
Enriching OWL with Instance Recognition
Semantics for Automated Semantic Annotation

Yihong Ding1, David W. Embley1, and Stephen W. Liddle2

1 Department of Computer Science
2 Information Systems Department

Brigham Young Univeristy, Provo, Utah 84602, U.S.A.

Abstract. Although OWL provides a solid basis for many semantic-web
applications, it lacks sufficient declarative semantics for instance recog-
nition. This omission prevents OWL from being a satisfactory ontology
language for automated semantic annotation. We can resolve this prob-
lem by adding to OWL declarations, instance recognition semantics that
include external representations and context recognition information for
atomic, lexical ontology concepts. Our implementation shows that the
new automated annotation prototype system using OWL ontologies with
rich instance-recognition semantics not only has high precision and re-
call, but also overcomes the post-processing problem of linking extracted
data to semantic-web ontologies. Our study also shows that the use of
instance recognition semantics in ontologies can lead to enhanced knowl-
edge sharing and reuse through the Semantic Web.

1 Introduction

Semantic annotation research is fundamental for the Semantic Web. A semantic
annotation process adds formal metadata to web pages. This metadata links
data in a web page to defined concepts in an ontology. Because machine agents
are capable of interpreting data with respect to an ontology, annotated content
becomes machine-processable.

Automated semantic annotation is the primary means of adding machine-
processable metadata to existing web pages. Several researchers have suggested
various ways to automate semantic annotation (e.g., [1, 3, 8, 9, 12]). Each of these
approaches has adapted a data-extraction engine to wrap and annotate existing
web pages. None of the adapted data-extraction engines, however, was originally
designed to produce annotations linking extracted data to an ontology [9, 10]. To
provide machine-processable semantics for annotated content, these approaches
therefore need to do post-processing to map extracted data to an ontology. Some
researchers identify this problem as the “main drawback” of current approaches
to automating annotation and suggest the direct use of ontologies in the extrac-
tion process to help with semantic annotation [9].

Our ontology-based semantic annotation research shows that this suggested
approach does indeed work [4]. There is, however, a hidden problem to ad-
dress: any system that does not conform to Semantic Web standards will not

2 Yihong Ding et al.

be interoperable and thus will not be generally accepted. The current standard
(W3C-recommended) Semantic Web ontology language is OWL (Web Ontol-
ogy Language) [13]. But OWL lacks sufficient declarative semantics for instance
recognition, which are needed to extract data directly with respect to ontolo-
gies. Our ontology language [4] supports rich declarative instance-recognition
semantics, but it is not a standard.

To resolve this issue, we propose an extension of OWL that contains enriched
declarative instance-recognition semantics. Because this extension is specifically
designed for automated annotation, we call it OWL-AA (OWL for Automated
Annotation). Rather than just propose our OWL-AA syntax, the goal of this
paper is to illustrate the essence of a sound solution to the problem.

The primary contribution of this work is that we have proposed OWL-AA as
a way to extend OWL to provide for automated semantic annotation. With the
use of OWL-AA, we present a new semantic annotation model that (1) embeds
instance-recognition semantics declarations in ontologies and data-extraction
tools and (2) provides enhanced knowledge sharing and reuse through the Se-
mantic Web. Furthermore, as a significant consequence, OWL-AA separates the
creation of domain knowledge from the implementation of a processor to use
domain knowledge for the purpose of annotating web pages. With OWL-AA,
domain experts need not know how to implement extraction and annotation
programs, and system developers need not be domain experts.

To explain these contributions, Section 2 presents the details of our pro-
posed instance-recognition semantics, and Section 3 explains their role within
the automated semantic-annotation paradigm. Section 4 introduces OWL-AA—
the motivation for our choices and its definition and usage. We discuss related
work in Section 5 and make concluding remarks in Section 6.

2 Instance Recognition Semantics

Instance-recognition semantics, which we present as instance semantics recog-
nizers (ISR),3 are formal specifications that identify instances of a concept in
ordinary text. The text may be unstructured, semi-structured, or fully struc-
tured. For Semantic Web applications, the concept should be a lexical element
of a formal ontology (e.g. concepts such as date, time, place, location, name,
telephone number, email address, various weights and measures, etc.). Thus,
an ISR of an ontology concept (e.g. Telephone Number) interprets an instance
in a text fragment (e.g. the contact number in “Call me at 222-1234.”) to have
the intensional meaning of the defined concept (e.g. Telephone Number).

