT Flowchart

47

4. Evaluation of WNT Methodology

WNT can be used on any computer with Matlab 7.0 or higher. Preliminary testing was

done to check WNT’s user friendliness and devise a training scheme. Final testing was

done to evaluate WNT.

4.1 Preliminary Testing

Preliminary testing was conducted on two users as a means to determine the usability of

WNT. Preliminary testing revealed that numerous cosmetic changes had to be made: the

program was not user friendly. For example, there were occasions where several

windows popped open at the same time on top of each other and were not sized

appropriately. This resulted in the user having to spend time re-sizing and moving

around the windows. It was also easy to ignore some portions of the Matlab table

because the original HTML file was not displayed for reference.

To rectify these problems, all the GUIs in WNT now have scrollbars and are

assigned a location and size on the screen corresponding to the contents of the GUIs.

The users no longer have to move the GUIs around or resize them. If a GUI is too big

for the screen, the scrollbars can be used to view the entire GUI. In addition, the original

HTML file is displayed at all times and an additional button (‘Undo Last’) was added to

the error correction GUI. Implementing these improvements required exploration of

some arcane aspects of Matlab.

Figure 44: GUI to

control tables

In the earlier version, each table was processed

individually; the user had to select the table they wanted to

process by typing in the name of the table into Matlab and

running one table at a time. To improve usability, a GUI was

designed to control the tables to be tested. This GUI is shown

in Figure 44. As a result of all these changes, WNT is now

more intuitive for the naïve user.

48

4.2 Training

The subjects were trained in how to use WNT by the author of this thesis and a

PowerPoint presentation, found in Appendix F. The PowerPoint covers table concepts,

such as trees, virtual headers, category cells, and delta cells. It does not detail the

criteria for selecting unique categories (Section 1.3.4) because a naïve user who has not

given tables much thought would be confused by the specific criteria. Users learned

how to pick categories correctly by example later in the training session.

The PowerPoint also illustrated, step-by-step, how to use WNT. These illustrations

consisted of screenshots taken during interactive category construction, error-correction,

and verification. The last stage of training consisted of the author processing five tables

in front of the subject. This portion of training was interactive; each step for every table

and the reasons behind the selection of categories, error-correction, and verification

were explained. Subjects were free to ask questions. Subjects familiar with computer

science were faster to train, taking about half an hour each. Subjects that were unfamiliar

with computer science took significantly longer, upwards of 45 minutes, to train. The

tables used to train subjects can be found in Appendix A.

4.3 Evaluation

Final evaluation was conducted on 12 subjects with 17 tables each (presented in

Appendix B). The tables used for evaluation were picked such that there were 5-6

different kinds of tables; some well-formed and some badly-formed. The tables in the

beginning of the session were fairly simple and similar to some of the training tables.

The tables in the middle of the session had the highest confusion factor and troubled

almost all subjects. The tables towards the end of the session were neither simple, nor

difficult, to see how well the subjects had learned. All the tables required corrections,

most often the addition of virtual headers. However, none of the tables required

extensive corrections if the categories were picked correctly.

All subjects were trained in the same manner and none of the subjects were given

any input by the author while processing tables. The tables were presented to all the

subjects in the same order in continuous sessions. The subjects were from diverse age

49

groups (18-51) and backgrounds (electrical engineering graduate students, undergraduate

electrical engineers, communications graduate students, chemistry graduate students,

aeronautical engineering professors, figure skating coaches, aspiring actors, and

accountants). The trainer, remained present to cope with any error by Matlab, which

required restarting the Matlab program. Every subject could choose to process a table as

many times as they wished and each attempt, whether partial or complete, was recorded

in the log. Section 5 will discuss the results from the evaluation.

50

5. Evaluation of WNT

Every attempt by every subject was recorded in detail during evaluation. An example of

the complete log for one attempt appears in Appendix E. The log recorded times and

button clicks made by the user, specifying whether the button click was to undo a

mistake or not. A subject’s interaction with WNT can be re-created with the logs.

Appendix G shows summaries of times for every table.

An example summary table for T09 is shown in Table 5. All values (time in

seconds) are averages over subjects. # of attempts is the average number of attempts

made by all subjects on a table. Time for Pre-Processing (computer time) is the time

taken to display the original HTML table, convert the ASCII file to a Matlab array, and

display a corresponding GUI to the subject. Time to Construct Categories (subject time)

is the time taken by subjects to think about and click the cells designating categories.

This time indicates the confusion factor (Section 0) of a table; subjects spend more time

constructing categories when a table is confusing.

Time for Category Correction (subject time) is the time subjects took to correct all

categories in the table using the error-correction GUI. This time is higher for confusing

and badly-formed tables and lower when subjects have seen similar tables before. Time

for Final Processing (computer time) is the time taken to perform final category

processing, generate category notation, generate delta notation, and generate the XML

representation. Total Time is the addition of all time and % Subject Time is the percent of

total time that is subject time.

Table 5: Distribution of Processing Time for T09, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.67 000.65

Time for Pre-Processing 000.52 000.10

Time to Construct Categories 080.68 067.63

Time for Category Correction 103.21 126.45

Time for Final Processing 000.42 000.19

Total Time 184.81 192.11

Percent Table is Completed 077.78 035.06

% Subject Time 000.99 000.01

Wang notation was generated in 82.75% of all attempts and was generated correctly

in 57.25% of all attempts (Table 6). Figure 45 shows the results of the evaluation by

51

subject and Figure 46 shows the results of the evaluation by table. The dark gray bars

represent the percent of all attempts where Wang notation was generated correctly. The

light gray bars represent the percent of all attempts where Wang notation was generated

incorrectly.

