
Augmenting Traditional Conceptual Models

to Accommodate XML Structural Constructs

Reema Al-Kamha, David W. Embley, and Stephen W. Liddle

Brigham Young University, Provo, Utah 84602, U.S.A.
{reema, embley}@cs.byu.edu, {liddle}@byu.edu

Abstract. Although it is possible to present XML Schema graphically,
such representations do not raise the level of abstraction for XML schemata
in the same way traditional conceptual models raise the level of abstrac-
tion for data schemata. Traditional conceptual models, on the other hand,
do not accommodate several XML Schema structures. Thus, there is a
need to enrich traditional conceptual models with new XML Schema
features. After establishing criteria for XML conceptual modeling, we
propose an enrichment to represent the XML features missing in tradi-
tional models. We argue that our solution can be adapted generally for
traditional conceptual models and show how it can be adapted for two
popular conceptual models.

1 Introduction

Recently, many organizations have begun to store their data using XML, and
XML Schema has become the preeminent mechanism for describing valid XML
document structures. Moreover, the number of applications that use XML as
their native data model have increased. This increases the need for well-designed
XML data models and the need for a conceptual model for designing XML
schemas.

Several commercial tools provide support for graphically representing XML
Schema structures. Visual Studio .NET [10] from Microsoft, Stylus Studio [15]
from DataDirect Technologies, and XML Spy [14] from Altova all have their own
proprietary methods for graphically representing XML structures. Each of them
includes a graphical XML Schema editor that uses connected rectangular blocks
to present the schema. Although these products provide visual XML Schema
editing tools, they do not raise the level of abstraction because they only provide
a direct view of an XML Schema document. Thus, these graphical representations
do not serve the objective of conceptualizing XML Schema to be used in modeling
and design.

In systems modeling and design, traditional conceptual models have proven
to be quite successful for graphically representing data at a higher level of ab-
straction. Conceptual models represent components and their relationships to
other components in the system under study in a graphical way, at a conceptual
level of understanding. Popular conceptual models that achieve these objectives
are ER [3], extended ER models [16], and UML [2, 17].

2 Reema Al-Kamha et al.

XML Schema, however, introduces a few features that are not explicitly sup-
ported in these and similar conceptual models. The most important of these
features include the ability to (1) order lists of concepts, (2) choose alternative
concepts from among several, (3) declare nested hierarchies of information, (4)
specify mixed content, and (5) use content from another data model.

The chapter makes the following contributions. First, it proposes conceptual
representation for XML content structures that are not explicitly present in tra-
ditional conceptual models. Second, based on the underlying idea of the proposed
representation, it suggests ways to represent missing XML content structures in
two of the most popular conceptual models, ER and UML.

We present the details of our contributions as follows. Section 2 lists crite-
ria an XML conceptual model should satisfy. Section 3 describes the structural
constructs in XML Schema that are missing in traditional conceptual models.
Section 4 explains how we model these features of XML Schema in a modeling
language we call Conceptual XML (C-XML). Section 5 compares our proposal
with other proposals for ways to extend some traditional conceptual models to
represent some XML features and shows how to adapt C-XML representations
for traditional conceptual models. Section 6 summarizes and draws conclusions.

2 XML Modeling Criteria

Lists of requirements for XML conceptual models have been presented in [18],
[13], and [9]. Some of these requirements cover general goals of conceptual model-
ing, while others are specific to XML. General requirements include the following:

– Graphical notation. The notation should be graphical and should be user-
friendly [9, 13, 18].

– Formal foundation. The conceptual model should have a formal foundation
[9, 13, 18].

– Structure independence. The notation should ensure that the basics of the
conceptual model are not influenced by the underlying structure, but reflect
only the conceptual components of the data [9, 13, 18].

– Reflection of the mental model. The conceptual model must be consistent
with a designer’s mental conceptualization of objects and their interrelation-
ships [13]. For example, there should be no distinction between element and
attribute on the conceptual level, and hierarchies should not be required.

– N-ary relationship sets. The conceptual model should be able to represent
n-ary relationship sets at the conceptual level [9].

– Views. It should be possible to transform the model to present multiple user
views [9].

– Logical level mapping. There should be algorithms for mapping the concep-
tual modeling constructs to XML Schema [9, 18].

– Constraints. The conceptual model should support common data constraints
such as cardinality and uniqueness constraints [13].

– Cardinality for all participants. The hierarchical structure of XML data re-
stricts the specification of cardinality constraints only to nested participants;

Lecture Notes in Computer Science 3

however, it should be possible to specify cardinality constraints for all par-
ticipants at the conceptual level [9].

– Ordering. The conceptual model should be able to order a list of concepts
[9, 13].

– Irregular and heterogeneous structure. The conceptual model should intro-
duce constructs for modeling irregular and heterogeneous structure [9].

– Document-centric data. The conceptual model should be able to represent
the mixed content and open content that XML Schema provides [9, 13, 18].

3 Missing Modeling Constructs

In this section we give an overview of the structural constructs in XML Schema
that are missing in traditional conceptual models. We explain each and give a
motivating example, which we also use in later sections to illustrate conceptual
model augmentations.

The sequence structure specifies that the child concepts declared inside it
must appear in an XML document in the order declared. Each ordered child con-
cept can occur zero or more times within the sequence constrained by minOccurs
and maxOccurs attributes. Likewise, the entire sequence itself can occur zero or
more times. The default value for both minOccurs and maxOccurs is always
1. The sequence construct may include several types of child constructs: ele-
ment, group, choice, sequence, and any. Lines 15–23 in Figure 1 specify that in
a complying XML document an element School contains a sequence of required
SchoolName, SchoolAddress, and SchoolID elements, and an optional SchoolMas-
cot element.