We have used information-extraction (IE) ontologies that include ISRs to do
data extraction [6] and semantic annotation [4]. In our IE ontologies, we use a
data frame construct [5] that describes information about a concept—its exter-
nal and internal representations, its contextual keywords or phrases that may

3 We avoid the acronym IRS to avoid association with the U.S. Internal Revenue
Service.

OWL for Automated Annotation 3

indicate the presence of an instance of the concept, operations that convert be-
tween internal and external representations, and other manipulation operations
that can apply to instances of the concept along with contextual keywords or
phrases that indicate the applicability of an operation. Thus, a data frame con-
tains ISR declarations together with other elements that are not the focus of
this paper.

BedroomNr
external representation: [1-9]|10
left context phrase: \b
right context phrase: .*r(oo)?ms?
exception phrase: \s.*ba(th)?s?\b.*r(oo)?ms?
context keywords: b(r|d)s?|bdrms?|bed(rooms?)?
...

end

Feature
external representation: ApartmentFeature.lexicon
...

end

Fig. 1. ISR Declarations for BedroomNr and Feature.

Figure 1 shows partial ISR declarations for two concepts: BedroomNr and
Feature. We use Perl-style regular expressions to declare recognition patterns.
Essentially, the ISR declaration of a concept contains two categories of informa-
tion: self-recognition patterns and context patterns. The external representation
clause defines self-recognition patterns, which are the typical signatures for any
instantiations of a concept. In our example, a valid instantiation of BedroomNr
must match the regular pattern that describes strings of digits from 1 to 10, and
any valid instantiation of Feature must match one of the strings declared inside
the lexicon file ApartmentFeature.lexicon.

Self-recognition patterns by themselves, however, are not enough to precisely
recognize a valid instantiation. For example, an integer up to 10 can also be
the number of bathrooms or the number of people who can share an apartment.
To help resolve potential ambiguities, we use context information. There are
two types of context declarations: context phrases and context keywords. A
context phrase describes contextual information that is directly adjacent (either
on the left or the right) to the self-recognition patterns. For example, a valid
BedroomNr must have a word boundary for its direct left context, and its right
context must contain the regular phrase “r(oo)?ms?” with possibly several other
words in between. This pattern thus recognizes text content such as “3rms” or
“1 large room”. A context keyword is a word that typically appears close to a
self-recognition pattern. In our example, the presence of keywords such as “bds”,
“bdrms”, or “bedrooms” provides a strong hint that we should interpret a small
number close to these keywords as a bedroom count.

4 Yihong Ding et al.

Another part of an ISR declaration is the exception clause, which declares an
exception from a previously declared pattern. An exception clause negates some
external-representation or required-context clause by omitting candidates that
match the exception pattern. In our example, the BedroomNr ISR declaration
will recognize the number “1” in both “1 large room” and “1 bath room”. But
the exception phrase specifies that we should ignore bathrooms when attempting
to recognize a bedroom count.

Although we only present one external representation and one set of context
declarations for BedroomNr in our example, in general there could be many. Each
concept can have zero or more self-recognition patterns and each self-recognition
pattern can have zero or more context restrictions and exceptions.

3 Automated Semantic Annotation

We now show how we use declarative ISRs for automated semantic annotation.
Our experiments have shown that by using ISR declarations, we can success-
fully annotate many web pages automatically. The following text is a real-world
example taken from Sale Lake City Weekly.4

CAPTIAL HILL Luxury 2 bdrm 2 bath, 2 grg, w/d, views, 1700 sq ft. $1250
mo. Call 533-0293

We illustrate the annotated results in Figure 2. Based on the ISR declarations in
Figure 1, the annotation system can automatically recognize the first “2” to be
a bedroom number, while the second and third “2” are not since neither of them
satisfies the right-context requirement. Similarly, the system can automatically
recognize the second “2” to be a bathroom number. The third “2” should be part
of “2 grg”—a two-car garage. If we have an ISR regular-expression declaration
for it in our ApartmentFeature.lexicon, it will be recognized along with “w/d”—
washer and dryer—as an apartment feature. Based on the same ISR processing,
we can annotate the remaining instances of the aptrent ontology—“1250” as a
monthly rate, “533-0293” as a contact phone number.