Table 6: Success Rate by Table, Average Over Subjects

 # of attempts % correct % generated

T01 12 100.00 100.00

T02 12 100.00 100.00

T03 12 100.00 100.00

T04 12 58.33 75.00

T05 16 75.00 87.50

T06 12 100.00 100.00

T07 12 100.00 100.00

T08 12 91.67 100.00

T09 20 20.00 60.00

T10 18 38.89 66.67

T11 22 18.18 63.64

T12 15 53.33 80.00

T13 14 50.00 100.00

T14 15 26.67 86.67

T15 16 43.75 75.00

T16 18 55.56 83.33

T17 17 29.41 70.59

TOTAL 255 57.25 82.75

Figure 45: WNT Results by Subject

52

Figure 46: WNT Results by Table

Each subject processed 17 tables, but there were more than 17 attempts per subject

(Table 6); most subjects used the verification tool to validate their responses, and if

incorrect, frequently started over. The numbers above are percentages of all attempts. If

averages are taken over the set of tables, Wang notation was generated for 98% of all

tables, and was generated correctly for 71% of all tables. Wang notation could not be

generated when the subject made corrections that produced invalid trees. This usually

occurred when a large number of corrections were made and the integrity of the indented

notation was overlooked.

Wang notation was generated incorrectly by subjects who did not understand the

concept of virtual headers (Section 1.3.3). WNT automatically adds virtual headers to

some category configurations, therefore, when WNT does not automatically add virtual

headers, some subjects either forgot or didn’t realize that they had to add virtual headers.

For example, one of the categories in T15 consists of: Gross Domestic Product, GDP at

Purchasing Power Parity, and Inflation Index (2000=100), found in the top row of T15.

This category is rootless and needs a virtual header. WNT displays the indented notation

with a root, albeit incorrect:

Gross Domestic Product

 GDP at Purchasing Power Parity

 Inflation Index (2000=100)

Four subjects assumed WNT was correct and failed to modify the indented notation. The

correct indented notation is shown on the next page.

53

Albanian Economy (VH)

 Gross Domestic Product

 GDP at Purchasing Power Parity

 Inflation Index (2000=100)

One of the most challenging tasks for the naïve user was how to choose unique

categories (Section 1.3.4). This task confused several subjects, particularly for T09 and

T10. In both T09 and T10, the subject had to realize that the two leftmost columns, and

the three leftmost columns, respectively, constituted a single category. They cannot be

split, because there are no repeated subcategories. As a result, only four subjects

generated correct notation for T09, and only seven subjects generated correct notation

for T10 (largely because the subjects learned from T09).

Subjects also had trouble picking unique categories because they frequently over-

defined tables by defining redundant categories. This could be seen in T11, T13, T14,

and T17. For example, in T14, a significant fraction of subjects picked the first column

as one category, the second column as the second category, and Area and Maximum

Depth as the third category with a virtual header. This construction of categories is

incorrect, because both columns have one root with 25 children describing the same set

of delta cells. The correct category construction is to assign the first column to one

category, and Body of Water, Area, and Maximum Depth to be the second category with

a virtual header.

T04 was not generated three times because it is a badly formed table: the top row

consists of years, the second and third row consist of the words Female and number

respectively. If T04 was well-formed, Female and number would appear above the

years, thus giving that category a root. The original T04 is quite confusing and

corrections are a challenge. The next pages shows the output from WNT after

intermediate processing.

54

RENAME

 2000

 Female

 Number

 2001

 Number

 2002

 Number

 2003

 number

 2004

 number

The word Female was removed in four paths because WNT deemed it redundant.

Below are the two possible fixes. Every subject, but one, attempted the fix on the left,

which involved numerous corrections and often resulted in invalid indented notation.

The fix on the right is straightforward but requires a thorough grasp of the concepts of

trees and virtual headers and was only implemented by one subject, S02.

Year

 2000

 Female

 Number

 2001

 Female

 Number

 2002

 Female

 number

 2003

 Female

 Number

 2004

 Female

 number

Female

 Number

 2000

 2001

 2002

 2003

 2004

Virtual headers are difficult because subjects have to recognize the instances where

a virtual header is needed and the lack of virtual headers complicates the table enough

that subjects have trouble choosing unique categories. Tables would be much less

confusing if virtual headers were not needed, because the presence of a root (virtual

header) removes ambiguity about its children. Without all roots present it is difficult for

subjects to ascertain unique categories, but the absence of virtual headers does not

always result in incorrect selecting of categories. Tables with obvious virtual headers

55

(T02, T03, T04, among others) were almost always correctly demarked. It is when the

need to add virtual headers is not obvious that subjects have trouble (T11, T12, T13,

among others).

There are several ways in which WNT could warn subjects when they choose

incorrect categories. To prevent over-defining categories (Section 5), WNT could issue

a warning if the subject chooses two categories that are of the same shape (nx1 or 1xn),

are completely adjacent to each other (every part of the two category rectangles are

adjacent), have only one level, and have the same number of children. Another

indication that a category is picked incorrectly would be if the number of nodes

decreases with each level. A warning could be given if any delta cell is associated

directly with any non-leaf node (Section 3.4.2). WNT could determine if a subject

chooses a category where the subcategory trees are repeated and therefore need to be

split, or if the subject chooses two or more categories that should really be one category.

The personality and background of the subjects made a difference in the results. In

general, subjects with knowledge of computer science (S01, S02, S10, and S12) picked

up the concepts quickly. S01 had more knowledge of computer science than anyone else,

but was also the most careless subject, and therefore, generated most tables incorrectly.