The choice structure specifies that for each choice only one of the child con-
cepts declared within it can appear in an XML document. Each child concept in
the choice can occur zero or more times within the choice constrained by minOc-
curs and maxOccurs attributes. Likewise, the entire choice itself can occur zero
or more times. The default value for minOccurs and maxOccurs for both the
entire choice and the component children is 1. The choice construct may include
several types of child constructs: element, group, choice, sequence, and any. In
Figure 1, lines 47–55 specify that in a complying XML document an element
ContactInfo contains one or two choices, and each choice contains either one
PhoneNumber, one Email, or one Fax.

By default, structural constructs in XML Schema can contain child elements,
but not text. To allow mixed content (child elements and text), XML Schema
provides a mixed attribute that can be set to true. In Figure 1, lines 43–58 show
an example of mixed content for a complex type. Setting mixed to true enables
character data to appear between the child elements of RecommendationLetter
in a complying XML document. Thus, the content of RecommendationLetter
may, for example, be “<RecommendationLetter> <ProfessorName> Dr. Jones
</ProfessorName> recommends this student. Email <ContactInfo><Email>jones@
univ.edu </Email> </ContactInfo> with questions. </RecommendationLetter>”.

The any and anyAttribute structures of XML Schema let designers reuse
components from foreign schemata or namespaces. The any structure allows

4 Reema Al-Kamha et al.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
3 <xs:element name="StudentInfo">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:choice>
7 <xs:element name="Name" type="xs:string"/>
8 <xs:sequence>
9 <xs:element name="FirstName" type="xs:string"/>
10 <xs:element name="MiddleName" type="xs:string" minOccurs="0" maxOccurs="2"/>
11 <xs:element name="LastName" type="xs:string"/>
12 </xs:sequence>
13 </xs:choice>
14 <xs:sequence maxOccurs="5">
15 <xs:element name="School">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element name="SchoolName" type="xs:string"/>
19 <xs:element name="SchoolAddress" type="xs:string"/>
20 <xs:element name="SchoolID" type="xs:string"/>
21 <xs:element name="SchoolMascot" type="xs:string" minOccurs="0"/>
22 </xs:sequence>
23 </xs:complexType>
24 <xs:key name="schoolKey">
25 <xs:selector xpath=".//School"/>
26 <xs:field xpath="SchoolName"/>
27 <xs:field xpath="SchoolAddress"/>
28 </xs:key>
29 <xs:key name="schoolIDKey">
30 <xs:selector xpath=".//School"/>
31 <xs:field xpath="SchoolID"/>
32 </xs:key>
33 </xs:element>
34 <xs:element name="GraduationDate" minOccurs="0">
35 <xs:complexType>
36 <xs:sequence>
37 <xs:element name="Month" type="xs:string"/>
38 <xs:element name="Year" type="xs:string"/>
39 </xs:sequence>
40 </xs:complexType>
41 </xs:element>
42 </xs:sequence>
43 <xs:element name="RecommendationLetter" minOccurs="0" maxOccurs="3">
44 <xs:complexType mixed="true">
45 <xs:all>
46 <xs:element name="ProfessorName" type="xs:string"/>
47 <xs:element name="ContactInfo">
48 <xs:complexType>
49 <xs:choice maxOccurs="2">
50 <xs:element name="PhoneNumber" type="xs:string"/>
51 <xs:element name="Email" type="xs:string"/>
52 <xs:element name="Fax" type="xs:string"/>
53 </xs:choice>
54 </xs:complexType>
55 </xs:element>
56 </xs:all>
57 </xs:complexType>
58 </xs:element>
59 <xs:any namespace="##other" minOccurs="0"/>
60 </xs:sequence>
61 <xs:attribute name="StudentNumber" type="xs:ID" use="required"/>
62 <xs:anyAttribute namespace="##any"/>
63 </xs:complexType>
64 </xs:element>
65 </xs:schema>

Fig. 1. More Example of Choice/Sequence Structures in XML Schema.

Lecture Notes in Computer Science 5

the insertion of any element belonging to a list of namespaces, and it can have
minOccurs and maxOccurs attributes to define the number of occurrences of
the any construct. The anyAttribute structure allows the insertion of any at-
tribute belonging to a list of namespaces. Both any and anyAttribute can have
namespace and processContents as attributes. The attribute namespace specifies
the namespaces that an XML validator examines to determine the validity of an
element in an XML document. The attribute processContents specifies how the
XML processor should handle validation against the elements specified by the
any or anyAttribute. In Figure 1, the any element in line 59 specifies that zero or
more elements from any other namespace can appear after the Recommendation-
Letter element. Further, the anyAttribute specification in line 62 indicates that
the StudentInfo element can have additional attributes from any namespace.
When processContents is strict, the XML processor must obtain the schema for
the required namespaces and validate the elements. When processContents is set
to lax, the XML processor attempts the same processing as for strict, but ignores
errors if validation fails. When processContents is skip, the XML processor does
not attempt to validate any elements from the specified namespaces.