Figure 3 shows a screen shot of annotated results from our ISR-based, auto-
mated semantic annotation demo.5 After annotating the page using ISR decla-
rations, our demo lets a user move the mouse over annotated text, such as the
“2” in the text, and see its detailed annotation information—its ontology name,
concept name, record number, and multiple-value index. As Figure 3 shows, the
highlighted number “2” is about a bedroom number that has been defined in the
aptrent ontology. The system also automatically produces a table that contains
all the annotated data with respect to every record entry in a web page. For
some concepts (such as Feature) that may contain multiple values in one record,
there is a clickable button. By clicking the button we can retrieve a sub-table
that contains detailed information. In our example, when we click the “Show”
button under Feature, “2 grg” and “w/d” appear as Figure 3 shows.
4 http://www.slweekly.com/
5 http://www.deg.byu.edu/

OWL for Automated Annotation 5

BedroomNr

External
representation

Context
Phrase

BathNr

External
representation

Context
Phrase

Feature

External
representation

MonthRate

External
representation

Context
Phrase

ContactPhone

External
representation

CAPTIAL HILL Luxury 2 bdrm 2 bath, 2 grg, w/d,views,

1700 sq ft. $1250 mo. Call 533-0293

Context
Keyword

Fig. 2. Example of Apartment-Rental Annotation Results.

A significant feature of ISR-based annotation is the exclusion of document
layout information from ISR declarations. Many current wrappers use web-page
layout information, which allows the wrapper to do fast and accurate data recog-
nition (when a target layout matches the defined layout) [10]. However, the
primary purpose of layout is for displaying, not for describing data. More impor-
tantly, relying on layouts prevents an annotation system from working continu-
ally on a web page when its layout changes. A reality of the current web is that
page layouts do change periodically, and rewriting or regenerating wrappers to
accommodate these changes is costly. Hence, layout-independence, which is also
called resiliency [10], is a preferred property of automated semantic annotation
approaches. With the property of resiliency, an annotation system can automat-
ically be applied to new web pages, independent of their specific layouts. Our
premise is that the layout of information is not as important as its content. Our
ontology-based, data-extraction engine is resilient, and it generally works well [6,
10].

4 OWL-AA: OWL for Automated Annotation

The importance of ISR declarations to semantic annotation, as well as to the
Semantic Web in general, is still not widely recognized. Semantic Web researchers
besides us (e.g, [2] and [11]) have also observed that the current Semantic Web
ontology-language standard, OWL, is not sufficient to resolve all issues for the

6 Yihong Ding et al.

Fig. 3. Screen-shot of ISR-based Annotation Demo.

Semantic Web. We need various extensions of OWL for particular application
scenarios. To leverage automated semantic annotation, we thus propose OWL-
AA based on our experience with ISR declarations.

4.1 OWL-AA Description

Figure 4 shows the complete RDF schema of OWL-AA. The RDFS class ISR
provides an abstraction mechanism for grouping different types of instance recog-
nition semantics. Like RDF or OWL class declarations, every ISR declaration is
associated with a set of individuals, each of which can have an ISRvalue that
explicitly provides its content. Each ISRvalue has an XML string data type. An
ISR individual has no conceptual meaning beyond the represented pattern itself.
An individual obtains its conceptual meaning only after it is explicitly bound
to an ontology concept. For example, the regular-expression pattern “[1-9]|10”
does not have any conceptual meaning beyond the pattern itself. Only after it is
bound to a concept such as BedroomNr, does it become conceptually meaningful.
Two ISR individuals may have the same ISR value, but still mean something
different by being assigned to different concepts.

There are three subclasses of ISR: ExternalRepresentation, ContextualRep-
resentation, and Exception. ExternalRepresentation declarations formalize the
body of an ISR individual. ContextualRepresentation declarations formalize the
contextual constraints to the body of an ISR individual. Exception declarations
formalize exceptions to ISR declarations.

An ExternalRepresentation could be either a RegularExpression declaration
or a LexiconList declaration. The reason for two forms is simple convenience.
Sometimes it is easier to enumerate matching strings (e.g. country names), and

OWL for Automated Annotation 7

ISR

ExternalRepresentation
ContextualRepresentation

subClassOf subClassOf

hasExceptionPdomain

&xsd;string
range

RegularExpression

ContextPhrase

LexiconList

subClassOf

subClassOf ContextKeyword

subClassOf
subClassOf

LeftContextPhrase
RightContextPhrase

subClassOf

subClassOf

Exception

ISRvalueP

subClassOf

domain

range

extractionPatternP

domain

owl:Class

range

extractionLeftContextP extractionKeywordPextractionRightContextP

range
range

range

domain

domain domain

Fig. 4. RDFS Graph of OWL-AA.

other times it is easier to write a descriptive formula (e.g. the integers between
1 and 10,000,000).

