
Automatic Hidden-Web Table Interpretation, Conceptualization,

and Semantic Annotation

Cui Tao∗and David W. Embley∗

Department of Computer Science
Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract

The longstanding problem of automatic table interpretation still illudes us. Its solution
would not only be an aid to table processing applications such as large volume table conversion,
but would also be an aid in solving related problems such as information extraction, semantic
annotation, and semi-structured data management. In this paper, we offer a solution for
the common special case in which so-called sibling pages are available. The sibling pages
we consider are pages on the hidden web, commonly generated from underlying databases.
Our system compares them to identify and connect nonvarying components (category labels)
and varying components (data values). We tested our solution using more than 2,000 tables
in source pages from three different domains — car advertisements, molecular biology, and
geopolitical information. Experimental results show that the system can successfully identify
sibling tables, generate structure patterns, interpret tables using the generated patterns, and
automatically adjust the structure patterns as it processes a sequence of hidden-web pages.
For these activities, the system was able to achieve an overall F-measure of 94.5%. Further,
given that we can automatically interpret tables, we next show that this leads immediately to a
conceptualization of the data in these interpreted tables and thus also to a way to semantically
annotate these interpreted tables with respect to the ontological conceptualization. Labels in
nested table structures yield ontological concepts and interrelationships among these concepts,
and associated data values become annotated information. We further show that semantically
annotated data leads immediately to queriable data. Thus, the entire process, which is fully
automatic, transform facts embedded within tables into facts accessible by standard query
engines.

1 Introduction

The World Wide Web serves as a powerful resource for every community. Much of this online

information, indeed, the vast majority, is stored in databases on the so-called hidden web.1 Hidden-

web information is usually only accessible to users through search forms and is typically presented

to them in tables. Automatically understanding these hidden-web pages and making their facts

externally accessible is a challenging task. In this paper, we introduce a domain independent,

web-site independent, unsupervised way to automatically interpret tables from hidden-web pages.
∗Supported in part by the National Science Foundation under Grant #0414644.
1There are more than 500 billion hidden-web pages. The surface web, which is indexed by common search engines

only constitutes less than 1% of the World Wide Web. The hidden web is several orders of magnitude larger than
the surface web [28].

1

Once interpreted, we can automatically annotate the information in these pages and make it

available to standard query engines.

Tables present information in a simplified and compact way in rows and columns. Data in one

row/column usually belongs to the same category or provides values for the same concept. The

labels of a row/column describe this category or concept.

Although a table with a simple row and column structure is common, tables can be much

more complex. Figure 1 shows an example. Tables may be nested or conjoined as are the tables in

Figure 1. Labels may span across several cells to give a general description as does Identification

and Location in Figure 1. Although labels commonly appear on the top or left, table designers

occasionally place labels on the right side of a table. In long tables, labels sometimes appear

at the end of a table or in the middle of a table, every few rows, in order to help a reader find

the correspondence between labels and data. Sometimes tables are rearranged to fit the space

available. Label-value pairs may appear in multiple columns across a page or in multiple rows

placed below one another down a page. These complexities make automatic table interpretation

challenging.

To interpret a table is to properly associate table category labels with table data values.

Using Figure 1 as an example, we see that Identification, Location, and Function are labels for

the large rectangular table. Inside the right cell of the first row is another table with headers

IDs, NCBI KOGs, Species, etc. Nested inside of this cell are two tables with labels CGC name,

Sequence name, Other name(s), WB Gene ID, Version, and Gene Model, Status, Nucleotides

(coding/transcript), Protein, and Amino Acids. Most of the rest of the text in the large rectangular

table comprises the data values. If we look more closely, however, we may conclude that some

category labels are interleaved in the text. For example, via person appears to be a label under

CGC name, as does Entrez Genes and Ace View beside NCBI.

Once category labels and data values are found, we want to properly associate them. For ex-

ample, the associated label for the value F18H3.5 should be the sequences of labels Identification,

IDs, and Sequence name. Given the source table in Figure 1, we match category labels with values

as Figure 2 shows. We associate one or more sequences of labels with each data value in a table.

Borrowing notation from Wang [45], the left hand side of the arrow is a sequence of one or more

table labels, and the right hand side of the arrow is a data value. For the first two label-value pairs

in Figure 2, there is only one label sequence. The third, however, has two: Identification.Gene

model(s).Amino Acids and 2. Each label sequence represents a dimension. In general, a table may

have one, two, three, or more dimensions. If a table has multiple records (usually multiple rows)

and if the records do not have labels, we add record numbers. The table under Identification.Gene

model(s), for example, has two records (two rows), but no row labels. We therefore label the first

record 1 and the second record 2. Thus, the label-value association becomes (Identification.Gene

2

Figure 1: A Sample Table from WormBase [1].

model(s).Amino Acids, 2) → 406 aa where Identification.Gene model(s).Amino Acids is the label

for the first dimension, and 2 is the row label for the second dimension.