In XML Schema, it is possible to nest structural constructs, thus forming
a hierarchy of nested constructs. In Figure 1, for example, StudentInfo has the
attributes StudentNumber and anyAttribute, and it also contains the following
structures in order: first, either a Name or a sequence of one FirstName, zero
to two MiddleName’s, and one LastName; second, one to five sequences such
that each sequence includes one SchoolName, one SchoolAddress, and an op-
tional GraduationDate (the GraduationDate itself contains a Month followed by
a Year); third, an element RecommendationLetter that has two elements, Pro-
fessorName and ContactInfo (ContactInfo in turn contains one to two choices
such that in each choice either PhoneNumber or Email or Fax is specified); and
fourth, an optional any element.

4 C-XML

In this section we propose an enrichment to represent XML Schema content
structures that are usually missing in traditional conceptual models. Since hy-
pergraphs provide a general representation for conceptual models, we begin with
an augmented hypergraph whose vertices and edges are respectively object sets
and relationship sets, and whose augmentations consist of decorations that rep-
resent constraints. A hypergraph foundation is amenable to the requirements of
XML Schema, and thus this choice simplifies the correspondence between con-
ceptual models and XML Schema. We call our representation Conceptual XML
(C-XML).

We derive C-XML from OSM [5], a hypergraph-based conceptual model that
defines structure in terms of object sets (or concepts), relationship sets, and con-
straints over these object and relationship sets. Figure 2 shows a C-XML model
instance that corresponds to the XML schema of Figure 1. An object set with a
solid border indicates a nonlexical concept, a dashed border indicates a lexical

6 Reema Al-Kamha et al.

concept, and a double solid/dashed border indicates a mixed concept.1 A shaded
object set indicates a high-level object set that groups other object and relation-
ship sets into a single object set. Lines connecting object sets are relationship
sets. A participation constraint specifies how many times an object in a con-
nected relationship may participate in a relationship set. For the most common
participation constraints (0:1, 1:1, 0:*, and 1:*), C-XML uses graphical nota-
tion as a shorthand: (1) an “o” on a connecting relationship-set line designates
optional participation, while the absence of an “o”designates mandatory, and (2)
an arrowhead specifies a functional constraint, limiting participation of objects
on the tail side of the arrow to be at most one.

The sequence structure representation must be able to specify concepts in a
sequence in a particular order. Also, the representation must be able to specify
the minimum and maximum numbers of occurrence of the whole sequence and of
each child element within the sequence. For C-XML we let a bounded half circle
with a directional arrow represent a sequence. The sequenced child concepts
connect to the curved side, and the parent concept that contains the sequenced
child concepts connects to the flat side. We place participation constraints for
the entire sequence near the connection to the parent. We place participation
constraints for each child near the curved side of the sequence symbol. Note that
C-XML has participation constraints that represent the minimum and maximum
number of occurrences of the sequence in the relationship set between the parent
and the sequence. C-XML also allows participation constraints that represent the
minimum and maximum allowed occurrences of the sequence in the relationship
set between the sequence and each sequenced child concept.

The representation for choice is similar in appearance to the representation
for sequence, but instead of an arrow we use a vertical bar to indicate choice.

For any and anyAttribute we use a high-level object set to indicate that
it contains some content from another schema. XML Schema is not specific
enough to designate which concept, and thus we cannot specify which concept.
We therefore name these concepts “any”. Conceptually, in C-XML whether the
concept is an attribute or an element does not matter, and we do not distinguish
between these cases.

We now evaluate C-XML with respect to the criteria for XML conceptual
models in Section 2.

– Graphical notation. We have presented a sufficient graphical notation, but
this is just one possibility among many.

– Formal foundation. OSM has a solid formal foundation in terms of predicate
calculus (see Appendix A of [5]). In OSM, each object set maps to a one-place
predicate, and each n-ary relationship set (n ≥ 2) relationship set maps to

1 In an XML document, the content string for a mixed concept might be interspersed
among a number of child nodes. However, in C-XML the mixed concept does not
explicitly specify how text and child elements can be interleaved. If the pattern for
interspersing chunks of the string among child nodes matters, then the user must
model text nodes explicitly (in combination with a sequence structure) rather than
use the generic mixed construct.

Lecture Notes in Computer Science 7

Fig. 2. Sequence/Choice Structures for Figure 1.

an n-place predicate. Each constraint (e.g. a participation constraint) maps
to a closed predicate-calculus formula. In the appendix of this chapter we
provide formal representations for the added features for C-XML: sequence,
choice, mixed content, and general co-occurrence constraints.

– Structure independence. XML in general, and XML Schema in particular,
are strongly hierarchical in nature. C-XML is capable of representing the hi-
erarchical aspect of XML Schema, but C-XML is more general, flexible, and
conceptual. For example, C-XML allows multiple sequence and choice struc-
tures to be associated directly with a single concept (XML Schema allows
only one sequence or choice structure for the content of an element). Also,
C-XML supports the intermixing of ordinary relationship sets with sequence
and choice structures. From this conceptual structure, we can derive many
possible hierarchical representations. Similarly, C-XML defines generalized
versions of the concepts of sequence, choice, and mixed content. C-XML
provides a conceptual perspective that is structurally independent of XML
Schema.

– Reflection of the mental model. Given its structure independence and gener-
ality, C-XML is well suited to reflect the mental model (design) of a modeler.
C-XML can represent hierarchical and non-hierarchical structure. Concep-
tually, whether a concept is an attribute or an element does not matter, and
C-XML does not distinguish between them. C-XML is also able to represent
both sequences among related entities and non-sequences among related en-
tities. Choices among alternative related entities are also possible, and choice
is distinct from generalization/specialization so that neither is overloaded.
C-XML supports mixed content and open content. Finally, C-XML provides
for all XML cardinality constraints; indeed it provides for a very large spec-
trum of cardinality constraints [8] encompassing and going beyond those
provided by XML.