ContextualRepresentation also has two subclasses, ContextPhrase and Con-
textKeyword that declare context phrases and context keywords respectively. As
a further subdivision, a ContextPhrase could be either a LeftContextPhrase or
a RightContextPhrase.

Five properties apply when declaring an ISR. An extractionPattern binds
an ExternalRepresentation to an owl:Class. An extractionLeftContext, an ex-
tractionRightContext, and an extractionKeyword respectively bind a LeftCon-
textPhrase, a RightContextPhrase, and a ContextKeyword to an ExternalRepre-
sentation. The hasException property binds an Exception to an ISR.

We now show how to declare our example in Figure 1 using OWL-AA. We
start with a standard OWL ontology that describes the apartment rental domain.
We then attach OWL-AA statements to respective concepts, such as BedroomNr.

At the beginning of the apartment rental OWL ontology, we first add a new
owlaa namespace.

xmlns:owlaa=“http://www.deg.byu.edu/OWL-AA#”

Within the OWL Class BedroomNr, we next add a new property owlaa:extraction-
Pattern that associates an ISR declaration to BedroomNr.

<owl:onProperty rdf:resource=“owlaa:extractionPattern” />
<owl:hasValue rdf:resource=“BedroomNr-1” />

Then we can declare the ISR value and contextual restriction associated to this
external representation as follows.

<owlaa:RegularExpression rdf:ID=“BedroomNr-1”/>

8 Yihong Ding et al.

<owlaa:ISRvalue rdf:datatype=“&xsd;#string”>[1-9]|10</owlaa:ISRvalue>
<owlaa:extractionLeftContext rdf:resource=“#leftContext-1”/>
<owlaa:extractionRightContext rdf:resource=“#rightContext-1”/>
<owlaa:extractionKeyword rdf:resource=“#contextKeyword-1”/>

</owlaa:RegularExpression>

Finally, we add context phrases, context keywords, and exceptions as follows.
<owlaa:LeftContextPhrase rdf:ID=“leftContext-1”/>

<owlaa:ISRvalue rdf:datatype=“&xsd;#string”>\b</owlaa:ISRvalue>
</owlaa:LeftContextPhrase>
<owlaa:RightContextPhrase rdf:ID=“rightContext-1”/>

<owlaa:ISRvalue rdf:datatype=“&xsd;#string”>
.*r(oo)?ms?</owlaa:ISRvalue>

<owlaa:hasException rdf:resource=“#exception-1”/>
</owlaa:RightContextPhrase>
<owlaa:ContextKeyword rdf:ID=“contextKeyword-1”/>

<owlaa:ISRvalue rdf:datatype=“&xsd;#string”>
b(r|d)s?|bdrms?|bed(rooms?)?</owlaa:ISRvalue>

</owlaa:ContextKeyword>
<owlaa:Exception rdf:ID=“exception-1”/>

<owlaa:ISRvalue rdf:datatype=“&xsd;#string”>
\s.*ba(th)?s?\b.*r(oo)?ms?</owlaa:ISRvalue>

</owlaa:Exception>

4.2 Discussion

Syntactically, OWL-AA is attachment-independent with respect to OWL. We
add OWL-AA statements without modifying a single line of an existing OWL
ontology. We can obtain the original OWL ontology by removing these attached
OWL-AA statements.

Semantically, OWL-AA is also attachment-independent with respect to OWL.
The addition of ISR declarations to ontology concepts only enriches their details
without changing the meaning at the conceptual level. An OWL ontology en-
riched by OWL-AA can, for example, be used for reasoning as usual. A regular
reasoning engine can simply skip attached OWL-AA statements since they are
syntactically attachment-independent.

In order to process OWL-AA for automated annotation, we have imple-
mented a syntax convertor that can convert an OWL-AA ontology to our IE
ontology. We can then apply our ontology-based annotation tool using the con-
verted ontology. In our implementation, we have used Jena, a standard Semantic
Web framework, to help with this ontology conversion. Since we have captured
all of an IE-ontology ISR declaration in OWL-AA, OWL-AA ontologies can work
as well as the original data-extraction ontologies for automated annotation tasks.

5 Related Work

The idea of ISR declarations is not new. Many researchers have coded ISR
declarations into their procedures, such as wrappers. IBM’s UIMA (Unstruc-

OWL for Automated Annotation 9

tured Information Management Architecture)6 is a typical approach that has
addressed the issues of sharing and reusing ISRs in procedures. The text analy-
sis engines (TAEs) in the UIMA project are typical examples of small reusable
ISR processors. Each TAE does a particular data analysis on source documents,
for example, pulling out chemical names and their interactions [7].