Although automatic table interpretation can be complex, if we have another page, such as

the one in Figure 3, that has essentially the same structure, the system might be able to obtain

enough information about the structure to make automatic interpretation possible. We call pages

that are from the same web site and have similar structures sibling pages.2 The two pages in

Figures 1 and 3 are sibling pages. They have the same basic structure, with the same top banners

that appear in all the pages from this web site, with the same table title (Gene Summary for some
2Hidden-web pages are usually generated dynamically from a pre-defined templates in response to submitted

queries, there fore they are usually sibling pages

3

(Identification.IDs.CGC name) →
cdk-4-(Cyclin-Dependent Kinase family)
(via person: Michael Krause);

(Identification.IDs.Sequence name) → F18H3.5 ;
...
(Identification.Gene model(s).Amino Acids, 2) → 406 aa;
...

Figure 2: Interpretation for the Tables in Figure 1 (Partial).

particular gene), and a table that contains information about the gene. Corresponding tables in

sibling pages are called sibling tables. If we compare the two large tables in the main part of the

sibling pages, we can see that the first columns of each table are exactly the same. If we look

at the cells under the Identification label in the two tables, both contain another table with two

columns. In both cases, the first column contains identical labels IDs, NCBI KOGs, ..., Putative

ortholoy(s). Further, the tables under Identification.IDs also have identical header rows. The

data rows, however, vary considerably. General speaking, we can look for commonalities to find

labels and look for variations to find data values.

Given that we can find most of the label and data cells in this way, our next task is to infer the

general structure pattern of the web site and of the individual tables embedded within pages of the

web site. With respect to identified labels, we look below or to the right for value associations;

we may also need to look above or to the left. In Figure 1, the values for Identification.Gene

Model(s).Gene Model are below, and the values for Identification.Speices are to the right.

Although we look for commonalities to find labels and look for variations to find data values,

we must be careful about being too strict. Sometimes there are additional or missing label-value

pairs. The two nested tables beginning with Gene Model in Figures 1 and 3 do not share exactly

the same structure. The table in Figure 1 has five columns and three rows, while the table

in Figure 3 has six columns and two rows. Although they are not exactly the same, we can still

identify the structure pattern by comparing them. The top rows in the two tables are very similar.

Observe that the table in Figure 3 only has an additional Swissprot column inserted between the

Protein and Amino Acids columns.

In addition to discovering the structure pattern for a web site, we can also dynamically adjust

the pattern if the system encounters a table that varies from the pattern. If there is an additional

or missing label, the system can change the pattern by either adding the new label and marking

it optional or marking the missing label optional. For example, if we had not seen the extra

Swissprot column in our initial pair of sibling pages, the system can add Swissprot as a new label

and mark it as optional. The basic label-value association pattern is still the same.

We call our table-interpretation system TISP (Table Interpretation with Sibling Pages) [39].

4

Figure 3: A Second Sample Table from WormBase.

Given that we can interpret a table, we can immediately conceptualize it and add semantic anno-

tation to it. We augmented TISP by adding two new functions: conceptualization and annotation.

We call the new system TISP++. Given a structure pattern, TISP++ can automatically generate

an OWL ontology that conceptualize the pattern. TISP++ uses an OWL class to represent a

table, an OWL object property to represent the nesting between two tables, and an OWL data

type property to represent a label. The ontology also declares constraints such as optional and

functional if applicable. After the OWL ontology is generated, TISP++ can also automatically

annotate all the sibling pages with respect to this ontology. The annotated information is avail-

able to any SPARQL query platform, so that users can query and locate information of interest.

By doing so, TISP++ makes hidden web information visible to users from outside specialized

hand-built GUIs.

We present the details of TISP and our contribution to table interpretation by sibling page

5

comparison, and the details of TISP++ and our contribution to ontology generation and semantic

annotation in the remainder of the paper as follows. Section 2 provides the details about how

TISP analyzes a source page to recognize all HTML tables and how it decomposes nested ta-

bles, if any. Section 3 introduces the matching algorithms we use. Section 4 describes how we

interpreted various matching results and find data tables. Section 5 explains how TISP infers the

general structure patterns of a web site and therefore how it interprets the tables from the site.

Section 5 also explains how to automatically adjust the generated patterns when variations are

encountered. In Section 6, we report the results of experiments we conducted involving sites for

car advertisements, molecular biology, and geopolitical information, which we found on the hid-

den web. Section 7 explains how TISP++ generates an OWL ontology depending on a structure

pattern, and Section 8 explains how TISP++ annotates information automatically. Section 9 dis-

cusses related work. In Section 10, we draw conclusions and mention some possibilities for future

work.

2 Initial Table Processing

After obtaining a source document, TISP first parses the source code and locates all HTML

components enclosed by <table> and </table> tags (tagged tables). When tagged tables are

nested inside of one another, TISP finds them and unnests them. In Figure 1, there are several

levels of nesting in the large rectangular table. The first level is a table with two columns. The

first column contains Identification, Location, and Function, and the second column contains

some complex structures. Figure 1 shows only the first three rows of this table — one row for

Identification, one for Location, and one for Function. (For the purpose of being explicit in this

paper, we assume that these three rows are the only rows in this table.) The second column of

the large rectangular table in Figure 1 contains three second level nested tables, the first starting

with IDs, the second with Genetic Position, and the third with Mutant Phenotype. In the right

most cell of the first row is another table. There are also two third level nested tables.