8 Reema Al-Kamha et al.

Fig. 3. Best Representation of Figure 1 using XER Notation.

– N-ary relationship sets. C-XML supports n-ary relationship sets, (n ≥ 2).
– Views. High-level object sets constitute a formal view mechanism, as do high-

level relationship sets [5]. As described above, C-XML also can represent both
hierarchical and non-hierarchical views.

– Logical level mapping. We have implemented automatic conversions from
XML Schema to C-XML and vice versa.

– Constraints. C-XML supports several kinds of constraints: set constraints,
referential-integrity constraints, cardinality constraints, and general constraints.

– Cardinality for all participants. C-XML goes further than XML Schema,
even allowing cardinality constraints for children of a sequence or choice.

– Ordering. C-XML explicitly supports ordering with its sequence construct.
– Irregular and heterogeneous structure. The features that give C-XML its

structure independence (described above) provide for the modeling of irreg-
ular and heterogeneous structure.

– Document-centric data. C-XML is able to represent both mixed content and
open content.

5 Augmenting ER and UML

A number of conceptual modeling languages for XML Schema have been de-
scribed in the literature. Sengupta and Mohan [11] and Necasky [9] present fairly
recent surveys. As we explain in this section, however, most of these efforts do
not support the full generality of XML Schema.

5.1 ER

Sengupta et al. [12] propose XER as an extension to the ER model for XML.
Figure 3 shows an example of XER; in fact, it shows the best that can be done
to represent the XML schema in Figure 1. As we will see, it does not capture all
the concepts and constraints in the XML schema in Figure 1.

XER represents an entity such as StudentInfo or GraduationDate using a
rectangle with a title area giving the name of the entity and the body giving the

Lecture Notes in Computer Science 9

Fig. 4. Possible Way to Represent XML Schema Document in Figure 1 in ER-XML.

attributes. For example, in Figure 1, Month and Year are sequenced elements
nested under the element GraduationDate, so in Figure 3 Month and Year are
represented as attributes for the GraduationDate entity. Multi-valued attributes
are also allowed; their multiplicity constraints are in parentheses. MiddleName,
for example, is a multi-valued attribute with a multiplicity (0,2). XML attributes
in an XER entity are prefixed with @, and key attributes are underlined. The
attribute StudentNumber is a key in Figure 1, so in Figure 3 it appears as an
underlined attribute with a prefix of @.

An XER entity can be ordered or unordered. Additionally, an XER entity
can be mixed.

– Ordered Entity. XER entities are ordered by default from top to bottom.
The ordered entity GraduationDate in Figure 3 indicates that its attributes
are ordered first Month, then Year.

– Unordered Entity. An unordered entity is represented by placing a question
mark (?) in front of the entity name. StudentInfo in Figure 3 is an unordered
entity.

– Mixed Entity. A mixed entity is represented in XER using a rounded rec-
tangle. RecommendationLetter in Figure 3 is a mixed entity.

XER relationships denote a connection between two or more entities, but in
XER they can also denote that a complex entity contains a complex element as
one of its sub-elements. When an entity E in XER has an attribute A and this
attribute A by itself is an entity that contains other attributes, then A appears
in the XER diagram twice, once as an attribute inside the entity E, and once as
an entity A. In addition, there is a connection between the attribute A inside the
entity E and the entity A. If minA:maxA is the participation constraint on A
within E and minE:maxE is the participation constraint on E for A, minA:maxA
appears on the side of the attribute A within E, and minE:maxE appears on
the side of the entity A. For example, RecommendationLetter has two attributes
ProfessorName and ContactInfo, but ContactInfo by itself is an entity. Thus, a
relationship set appears between the attribute ContactInfo inside Recommenda-

10 Reema Al-Kamha et al.

tionLetter and the entity ContactInfo. A participation constraint of 1:1 appears
on the side of the attribute ContactInfo inside RecommendationLetter to denote
that RecommendationLetter has one ContactInfo, and a participation constraint
of 1:N appears on the ContactInfo entity side to denote that ContactInfo is for
one or more RecommendationLetters.2

XER represents the choice concept in XML Schema as a generalization/speciali-
zation. The generalization term in XER refers to the concept of having an entity
that can have different specialization entities in an ISA relationship. XER repre-
sents a generalization using a covering rectangle containing the specialized XER
entities. This, the authors claim in [12], is equivalent to using the “xs:choice” tag
in XML Schema. In Figure 3 the rectangle representing the entity ContactInfo
contains the rectangles of entities of choice elements PhoneNumber, Email, and
Fax.

Comparing the conceptual components for C-XML (e.g. Figure 1) and XER
(e.g. Figure 3), we see that several constructs and constraints are missing in
XER. First, XER lacks the ability to represent the minimum and the maximum
occurrence of the whole sequence or choice within a containing entity when either
of their values is more than 1. For example, XER cannot represent the minimum
and maximum occurrence of 1 to 2 for the choice within the entity ContactInfo.
Second, XER has no representation for any and anyAttribute structures. For
example, in Figure 3 the entity StudentInfo is missing the anyAttribute, and
the sequence contained inside the StudentInfo entity does not have any. Third,
XER has no representation for composite keys. For example, in Figure 3 the
representation that SchoolName and SchoolAddress together constitute a key
for the entity School is missing. Fourth, although XER has a representation for
a single key, this representation only applies when the key for an entity is an
attribute of that entity. The representation is not able to specify a key constraint
for an entity within the context of another entity.