S02, S10, and S12 were thorough and had previous knowledge and were the best at

using WNT. S04 had no background in computer science and did not understand the

concepts of trees readily, but was very thorough. Therefore, S04 did not generate

notation for many tables (due to invalid indented notation), but when notation was

generated, it was usually correct. The other subjects were a mix of people with limited

exposure to computer science and some with no exposure to computer science. The more

thorough the subject was, the better they performed, and all subjects learned from their

mistakes.

Table 7 shows the average total time by table, the average percentage of user time,

the average user time, and the average computer time. Figure 47 shows the average total

time by table and Figure 48 shows the average total time by subject. User time accounts

for 98% of total processing time. The total amount of time required to process a table

was directly related to how well-formed the table was. The total time taken by subjects

56

was not a good indication of their performance on WNT. The correlation coefficient of

average total time and percent of generated tables is -0.76 and the correlation coefficient

of average total time and percent of correctly generated tables is -0.66. S04 had the

highest average total time because S04 was thorough, but did not generate many tables.

S02, on the other hand, generated a large portion of the tables, but with a rather low

average total time. S11 had a high average total time and the worst performance, but

S01, S03, and S08 had low average total times and similarly mediocre performances.

Table 7: Average Times by Table

Table Total Time % User Time User Time Computer Time

T01 73.20 0.98 71.74 1.46

T02 70.80 0.98 69.38 1.42

T03 62.06 0.98 60.82 1.24

T04 143.38 0.99 141.95 1.43

T05 66.79 0.98 65.45 1.34

T06 41.73 0.98 40.90 0.83

T07 48.56 0.98 47.59 0.97

T08 42.76 0.98 41.90 0.86

T09 184.81 0.99 182.96 1.85

T10 185.11 0.99 183.26 1.85

T11 112.27 0.98 110.02 2.25

T12 96.16 0.98 94.24 1.92

T13 78.75 0.98 77.18 1.58

T14 87.34 0.98 85.59 1.75

T15 53.79 0.98 52.71 1.08

T16 48.99 0.98 48.01 0.98

T17 214.46 0.98 210.17 4.29

T01-T17 94.76 0.98 93.17 1.59

Figure 47: Average Total Time by Table

57

Figure 48: Average Total Time by Subject

This evaluation of WNT shows that with experience, subjects could generate

notation correctly. More experience could be gained through improved training (Section

6.3), a large database of training tables, and feedback during the evaluation process.

Every subject stated that with more experience, she or he could generate notation

correctly. The error-correction and verification tools are essential for generating correct

notation. Evaluation also showed that WNT was able to process a variety of tables

whose layout-independent representations could be generated correctly by an

experienced user.

58

6. Future Work

6.1 Aggregations and Annotations

Wang notation captures only the direct relations between and within category and delta

cells in a hierarchal or tree format. The subtleties of tables and additional information,

such as the title, caption, author, citation, and number in database cannot be captured by

Wang notation. The XML representation is generated to capture additional table

information, as well as acting as a medium to relay layout independent tables to other

applications. Currently, a user can enter additional information to be added to the XML

representation, but there is no provision for capturing aggregations and annotations.

As discussed in Section 3.6, the ontology that represents general tables (Figure 36),

has a schema for capturing aggregations and annotations, but is not yet part of WNT.

Some tables include aggregates, such as averages, in the original table, and in other

tables, it would be useful if the user could add columns or rows containing aggregates.

Either way, to create an ontology, it is useful to know which cells are aggregates and

which cells are not. It is also useful to know which cells contain annotations.

Annotations include augmentations, such as units, and footnotes.

It will be difficult to capture aggregations and annotations automatically, because

they are inherently lexical. It might be possible to have WNT guess the locations of

cells containing aggregations and annotations and then have a user correct or approve the

guesses. Extensive research into where aggregations and annotations generally appear

would be required to modify WNT to make initial guesses. The addition of aggregations

and annotations would increase the quality of ontologies constructed with information

from WNT.

6.2 Automation and Learning

Further automating and learning would constitute a large improvement in the speed and

robustness of WNT. Automation and learning go hand in hand because further

automation is only possible if adaptive learning is employed. There are two instances

where automation and adaptive learning can be implemented.

59

First, it is possible to streamline the category construction step. Instead of the user

delineating categories, WNT could determine which cells are category cells and which

cells are delta cells based on structural patterns within the table. Structural patterns in

tables can be explored using foreign tables (Section 1.3.6). A much more challenging

problem for WNT is to separate all category cells into separate categories. This

challenge can be overcome with the use of adaptive learning; WNT could “learn” to

make guesses on the locations of categories based on past tables. All guesses would have

to be approved or corrected by the user.

Second, the error correction step can be simplified if WNT can “learn” to make

corrections based on past responses. A detailed log would be instrumental in

implementing a more streamlined error-correction process. WNT could compare the

current indented notation to past indented notations and make corrections based on

similarities between indented notations. Also using the log, the error-correction GUI

(Figure 32) could have a few dynamic buttons that change depending on what types of

corrections are performed most often. Ideally, WNT should not make the same mistake

twice.

6.3 Improved Training

Improved training would greatly increase the fraction of tables that are processed

correctly. The current training method consists of the subject watching the author use

WNT and a PowerPoint presentation. A more thorough and useful process would be to

have the subject interact during training by using a mock WNT before actual testing.

The mock WNT could be in the form of a website that looks like the real WNT.

Subjects can process 2-3 tables on the website and every time they make a mistake, the

website will prompt them with corrections and suggestions, thus teaching them the

nuances of tables firsthand.