Although OWL is the current W3C-recommended web-ontology language,
researchers have pointed out that OWL is not sufficient for all Semantic Web
work. There have been several proposed extensions of OWL. Among them, two
extensions are closer to our work than others: C-OWL and OWL-Eu. Context
OWL (C-OWL) [2] provides an extension for ontology mapping that localizes on-
tology content to allow for limited and totally controlled forms of global visibility.
Similar to ours, C-OWL declarations can be expressed independent of ordinary
OWL ontologies. OWL-Eu [11] enriches OWL with customized datatypes. The
authors point out that “many potential users will not adopt OWL unless [the
data-type-support problem] is overcome.” In our experience, support for cus-
tomized datatypes could also improve the performance of data extraction. Un-
like our extension, OWL-Eu modifies existing OWL constructs to support cus-
tomized data types. OWL-AA, on the other hand, is an attachment-independent
extension. As a result, OWL-AA appears to be fully compatible with OWL-Eu
too, so we could use them together if desired. With enriched customized data
types, we expect that we could declare richer ISR representations by attaching
our OWL-AA extension to OWL-Eu ontologies.

6 Concluding Remarks

Automated semantic annotation is an important and fundamental problem for
the Semantic Web. The key to automated annotation is the ISR declaration.
Our OWL-AA extension augments OWL to formalize ISR declarations. OWL-
AA is fully compatible with ordinary OWL, and fully attachable and detachable
from standard OWL ontologies. OWL-AA does not introduce new complexity
and decidability issues into OWL. Our prototype implementation demonstrates
that the OWL-AA extensions work well for our automated semantic annotation
system.

References

1. L. Arlotta, V. Crescenzi, G. Mecca, and P. Merialdo, “Automatic annotation of
data extracted from large web sites,” Proc. Sixth International Workshop on the
Web and Databases (WebDB 2003), pp. 7-12, San Diego, California, June 2003.

2. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt,
“Contextualizing ontologies,” Journal of Web Semantics, vol. 1, no. 4, pp. 325–343,
October 2004.

6 http://www.research.ibm.com/UIMA/

10 Yihong Ding et al.

3. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S.
McCurley, S. Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zien, “A case for
automated large scale semantic annotations,” Journal of Web Semantics, vol. 1,
no. 1, pp. 115–132, December 2003.

4. Y. Ding, D.W. Embley, and S.W. Liddle, “Automatic creation and simplified query-
ing of Semantic Web content: An approach based on information-extraction on-
tologies,” Proc. First Asian Semantic Web Conference (ASWC 2006), pp. 400-414,
Beijing, China, September 2006.

5. D.W. Embley, “Programming with data frames for everyday data items,” Proc.
1980 National Computer Conference, pp. 301-305, Anaheim, California, May 1980.

6. D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith, “Conceptual-model-based data extraction from multiple-record
web pages,” Data & Knowledge Engineering, vol. 31, no. 3, pp. 227-251, November
1999.

7. D. Ferrucci and A. Lally, “Building an example application with the Unstructured
Information Management Architecture,” IBM Systems Journal, vol. 43, No. 3, pp.
455–475, March 2004.

8. S. Handschuh, S. Staab, and F. Ciravegna, “S-CREAM Semi-automatic CREAtion
of Metadata,” Proc. European Conference on Knowledge Acquisition and Manage-
ment (EKAW-2002), pp. 358–372, Madrid, Spain, October, 2002.

9. A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff, “Semantic an-
notation, indexing, and retrieval,” Journal of Web Semantics, vol. 2, no. 1, pp.
49–79, December 2004.

10. A.H.F. Laender, B.A. Ribeiro-Neto, A.S. da Silva, and J.S. Teixeira, “A brief
survey of web data extraction tools,” SIGMOD Record, vol. 31, no. 2, pp. 84-93,
June 2002.

11. J.Z. Pan and I. Horrocks, “OWL-Eu: Adding customised datatypes into OWL,”
Journal of Web Semantics, vol. 4, no. 1, pp. 29–39, January 2006.

12. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna,
“MnM: Ontology driven tool for semantic markup,” Proc. Workshop Semantic
Authoring, Annotation & Knowledge Markup (SAAKM 2002), pp. 43–47, Lyon,
France, July 2002.

13. W3C (World Wide Web Consortium) OWL web ontology language reference, URL:
http://www.w3.org/TR/owl-ref/.