Beyond these omissions, we have several concerns about some representations
in XER.

– Representing choice by generalization/specialization is problematic; the for-
mal definition of choice differs from the formal definition of generaliza-
tion/specialization. First, choice contains different types of alternative con-
cepts, but all the specialized concepts in generalization/specialization hierar-
chies typically must have the same type. Second, in generalization/specialization
hierarchies any specialized concept inherits relationship sets from its general-
ization concepts, while in choice, the alternative concepts do not inherit rela-
tionship sets. Third, the participation constraints for choice allow alternative
concepts to appear more than one time, while in generalization/specialization
hierarchies specialized concepts can appear at most once.

– In XER it is not clear from [12] whether it is possible to represent an entity
without having a name for the entity. For Figure 3 we assume that we are
able to represent an entity in XER with a null name. Also, in XER it is not

2 Although ER more commonly uses look-across cardinality constraints, the designers
of XER have chosen to use participation constraints [12].

Lecture Notes in Computer Science 11

clear whether it is possible to have an empty slot in an entity to indicate
that an attribute by itself is an entity without a name. We also assume for
Figure 3 that we are able to do so in XER. From [12] it is not clear whether
it is possible to have hierarchies of choice and sequence structures, but we
assume that this is possible as Figure 3 shows.

– In XER when an entity has an attribute and this attribute is also an entity,
the model instance in XER has an attribute and an entity with the same
name. This redundancy might cause problems if XER developers are able to
write the two names independently.

In light of these omissions and concerns, we extend XER, augmenting it
with constructs and constraints that are missing and resolving our concerns.
Figure 4 shows our suggested way of representing the schema in Figure 1 in ER-
XML, our ER augmentation for XML. We add any and anyAttribute concepts
to XER. We have chosen to add a representation of any and anyAttribute as
entities with the name any. We also add minimum and maximum occurrence
to sequence and choice, placing this minimum and maximum in parentheses
in the name slot, following the name, if any, of the entity that declares the
sequence or choice. We have chosen to add a representation for key constraints
by allowing functional dependencies that must hold within entity sets or along
paths of relationship sets. Thus, for example, as Figure 4 shows, we can specify
the composite key SchoolName, SchoolAddress by the functional dependency
SchoolName, SchoolAddress −→ School. Although we use the same notation for
choice, we do not consider the representation of choice in ER-XML to be a
generalization concept. Finally, we do not repeat attribute names, writing the
name only in the entity that represents the attribute.

5.2 UML

Conrad et al. [4] add features to UML to enable mappings from class diagrams
to XML DTDs. Figure 5 shows an example; in fact, it shows the best that can
be done to represent the XML schema in Figure 1. Unfortunately, it does not
capture all the concepts and constraints in the XML schema in Figure 1.

As described in [4], Conrad et al. augment UML aggregation so that it can
be transformed into a sequence construct or a choice construct. The designation
{sequence} specifies a left-to-right ordering of elements, and the designation
{choice} specifies a choice among elements. For a sequence the first constituent
element is marked as 1 , the second as 2 , and so forth. A sequence or choice con-
struct may have cardinality to represent the minimum and maximum occurrence
of the entire sequence or choice. For example, the class ContactInfo in Figure 5
has one to two choices {choice : 1..2} of the classes PhoneNumber, Email, and
Fax. For an any structure, the notation in [4] uses the «content» stereotype.

Comparing the conceptual components for C-XML (e.g. Figure 1) and ex-
tended UML presented in [4] (e.g. Figure 5), we see that several constructs
are missing. First, the extended UML in [4] lacks the ability to represent an

12 Reema Al-Kamha et al.

Fig. 5. Best Representation of Figure 1 Using Conrad Notation.

Fig. 6. Possible Way to Represent XML Schema Document in Figure 1 in UML-XML.

anyAttribute. For example, in Figure 5 the class StudentInfo is missing the any-
Attribute. Second, the extended UML in [4] lacks the ability to represent mixed
content. In Figure 5 the class RecommendationLetter does not appear as having
mixed content. Third, the extended UML in [4] lacks key constraints, although,
in principle, we could specify key constraints using OCL (the constraint language
of UML).

Besides these omissions, we have concerns about the suggested representation
of sequence and choice in [4]. The suggested representations can only be applied
between classes, not between attributes. This is because Conrad et al. augment
UML aggregation for sequence and choice. Since the aggregation in UML applies
to classes, the notation forces attributes to be represented as classes. For example,
to represent the GraduationDate class as a sequence of Month and Year, would-
be attributes Month and Year must each become a class first.

To overcome these difficulties, we need to extend and adjust the representa-
tions in [4]. Figure 6 shows our suggested extensions and adjustments by ren-
dering Figure 1 in UML-XML, our UML augmentation for XML.

– We have chosen to represent the anyAttribute as an associated class with
the any content type rather than as a stereotype. For mixed content we use

Lecture Notes in Computer Science 13

the «mixed» stereotype. The RecommendationLetter class in Figure 6 is an
example.

– We suggest representing sequence and choice in a different way so that we
do not force attributes to be represented as classes. When attributes in a
class are ordered, we add the designation [Sequence] under the class name
to specify a top-to-bottom ordering of the attributes. We also add minOc-
curs..maxOccurs, if needed, to express participation different from the de-
fault. For example, in Figure 6, the designation [Sequence] is added un-
der GraduationDate. Similarly, we allow designating a choice construct by
adding [Choice minOccurs..maxOccurs], allowing minOccurs .. maxOccurs
to be omitted when it is 1..1, the default. For example, in Figure 6, the
designation [Choice 1..2] is added under ContactInfo.