60

7. Conclusion

The Wang Notation Tool (WNT) was developed as part of the project known as

TANGO (Table ANalysis for Generating Ontologies) [1]. TANGO aims to create an

ontology by “understanding” a multitude of tables. The first step of TANGO is to fully

interpret a table’s structure and conceptual content by converting it to a layout

independent, or canonicalized, form with guidance from a user. Few attempts at

complete interpretation, like that performed by WNT, appear in the literature, and none

that convert HTML tables to Wang notation.

WNT in an interactive tool for converting HTML tables to two layout-independent

representations. The first layout independent representation generated is Wang notation

[2]; the second, an extension of Wang notation, is XML representation corresponding to

an ontology that represents general tables. Both representations delineate the tree

structure of the category cells and relate delta cells to branches of the category trees.

The XML representation includes additional information about the table (title, caption,

citation) and cells (aggregates, annotations).

The input to WNT is an ASCII file resulting from parsing an HTML table with a

JAVA program that extracts the content and layout information necessary for complete

interpretation. WNT, written in Matlab, interacts with the user to determine the

relationships within a table and generate Wang notation and XML representation. The

XML representation is sent to researchers at BYU to generate mini-ontologies, discover

inter ontology mappings and merge all information into growing ontologies [19]. WNT

is also being used for ontology-related applications, such as Query By Table [20].

The average total time for an experienced user (the author of this thesis) was 48

seconds. This time was faster than that of every subject except S01, who was very

careless and did not make many corrections. S01 did not generate many tables correctly,

but the experienced user generated 100% of the tables correctly. The average time over

12 subjects for 17 tables was 95 seconds. Overall, 71% of tables were correctly

converted to Wang notation.

The subjects tested were naïve, but upon detailed feedback after the evaluation

session, all of them understood how WNT worked. The average time for training was

61

about 30 minutes and the average time for evaluation was about 90 minutes. A longer,

more interactive training session may improve results and speed up evaluation. In

addition, adaptation to the current spectrum of tables would increase the speed and

robustness of WNT. However, even before implementing an adaptive WNT, several

changes can be made as a result of the evaluation. The two most difficult aspects of

WNT for subjects were virtual headers (Section 1.3.3) and choosing unique categories

(Section 1.3.4). Additions to WNT that could alleviate these difficulties are described in

Section 5.

About 85% of the development time for WNT was spent writing Matlab code. WNT

consists of over 1700 lines of code and 54 functions. Aspects of the Matlab program that

required considerable thought were: developing the GUI for interaction, pre-order

traversal of category trees, determining delta notation, adding error-correction, and

adding scrollbars to all figures. WNT is a fast and robust tool for generating Wang

notation, especially as a user gains more experience.

62

References

[1] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy, “Toward

Ontology Generation from Tables,” World Wide Web, vol. 8, no. 3, pp 261 – 285,

Sept. 2005.

[2] X. Wang, "Tabular Abstraction, Editing, and Formatting," Ph.D Dissertation,

University of Waterloo, Waterloo, ON, Canada, 1996.

[3] W. Kornfield and J. Wattecamps, “Automatically Locating, Extracting and

Analyzing Tabular Data,” Proceedings of 26
th

 ACM SIGIR, pp.347-348, Melbourne,

Australia, 1998.

[4] S. Chandran and R. Kasturi, “Structural Recognition of Tabulated Data,”

Proceedings of 2
nd

 International Conference on Document Analysis and

Recognition, pp. 516-519, Tsukuba Science City, Japan, Oct. 1993.

[5] D. Pinto, A. McCallum, X. Wei, and W. B. Crott, “Table Extraction Using

Conditional Random Fields,” Proceedings of 26
th

 ACM SIGIR, pp. 235-242,

Toronto, Canada, 2003.

[6] P. Pyreddy and W. B. Croft, “TINTIN: A System for Retrieval in Text Tables,”

International Conference On Digital Libraries, pp. 193-200, Philadelphia,

Pennsylvania, July 1997.

[7] A.C. e Silva, A. M. Jorge, and L. Torgo, “Design of an end-to-end method to extract

information from tables,” International Journal on Document Analysis and

Recognition, vol. 8, no. 2, pp. 144-171, June 2006.

[8] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krupl, and B. Pollak, “Towards

Domain-Independent Information Extraction from Web Tables,” World Wide Web,

pp. 71-80, Banff, Canada, May 2007.

[9] D.W. Embley, M. Hurst, D. Lopresti, and G. Nagy, “Table-Processing Paradigms: a

Research Survey,” International Journal on Document Analysis and Recognition,

vol. 8, no. 2, pp. 66-86, June 2006.

[10] M. A. Rahgozar and R. Cooperman, “A Graph-Based Table Recognition System,”

Document Recognition III, SPIE Proceedings Series, vol. 2660, pp. 192-203, San

Jose, California, Jan. 1996.

[11] J. Hu,R. Kashi, D. Lopresti, and G. Wilfong, “Table Structure Recognition and Its

Evaluation,” Document Recognition and Retrieval VIII, SPIE Proceedings Series,

vol. 4307, pp. 44-55, San Jose, California, Jan. 2001.

63

[12] T. Watanabe, Q. Luo, and N. Sugie, “Layout Recognition of Multi-Kinds of Table-

Form Documents,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 17, no. 4, pp. 432-445, April 1995.

[13] E. Green and M. Krishnamoorthy, “Recognition of Tables Using Table Grammers,”

Proceedings of 4
th

 Symposium on Document Analysis and Information Retrieval, pp.

261-277, Las Vegas, Nevada, April 1995.

[14] R. Zanibbi, D. Bolstein, and J. R. Cordy, “A Survey of Table Recognition: Models,

Observations, Transformations, and Inferences,” International Journal on

Document Analysis and Recognition, vol. 7, no. 1, pp. 1-16, April 2004.

[15] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific

American, May 2001.