– We add notation to denote that a class contains an attribute and that this
attribute is a class that contains other attributes. A connection appears that
connects an empty slot indicating the presence of an attribute inside the
class with the class containing other attributes. For example, we indicate
that ContactInfo is an attribute inside the class RecommendationLetter by
the connection inside RecommendationLetter that extends to ContactInfo.
Note also that ContactInfo by itself is a class that contains attributes. A
multiplicity of 1 is added to the ContactInfo class side and a multiplicity of
1..* is added to the ContactInfo attribute side in the RecommendationLetter
class to denote that ContactInfo is for 1 or more RecommendationLetters
and each RecommendationLetter has one ContactInfo.

– For the case when a sequence or choice is a complex attribute inside a class
C, the sequence or choice is represented as a class with no name but has the
designation [Sequence] or [Choice], and we connect the empty slot inside the
class C with the class that represents the sequence or choice. For example, the
class StudentInfo has a complex sequence attribute. Further, this sequence
by itself is a class that contains other attributes including another complex
choice attribute and a complex sequence attribute.

– We can specify key constraints in UML by using OCL. But, since this is
a common task, we have an alternative representation that we can add to
a diagram. We have chosen to add a representation for key constraints by
allowing functional dependencies which must hold within classes or along
paths of associations. Thus, for example, as Figure 6 shows, we can specify
the composite key SchoolName, SchoolAddress by the functional dependency
{SchoolName, SchoolAddress −→ School}.

5.3 ER-XML, UML-XML, and C-XML

Comparing ER-XML, UML-XML, and C-XML, we make the following obser-
vations according to the criteria for XML conceptual modeling we described in
Section 2. Criteria from Section 2 not listed here have equal validity among the
three models (e.g. all three have a graphical notation).

– Formal foundation. C-XML has a solid formal foundation in terms of predi-
cate calculus. ER-XML and UML-XML are respectively derived from XER

14 Reema Al-Kamha et al.

as described in [12] and UML as described in [4]. There is no formal founda-
tion for XER [9], and the underlying formalism of UML is not fully developed
[6]. In principle both could have complete formal foundations.

– Reflection of the mental model. ER-XML distinguishes attributes from enti-
ties and UML-XML distinguishes attributes from classes. C-XML represents
all concepts as object-set nodes in hypergraphs. Forcing attributes to be em-
bedded within an entity/class has the disadvantage that a user of UML-XML
or ER-XML has to decide before representing any concept whether it should
be an attribute or entity/class. Distinguishing between an attribute and an
entity/class is not necessary and may even be harmful as a mental-model
conceptualization. Goldstein and Storey [7] showed that this can be a major
source of errors in conceptual modeling.

– Views. Hypergraphs are typically more amenable to translations to various
views and even alternate XML schemas such as normalized XML schemas.
Further, although not discussed here, C-XML supports both high-level object
sets and high-level relationship sets as first class concepts [5]. Neither ER-
XML nor UML-XML supports high-level view constructs.

– Logical level mapping. We have implemented both a mapping from XML
Schema to C-XML and vice versa [1, ?]. In principle mappings to and from
XML Schema and ER-XML as well as UML-XML are possible.

– Cardinality for all participants. The nesting representation for ER-XML and
UML-XML restricts the specification of cardinality constraints to only the
nesting participants. C-XML specifies cardinality constraints for all partici-
pants, beyond even those supported by XML Schema.

6 Conclusion

In this chapter we discussed the structural constructs in XML Schema that are
missing in traditional conceptual models. Our proposed solution is to enrich
conceptual models with the ability to order a list of concepts, choose alternative
concepts from among several, specify mixed content, and use content from an-
other data model. We presented our solution using C-XML, and we showed that
our solution can be adapted and used for the ER and UML languages.

We also presented requirements for conceptual modeling for XML. We based
these requirements on those presented in [9], [?], and [18]. We evaluated C-XML
against these requirements and showed that C-XML satisfies all of them, which
makes C-XML a good candidate for a conceptual modeling language for XML.
We also argued that ER-XML and UML-XML, our adaptations for ER and
UML, also largely satisfy these requirements, but do not satisfy them as well as
does C-XML.

We have implemented C-XML, and we have implemented conversions from
XML Schema to C-XML and vice versa. Currently, we are working on a for-
mal proof that our conversions to and from C-XML and XML Schema preserve
information and constraints.

Lecture Notes in Computer Science 15

7 Acknowledgments

This work is supported in part by the National Science Foundation under grant
number IIS-0083127 and by the Kevin and Debra Rollins Center for eBusiness
under grant number EB-05046.

References

1. R. AL-Kamha. Translating XML Schema to Conceptual XML. Technical Report,
Computer Science Department, Brigham Young University, November 2006.

2. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, 1999.

3. P.P. Chen. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

4. R. Conrad, D. Scheffner, and J.C. Freytag. XML conceptual modeling using UML.
In Proceedings of the Ninteenth International Conference on Conceptual Modeling
(ER2000), LNCS 1920:558–571, 2000.

5. D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Analysis:
A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

6. A Formal Semantics for UML Workshop, October 2006. URL: http://www.cs.
queensu.ca/~stl/internal/uml2/MoDELS2006/.

7. R.C. Goldstein and V.C. Storey. Some findings on the intuitiveness of entity-
relationship constructs. In Proceedings of the Eighth International Conference
on Entity-Relationship Approach (ER’89), pages 9–23, Toronto, Canada, October
1989. North-Holland.