[16] A.V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques and Tools,

Addison-Wesley, 1986.

[17] P. Jha, “Interactive Wang Notation Tool for Web Pages,” DOC Lab, Rensselaer

Polytechnic Institute, Troy, NY, Technical Report, May 2007.

[18] E.M. Reingold and W.J. Hansen, Data Structures, Boston: Little, Brown and

Company, 1983.

[19] S. Lynn, and D.W. Embley, “Automatic Generation of Ontologies from

Canonicalized Web Tables”, submitted manuscript, March 2008,

http://tango.byu.edu/.

[20] R. Padmanabhan, and G. Nagy, “Query By Table”, submitted to ICPR, 2008.

[21] A. Laurentini, and P. Viada, “Identifying and Understanding Tabular Material in

Compound Documents,” Proceedings of the International Conference on Pattern

Recognition, pp. 405-409, The Hague, Netherlands, Sept. 1992.

[22] T. Hu, “Recognizing Table Entries In A Scanned Document,” M.S. Thesis,

Rensselaer Polytechnic University, Troy, NY, October 1993.

[23] D.W. Embley, D.P. Lopresti, and G. Nagy, “Notes on Contemporary Table

Recognition,” Document Analysis Systems 2006, pp. 164-175, 2006.

64

Appendix

A. Training Tables

The following tables were used to train the user in WNT. Most tables have a title on top

that is not part of Wang notation, but is part of the XML representation.

Table 8: University Degrees for Males (TRN1)

Table 9: Divorces by Province (TRN2)

65

Table 10: Economy of Mali (TRN3)

Table 11: Food Services for Nunavut (TRN4)

Table 12: Wang Table (TRN5)

66

B. Test Tables

The following tables were processed by each subject in testing. The results of this

testing are discussed in detail in Section 5.

Table 13: Induced Abortions by Province (T01)

Table 14: Deaths and death rate, by province (T02)

67

Table 15: Deaths and death rate, by province (T03)

Table 16: University Degrees (Females) by province (T04)

Table 17: Food and Drink for Alberta (T05)

68

Table 18: Food and drink for Newfoundland and Labrador (T06)

Table 19: Food and drink for Prince Edward Island (T07)

Table 20: Infant mortality rates by province (T08)

69

Table 21: Lakes of Canada (T09)

70

Table 22: Mountains of Canada (T10)

71

Table 23: Administrative units of Utah (T11)

72

Table 24: American Indian/Alaska Native Populations (T12)

Table 25: General info for Angola (T13)

73

Table 26: Bodies of Water (T14)

Table 27: Economy of Albania (T15)

Table 28: Economy of New Zealand (T16)

74

Table 29: World population (T17)

75

C. Wang Notation

Wang notation for T09 is presented below.

(Province (v),{(Newfoundland and Labrador, {(Smallwood Reservoir,phi), (Melville Lake,phi)}),

(Quebec,{(Lac Mistassini,phi), (Reservoir Manicougan,phi), (Reservoir Gouin,phi), (Lac a` l`Eau-

Claire,phi), (Lac Bienville,phi), (Lac Saint-Jean,phi), (Reservoir Pipmuacan,phi), (Lac Minto,phi),

(Reservoir Cabonga,phi)}), (Manitoba,{(Lake Winnipeg,phi), (Lake Winnipegosis,phi), (Lake

Manitoba,phi), (Southern Indian Lake,phi), (Cedar Lake,phi), (Island Lake,phi), (Gods Lake,phi), (Cross

Lake,phi), (Playgreen Lake,phi)}),(Alberta,{(Lake Clair,phi), (Lesser Slave Lake,phi)}), (British

Columbia,{(Williston Lake,phi), (Atlin Lake,phi)})})

(Info (v),{(Elevation (m),phi),(Area (km),phi)})

delta({Info (v).Elevation (m),Province (v).Newfoundland and Labrador.Smallwood Reservoir})=471

delta({Info (v).Area (km),Province (v).Newfoundland and Labrador.Smallwood Reservoir})=6527

delta({Info (v).Elevation (m),Province (v).Newfoundland and Labrador.Melville Lake})=tidal

delta({Info (v).Area (km),Province (v).Newfoundland and Labrador.Melville Lake})=3069

delta({Info (v).Elevation (m),Province (v).Quebec.Lac Mistassini})=372

delta({Info (v).Area (km),Province (v).Quebec.Lac Mistassini})=2335

delta({Info (v).Elevation (m),Province (v).Quebec.Reservoir Manicougan})=360

delta({Info (v).Area (km),Province (v).Quebec.Reservoir Manicougan})=1942

delta({Info (v).Elevation (m),Province (v).Quebec.Reservoir Gouin})=404

delta({Info (v).Area (km),Province (v).Quebec.Reservoir Gouin})=1570

delta({Info (v).Elevation (m),Province (v).Quebec.Lac a` l`Eau-Claire})=241

delta({Info (v).Area (km),Province (v).Quebec.Lac a` l`Eau-Claire})=1383

delta({Info (v).Elevation (m),Province (v).Quebec.Lac Bienville})=426

delta({Info (v).Area (km),Province (v).Quebec.Lac Bienville})=1249

delta({Info (v).Elevation (m),Province (v).Quebec.Lac Saint-Jean})=98

delta({Info (v).Area (km),Province (v).Quebec.Lac Saint-Jean})=1003

delta({Info (v).Elevation (m),Province (v).Quebec.Reservoir Pipmuacan})=396

delta({Info (v).Area (km),Province (v).Quebec.Reservoir Pipmuacan})=978

delta({Info (v).Elevation (m),Province (v).Quebec.Lac Minto})=168

delta({Info (v).Area (km),Province (v).Quebec.Lac Minto})=761

delta({Info (v).Elevation (m),Province (v).Quebec.Reservoir Cabonga})=361

delta({Info (v).Area (km),Province (v).Quebec.Reservoir Cabonga})=677

delta({Info (v).Elevation (m),Province (v).Manitoba.Lake Winnipeg})=217

delta({Info (v).Area (km),Province (v).Manitoba.Lake Winnipeg})=24387

delta({Info (v).Elevation (m),Province (v).Manitoba.Lake Winnipegosis})=254

delta({Info (v).Area (km),Province (v).Manitoba.Lake Winnipegosis})=5374

delta({Info (v).Elevation (m),Province (v).Manitoba.Lake Manitoba})=248

delta({Info (v).Area (km),Province (v).Manitoba.Lake Manitoba})=4624

delta({Info (v).Elevation (m),Province (v).Manitoba.Southern Indian Lake})=254

delta({Info (v).Area (km),Province (v).Manitoba.Southern Indian Lake})=2247

delta({Info (v).Elevation (m),Province (v).Manitoba.Cedar Lake})=253

delta({Info (v).Area (km),Province (v).Manitoba.Cedar Lake})=1353

delta({Info (v).Elevation (m),Province (v).Manitoba.Island Lake})=227

delta({Info (v).Area (km),Province (v).Manitoba.Island Lake})=1223

delta({Info (v).Elevation (m),Province (v).Manitoba.Gods Lake})=178

delta({Info (v).Area (km),Province (v).Manitoba.Gods Lake})=1151

delta({Info (v).Elevation (m),Province (v).Manitoba.Cross Lake})=207

delta({Info (v).Area (km),Province (v).Manitoba.Cross Lake})=755

76

delta({Info (v).Elevation (m),Province (v).Manitoba.Playgreen Lake})=217

delta({Info (v).Area (km),Province (v).Manitoba.Playgreen Lake})=657

delta({Info (v).Elevation (m),Province (v).Alberta.Lake Clair})=213

delta({Info (v).Area (km),Province (v).Alberta.Lake Clair})=1436

delta({Info (v).Elevation (m),Province (v).Alberta.Lesser Slave Lake})=577

delta({Info (v).Area (km),Province (v).Alberta.Lesser Slave Lake})=1168

delta({Info (v).Elevation (m),Province (v).British Columbia.Williston Lake})=671

delta({Info (v).Area (km),Province (v).British Columbia.Williston Lake})=1761

delta({Info (v).Elevation (m),Province (v).British Columbia.Atlin Lake})=668

delta({Info (v).Area (km),Province (v).British Columbia.Atlin Lake})=775

D. XML Representation

XML representation for T09 is presented below.

<InterpretedTable xsi:noNamespaceSchemaLocation="G:\RPI\XML\02_TableInterface.XS.070803.xml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Table TableOID="tableOID" Number="1" DocumentCitation="Canada Statistics" Title="Lakes-

Simulated-Table 0-Ascii" Caption="CAPTIONHERE">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1" Label="Province (v)"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.1" Label="Newfoundland and Labrador"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.1.1" Label="Smallwood Reservoir"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.1.2" Label="Melville Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2" Label="Quebec"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.1" Label="Lac Mistassini"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.2" Label="Reservoir Manicougan"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.3" Label="Reservoir Gouin"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.4" Label="Lac a` l`Eau-Claire"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.5" Label="Lac Bienville"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.6" Label="Lac Saint-Jean"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.7" Label="Reservoir Pipmuacan"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.8" Label="Lac Minto"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.9" Label="Reservoir Cabonga"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3" Label="Manitoba"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.1" Label="Lake Winnipeg"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.2" Label="Lake Winnipegosis"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.3" Label="Lake Manitoba"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.4" Label="Southern Indian Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.5" Label="Cedar Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.6" Label="Island Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.7" Label="Gods Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.8" Label="Cross Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.9" Label="Playgreen Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.4" Label="Alberta"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.4.1" Label="Lake Clair"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.4.2" Label="Lesser Slave Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.5" Label="British Columbia"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.5.1" Label="Williston Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.5.2" Label="Atlin Lake"></CategoryNode>

 <CategoryNode CategoryNodeOID="C2" Label="Info (v)"></CategoryNode>

 <CategoryNode CategoryNodeOID="C2.1" Label="Elevation (m)"></CategoryNode>

 <CategoryNode CategoryNodeOID="C2.2" Label="Area (km)"></CategoryNode>

77

 </CategoryNodes>

 </Table>

<CategoryParentNodes>

 <CategoryParentNode CategoryParentNodeOID="C1">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.4"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.5"></CategoryNode>

 </CategoryNodes>

 </CategoryParentNode>

 <CategoryParentNode CategoryParentNodeOID="C2">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C2.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C2.2"></CategoryNode>

 </CategoryNodes>

 </CategoryParentNode>

 <CategoryParentNode CategoryParentNodeOID="C1.1">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1.1.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.1.2"></CategoryNode>

 </CategoryNodes>

 </CategoryParentNode>

 <CategoryParentNode CategoryParentNodeOID="C1.2">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1.2.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.2"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.3"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.4"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.5"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.6"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.7"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.8"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.2.9"></CategoryNode>

 </CategoryNodes>

 </CategoryParentNode>

 <CategoryParentNode CategoryParentNodeOID="C1.3">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1.3.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.2"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.3"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.4"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.5"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.6"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.7"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.8"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.3.9"></CategoryNode>

 </CategoryNodes>

 </CategoryParentNode>

 <CategoryParentNode CategoryParentNodeOID="C1.4">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1.4.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.4.2"></CategoryNode>