8. S.W. Liddle, D.W. Embley, and S.N. Woodfield. Cardinality constraints in semantic
data models. Data & Knowledge Engineering, 11(3):235–270, 1993.

9. M. Necasky. Conceptual modeling for XML: A survey. In Proceedings of the
DATESO 2006 Annual International Workshop on Databases, Texts, Specifications
and Objects (DATESO 2006), pages 40–53, Desna, Czech Republic, April 2006.

10. Visual Studio.NET, Microsoft. http://www.msdn.microsoft.com/vstudio.
11. A. Sengupta and S. Mohan. Formal and Conceptual Models for XML Structures—

The Past, Present, and Future. Technical Report 137–1, Indiana University, Infor-
mation Systems Department, Bloomington, Indiana, April 2003.

12. A. Sengupta, S. Mohan, and R. Doshi. XER — extensible entity relationship
modeling. In Proceedings of XML 2003, Philadelphia, Pennsylvania, December
2003.

13. A. Sengupta and E. Wilde. The Case for Conceptual Modeling for XML. Technical
Report No. 242, Computer Engineering and Networks Laboratory, ETH Zurich,
February 2006.

14. XMLSpy, Altova. http://www.xmlspy.com.
15. Stylus Studio. http://www.stylusstudio.com/xml_schema_editor.html.
16. T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational

databases using the extended entity-relationship model. ACM Computing Surveys,
18(2):197–222, June 1986.

17. UML 2.0 superstructure specification, August 2005.
18. E. Wilde. Towards conceptual modeling for XML. In Proceedings of the Berliner

XML Tage 2005 (BXML2005), pages 213–224, Berlin, Germany, September 2005.

16 Reema Al-Kamha et al.

Fig. 7. Sequence Structure in C-XML.

Sequence

Figure 7 shows the schematic structure of a sequence. Exactly one parent
object set connects to a sequence of n children, n ≥ 0, with participation con-
straints on the several connections as Figure 7 shows. A sequenced child may be
either an object set or a nested sequence or choice structure. In general, there
may be many sequences in a model instance, and since we do not explicitly
name sequence structures, we denote a particular sequence, the kth sequence,
by Sequencek. Let P be the name of the parent object set for Sequencek, and
let C1, ..., Cn be the names of the n child object sets or nested sequences or
choices that are sequenced within Sequencek. To impose order, we introduce
the unary predicate Order, which we can think of as an object set containing as
many ordinal numbers as we need 1, 2, We denote the minimum and max-
imum cardinalities of Sequencek according to Figure 7. Let min and max be,
respectively, the minimum and maximum number of occurrences of Sequencek

allowed for an object in P . Let minCi
and maxCi

, 1 ≤ i ≤ n, be, respectively,
the minimum and maximum number of allowed occurrences of Ci objects within
Sequencek. Let min′ and max′ be, respectively, the minimum and maximum
number of occurrences of Sequencek sequences in the relationship set between
P and Sequencek. Finally, let minSeqi

and maxSeqi
, 1 ≤ i ≤ n, be, respectively,

the minimum and maximum allowed occurrences of Sequencek in the relation-
ship set between Sequencek sequences and Ci (i.e. the number of Ci objects that
can be associated with Sequencek for a given order position). For Sequencek,
we have the following object sets, relationship sets, and constraints.

Object Sets:

– P (x)
– Sequencek(x)
– Order(x)
– C1(x), ..., Cn(x)

Relationship Sets:

– P (x) contains Sequencek(y)
– C1(x) has Order(1) in Sequencek(y)

Lecture Notes in Computer Science 17

– ...
– Cn(x) has Order(n) in Sequencek(y)

Referential Integrity:

– ∀x∀y(P (x) contains Sequencek(y) ⇒ P (x) ∧ Sequencek(y))
– ∀x∀y(C1(x) has Order(1) in Sequencek(y) ⇒ C1(x) ∧ Order(1) ∧ Sequencek(y))
– ...
– ∀x∀y(Cn(x) has Order(n) in Sequencek(y) ⇒ Cn(x) ∧ Order(n) ∧ Sequencek(y))

Participation Constraints:

– ∀x(P (x) ⇒ ∃≥miny(P (x) contains Sequencek(y))) ∧
∀x(P (x) ⇒ ∃≤maxy(P (x) contains Sequencek(y)))

– ∀x(Sequencek(x) ⇒ ∃≥min′

y(P (y) contains Sequencek(x))) ∧
∀x(Sequencek(x) ⇒ ∃≤max′

y(P (y) contains Sequencek(x)))
– ∀x(Sequencek(x) ⇒ ∃≥minSeq1 y1 ... ∃≥minSeqn yn(

C1(y1) has Order(1) in Sequencek(x)
∧ ... ∧
Cn(yn) has Order(n) in Sequencek(x))) ∧
∀x(Sequencek(x) ⇒ ∃≤maxSeq1 y1 ... ∃≤maxSeqn yn(
C1(y1) has Order(1) in Sequencek(x)
∧ ... ∧
Cn(yn) has Order(n) in Sequencek(x)))

– ∀x(C1(x) ⇒ ∃≥minC1 y(C1(x) has Order(1) in Sequencek(y)))
∧
∀x(C1(x) ⇒ ∃≤maxC1 y(C1(x) has Order(1) in Sequencek(y)))
∧ ... ∧
∀x(Cn(x) ⇒ ∃≥minCn y(Cn(x) has Order(n) in Sequencek(y)))
∧
∀x(Cn(x) ⇒ ∃≤maxCn y(Cn(x) has Order(n) in Sequencek(y)))