78

 </CategoryNodes>

 </CategoryParentNode>

 <CategoryParentNode CategoryParentNodeOID="C1.5">

 <CategoryNodes>

 <CategoryNode CategoryNodeOID="C1.5.1"></CategoryNode>

 <CategoryNode CategoryNodeOID="C1.5.2"></CategoryNode>

 </CategoryNodes>

 </CategoryParentNode>

 </CategoryParentNodes>

 <DataCells>

 <DataCell DataCellOID="D1" DataValue="471">

 <CategoryLeafNode CategoryLeafNodeOID="C1.1.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D2" DataValue="6527">

 <CategoryLeafNode CategoryLeafNodeOID="C1.1.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D3" DataValue="tidal">

 <CategoryLeafNode CategoryLeafNodeOID="C1.1.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D4" DataValue="3069">

 <CategoryLeafNode CategoryLeafNodeOID="C1.1.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D5" DataValue="372">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D6" DataValue="2335">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D7" DataValue="360">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D8" DataValue="1942">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D9" DataValue="404">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.3"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D10" DataValue="1570">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.3"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D11" DataValue="241">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.4"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

79

 <DataCell DataCellOID="D12" DataValue="1383">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.4"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D13" DataValue="426">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.5"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D14" DataValue="1249">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.5"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D15" DataValue="98">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.6"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D16" DataValue="1003">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.6"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D17" DataValue="396">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.7"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D18" DataValue="978">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.7"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D19" DataValue="168">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.8"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D20" DataValue="761">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.8"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D21" DataValue="361">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.9"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D22" DataValue="677">

 <CategoryLeafNode CategoryLeafNodeOID="C1.2.9"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D23" DataValue="217">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D24" DataValue="24387">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D25" DataValue="254">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.2"></CategoryLeafNode>

80

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D26" DataValue="5374">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D27" DataValue="248">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.3"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D28" DataValue="4624">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.3"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D29" DataValue="254">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.4"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D30" DataValue="2247">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.4"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D31" DataValue="253">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.5"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D32" DataValue="1353">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.5"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D33" DataValue="227">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.6"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D34" DataValue="1223">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.6"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D35" DataValue="178">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.7"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D36" DataValue="1151">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.7"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D37" DataValue="207">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.8"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D38" DataValue="755">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.8"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

81

 <DataCell DataCellOID="D39" DataValue="217">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.9"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D40" DataValue="657">

 <CategoryLeafNode CategoryLeafNodeOID="C1.3.9"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D41" DataValue="213">

 <CategoryLeafNode CategoryLeafNodeOID="C1.4.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D42" DataValue="1436">

 <CategoryLeafNode CategoryLeafNodeOID="C1.4.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D43" DataValue="577">

 <CategoryLeafNode CategoryLeafNodeOID="C1.4.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D44" DataValue="1168">

 <CategoryLeafNode CategoryLeafNodeOID="C1.4.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D45" DataValue="671">

 <CategoryLeafNode CategoryLeafNodeOID="C1.5.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D46" DataValue="1761">

 <CategoryLeafNode CategoryLeafNodeOID="C1.5.1"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D47" DataValue="668">

 <CategoryLeafNode CategoryLeafNodeOID="C1.5.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.1"></CategoryLeafNode>

 </DataCell>

 <DataCell DataCellOID="D48" DataValue="775">

 <CategoryLeafNode CategoryLeafNodeOID="C1.5.2"></CategoryLeafNode>

 <CategoryLeafNode CategoryLeafNodeOID="C2.2"></CategoryLeafNode>

 </DataCell>

 </DataCells>

 </InterpretedTable>

82

E. Log

An example log for T09 is presented below.

Table 30: Example Log

Event Time Time Elapsed

 hr min sec hr min sec

Start Time 17 35 1.515 0 0 0

Acquire ASCII 17 35 1.562 0 0 0.047

Display Original HTML file 17 35 1.625 0 0 0.063

GUI Generated 17 35 2.25 0 0 0.625

Province (click) 17 35 5.484 0 0 3.234

Atlin Lake (click) 17 35 6.703 0 0 1.219

Range/Region (click) 17 35 6.891 0 0 0.188

Range/Region (unclick) 17 35 7.231 0 0 0.34

Elevation (m) (click) 17 35 7.875 0 0 0.644

Area (km) (click) 17 35 8.469 0 0 0.594

All Categories Clicked 17 35 10.547 0 0 2.078

Category Displayed 17 35 11.328 0 0 0.781

Delete Row 17 35 17.265 0 0 5.937

Delete Row 17 35 20.562 0 0 3.297

Rename Cell 17 35 22.797 0 0 2.235

Notation is Correct 17 35 31.344 0 0 8.547

Category Notation Determined 17 35 31.437 0 0 0.093

Category Displayed 17 35 31.844 0 0 0.407

Rename Cell 17 35 35.109 0 0 3.265

Delete Column 17 35 44.656 0 0 9.547

Add Virtual Header 17 35 46.453 0 0 1.797

Notation is Correct 17 35 54.937 0 0 8.484

Category Notation Determined 17 35 54.969 0 0 0.032

CATEGORY NOTATION 17 35 54.969 0 0 0

DELTA NOTATION 17 35 55.172 0 0 0.203

User Entered Table Info 17 35 55.187 0 0 0.015

XML REPRESENTATION 17 35 55.719 0 0 0.532

83

F. Training PowerPoint

84

85

86

87

88

89

90

91

92

93

G. Quantitative Results

Table 31: Distribution of Processing Time for T01, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.00 00.00