Choice

The schematic structure of a choice is similar to sequence (see Figure 7).
Exactly one parent object set connects to a group of n children, n ≥ 0, and the
participation constraints for choice are similar to those for sequence. As with se-
quence, children of a choice may be either object sets or nested sequence or choice
structures. In general, there may be many choices in a model instance, and since
we do not explicitly name choice structures, we denote a particular choice the
kth choice, by Choicek. Let P be the name of the parent object set for Choicek,
and let C1, ..., Cn be the names of the n child object sets or nested sequences or
choices that are alternatives for Choicek. Let min and max be, respectively, the
minimum and maximum number of occurrences of Choicek allowed for an ob-
ject in P . Let minCi

and maxCi
, 1 ≤ i ≤ n, be, respectively, the minimum and

maximum number of allowed occurrences of Ci objects within Choicek. Let min′

and max′ be, respectively, the minimum and maximum number of occurrences
of Choicek choices in the relationship set between P and Choicek. Finally, let
minChoi

and maxChoi
, 1 ≤ i ≤ n, be, respectively, the minimum and maximum

18 Reema Al-Kamha et al.

allowed occurrences of Choicek choices in the relationship set between Choicek

and Ci. For Choicek, we have the following object sets, relationship sets, and
constraints.

Object Sets:

– P (x)
– Choicek(x)
– C1(x), ..., Cn(x)

Relationship Sets:

– P (x) contains Choicek(y)
– C1(x) is alternative for Choicek(y)
– ...
– Cn(x) is alternative for Choicek(y)

Referential Integrity:

– ∀x∀y(P (x) contains Choicek(y) ⇒ P (x) ∧ Choicek(y))
– ∀x∀y(C1(x) is alternative for Choicek(y) ⇒ C1(x) ∧ Choicek(y))
– ...
– ∀x∀y(Cn(x) is alternative for Choicek(y) ⇒ Cn(x) ∧ Choicek(y))

Participation Constraints:

– ∀x(P (x) ⇒ ∃≥miny(P (x) contains Choicek(y))) ∧
∀x(P (x) ⇒ ∃≤maxy(P (x) contains Choicek(y)))

– ∀x(Choicek(x) ⇒ ∃≥min′

y(P (y) contains Choicek(x))) ∧
∀x(Choicek(x) ⇒ ∃≤max′

y(P (y) contains Choicek(x)))
– ∀x(Choicek(x) ⇒

(∃≥minCho1 y1 (C1(y1) is alternative for Choicek(x)) ∧
∃≤maxCho1 z1 (C1(z1) is alternative for Choicek(x))) ∨
¬∃w1 (C1(w1) is alternative for Choicek(x)))
∧ ... ∧
∀x(Choicek(x) ⇒
(∃≥minChon yn(Cn(yn) is alternative for Choicek(x)) ∧
∃≤maxChon zn(Cn(zn) is alternative for Choicek(x))) ∨
¬∃wn (Cn(wn) is alternative for Choicek(x)))

– ∀x(C1(x) ⇒ ∃≥minC1 y(C1(x) is alternative for Choicek(y))) ∧
∀x(C1(x) ⇒ ∃≤maxC1 y(C1(x) is alternative for Choicek(y)))
∧ ... ∧
∀x(Cn(x) ⇒ ∃≥minCn y(Cn(x) is alternative for Choicek(y))) ∧
∀x(Cn(x) ⇒ ∃≤maxCn y(Cn(x) is alternative for Choicek(y)))

Mutual-Exclusion Constraints:

– ∀x(Choicek(x) ⇒
(∃y1(C1(y1) is alternative for Choicek(x)) ∧
¬∃y2(C2(y2) is alternative for Choicek(x)) ∧ . . .∧

Lecture Notes in Computer Science 19

¬∃yn(Cn(yn) is alternative for Choicek(x)))
∨ . . .∨
(¬∃y1(C1(y1) is alternative for Choicek(x)) ∧ . . .∧
¬∃yi−1(Ci−1(yi−1) is alternative for Choicek(x)) ∧
∃yi(Ci(yi) is alternative for Choicek(x)) ∧
¬∃yi+1(Ci+1(yi+1) is alternative for Choicek(x)) ∧ . . .∧
¬∃yn(Cn(yn) is alternative for Choicek(x)))
∨ . . .∨
(¬∃y1(C1(y1) is alternative for Choicek(x)) ∧ . . .∧
¬∃yn−1(Cn−1(yn−1) is alternative for Choicek(x)) ∧
∃yn(Cn(yn) is alternative for Choicek(x))))

Mixed Content

Formally, marking an object set P as mixed is a template for creating a
relationship set to a lexical object set Text of type string: P [1] contains [1:*]Text.
The string associated with an object in a mixed object set may be interspersed
among direct child elements.

Generalized Co-Occurrence:

A generalized co-occurrence constraint A1, ..., An → B1, ..., Bm is shorthand
for an ordinary co-occurrence constraint written over a high-level relationship set
connecting the object sets A1, ..., An, B1, ..., Bm. If the subgraph that connects
these object sets is unique, we can derive the corresponding high-level relation-
ship set automatically. Otherwise, in addition to specifying the co-occurrence
constraint, the user must also specify the derived relationship set using Prolog-
like syntax (e.g., r(A,B) :- r1(A,X), r2(X,B)). The formal definition of co-
occurrence constraints appears in Appendix A of [5].