Time for Pre-Processing 000.61 00.97

Time to Construct Categories 036.54 14.66

Time for Category Correction 035.68 16.91

Time for Final Processing 000.36 00.12

Total Time 073.20 27.94

Percent Table is Completed 100.00 00.00

% Subject Time 000.98 00.02

Table 32: Distribution of Processing Time for T02, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.00 00.00

Time for Pre-Processing 000.52 00.17

Time to Construct Categories 028.70 13.61

Time for Category Correction 040.98 15.72

Time for Final Processing 000.59 00.11

Total Time 070.80 22.09

Percent Table is Completed 100.00 00.00

% Subject Time 000.98 00.01

Table 33: Distribution of Processing Time for T03, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.00 00.00

Time for Pre-Processing 000.54 00.14

Time to Construct Categories 026.86 14.54

Time for Category Correction 034.09 13.37

Time for Final Processing 000.57 00.06

Total Time 062.06 24.81

Percent Table is Completed 100.00 00.00

% Subject Time 000.98 00.01

Table 34: Distribution of Processing Time for T04, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.00 00.00

Time for Pre-Processing 000.51 00.14

Time to Construct Categories 024.95 15.81

Time for Category Correction 117.64 57.01

Time for Final Processing 000.27 00.10

Total Time 143.38 64.44

Percent Table is Completed 0066.67 49.24

% Subject Time 000.99 00.01

94

Table 35: Distribution of Processing Time for T05, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 01.33 00.49

Time for Pre-Processing 00.56 00.12

Time to Construct Categories 26.72 10.27

Time for Category Correction 39.17 28.44

Time for Final Processing 00.34 00.07

Total Time 66.79 36.14

Percent Table is Completed 95.83 14.43

% Subject Time 00.98 00.01

Table 36: Distribution of Processing Time for T06, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.00 00.00

Time for Pre-Processing 000.40 00.11

Time to Construct Categories 013.95 05.82

Time for Category Correction 027.05 16.15

Time for Final Processing 000.33 00.06

Total Time 041.73 20.53

Percent Table is Completed 100.00 00.00

% Subject Time 000.98 00.01

Table 37: Distribution of Processing Time for T07, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 01.00 00.00

Time for Pre-Processing 00.41 00.10

Time to Construct Categories 17.37 10.98

Time for Category Correction 30.45 21.09

Time for Final Processing 00.32 00.12

Total Time 48.56 29.91

Percent Table is Completed 91.67 28.87

% Subject Time 00.98 00.01

Table 38: Distribution of Processing Time for T08, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.00 0.00

Time for Pre-Processing 000.47 0.10

Time to Construct Categories 017.78 4.85

Time for Category Correction 023.99 8.74

Time for Final Processing 000.53 0.08

Total Time 042.76 9.04

Percent Table is Completed 100.00 0.00

% Subject Time 000.98 0.01

95

Table 39: Distribution of Processing Time for T10, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.50 000.52

Time for Pre-Processing 000.50 000.13

Time to Construct Categories 053.35 021.44

Time for Category Correction 130.82 241.12

Time for Final Processing 000.45 000.10

Total Time 185.11 240.50

Percent Table is Completed 083.33 032.57

% Subject Time 000.99 000.01

Table 40: Distribution of Processing Time for T11, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.83 00.58

Time for Pre-Processing 000.55 00.15

Time to Construct Categories 055.12 19.53

Time for Category Correction 055.60 23.45

Time for Final Processing 001.04 00.35

Total Time 112.27 40.83

Percent Table is Completed 090.28 22.98

% Subject Time 000.98 00.01

Table 41: Distribution of Processing Time for T12, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 01.36 00.50

Time for Pre-Processing 00.63 00.24

Time to Construct Categories 48.99 28.94

Time for Category Correction 45.79 14.47

Time for Final Processing 00.74 00.21

Total Time 96.16 33.57

Percent Table is Completed 90.91 30.15

% Subject Time 00.98 00.01

Table 42: Distribution of Processing Time for T13, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.17 00.39

Time for Pre-Processing 000.53 00.15

Time to Construct Categories 031.28 16.13

Time for Category Correction 046.23 19.75

Time for Final Processing 000.72 00.14

Total Time 078.75 34.10

Percent Table is Completed 100.00 00.00

% Subject Time 000.98 00.01

96

Table 43: Distribution of Processing Time for T14, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 01.25 00.45

Time for Pre-Processing 00.50 00.14

Time to Construct Categories 28.57 13.43

Time for Category Correction 57.80 54.98

Time for Final Processing 00.47 00.26

Total Time 87.34 59.85

Percent Table is Completed 91.67 28.87

% Subject Time 00.98 00.03

Table 44: Distribution of Processing Time for T15, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 01.33 00.49

Time for Pre-Processing 00.43 00.16

Time to Construct Categories 18.79 07.83

Time for Category Correction 34.38 15.71

Time for Final Processing 00.19 00.04

Total Time 53.79 22.48

Percent Table is Completed 95.83 14.43

% Subject Time 00.98 00.01

Table 45: Distribution of Processing Time for T16, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.50 00.52

Time for Pre-Processing 000.29 00.10

Time to Construct Categories 018.59 10.85

Time for Category Correction 029.91 11.11

Time for Final Processing 000.21 00.04

Total Time 048.99 17.82

Percent Table is Completed 100.00 00.00

% Subject Time 000.99 00.01

Table 46: Distribution of Processing Time for T17, Average Over All Subjects

AVERAGE STD. DEVIATION

of attempts 001.42 00.51

Time for Pre-Processing 001.35 00.20

Time to Construct Categories 075.42 17.47

Time for Category Correction 134.74 81.22

Time for Final Processing 002.97 01.93

Total Time 214.46 92.22

Percent Table is Completed 087.50 31.08

% Subject Time 000.98 00.01