We treat each tagged table as an individual table and assign an identifying number to it. If

the table is nested, we replace the table in the upper level with its identifying number. By so

doing, we are able to remove nested tables from upper level tables. As a result, TISP decomposes

the page in Figure 1 into the set of tables in Figure 4.

3 Table Matching

To compare and match tables, we first transform each HTML table into a DOM tree [18]. Tree1

in Figure 5 shows the DOM tree for Table 7 in Figure 4, and Tree2 in Figure 5 shows the DOM

tree for its corresponding table in Figure 3.

6

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Figure 4: Decomposition for the Tables in Figure 1.

Tai [38] gives a well acknowledged formal definition of the concept of a tree mapping for labeled

ordered rooted trees.

Let T be a labeled ordered rooted tree and let T [i] be the ith node in level order of tree T. A
mapping from tree T to tree T ′ is defined as a triple (M, T, T ′), where M is a set of ordered pairs (i,
j), where i is from T and j is from T ′, satisfying the following conditions for all (i1, j1), (i2, j2) ∈ M,
where i1 and i2 are two nodes from T and j1 and j2 are two nodes from T ′:

(1) i1 = i2 iff j1 = j2;
(2) T [i1] comes before T [i2] iff T ′[j1] comes before T ′[j2] in level order;

(3) T [i1] is an ancestor of T [i2] iff T ′[j1] is an ancestor of T ′[j2].

According to this definition, each node appears at most once in a mapping — the order

between sibling nodes and the hierarchical relation between nodes being preserved. The best

match between two trees is a mapping with the maximum number of ordered pairs.

We use a simple tree matching algorithm introduced in [48] which was first proposed to compare

two computer programs in software engineering. It calculates the similarity of two trees by finding

the best match through dynamic programming with complexity O(n1n2), where n1 is the size

(number of nodes) of T and n2 is the size of T ′. This algorithm counts the matches of all possible

combination pairs of nodes from the same level, one from each tree, and finds the pairs with

maximum matches. The simple tree match algorithm returns the number of these maximum

matched pairs. The highlighted part in tree1 in Figure 5 shows the matched nodes for tree1 with

respect to tree2 in Figure 5. The highlighted nodes indicate a match.

7

Tree1 Tree2

Figure 5: DOM Trees for Table 7 in Figure 4 and its Sibling Table in Figure 3.

4 Sibling Table Identification

In our research, we use the results of the simple tree matching algorithm for three tasks: (1) we

filter out those HTML tables that are only for layout; (2) we identify the corresponding tables

(sibling tables) from sibling pages; and (3) we match nodes in a sibling table pair.

For each pair of trees, we use the simple tree matching algorithm to find the maximum number

of matched nodes among the two trees. We call this number the match score. For each table in

one source page, we obtain match scores. Sibling tables should have a one to one correspondence.

Based on the match score, we use the Gale-Shapley stable marriage algorithm [23] to pair potential

sibling tables one to one.

For a pair of potential sibling tables, we calculate the sibling table match percentage, 100

times the match score divided by the number of nodes of the smaller tree. The match percentage

between the two trees in Figure 5, for example, is 19 (match score) divided by 27 (tree size of

Tree2), which, expressed as a percentage, is 70.4%.

We classify potential sibling tables into three categories: (1) exact match or near exact match;

(2) false match; and (3) sibling-table match. We use two threshold boundaries to classify potential

sibling tables: a higher threshold between exact or near exact match and sibling-table match,

and a lower threshold between sibling-table match and false match. Usually a large gap exists

between the range of exact or near exact match percentages and the range of sibling-table match

percentages, as well as between the range of sibling-table match percentages and the range of

false match percentages. Using active learning with boostrap selective sampling [42], we first set

initial thresholds by empirical observation (90% for the higher threshold and 20% for the lower

8

threshold); then TISP dynamically adjusts the two thresholds as needed during the classification

process as more sibling pages are considered.

In our example, Tables 1, 2, and 3 have match percentages of 100% with their sibling tables.

The match percentages for Tables 4, 5, 6 and 7, and their corresponding sibling tables, are 66.7%,

58.8%, 69.2%, and 70.4% respectively. Our example has no false matches. A false match usually

happens when a table does not have a corresponding table in the sibling page. In this case, we

save the table. When more sibling pages are compared, we might find a matching table.

5 Structure Patterns

The first component of a structure pattern for a table specifies the table’s location in a web page.

To specify the location, we use XPath [2], which describes the path of the table from the root

HTML tag of the document. For example, The location for Table 7 in Figure 4 is:

/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/tr[1]/td[2]. An XPath simply lists the nodes

(HTML tag names) of a path in a DOM tree for the HTML document where [n] designates

the nth sibling node in the ordered subtree.

The second component of a structure pattern specifies the label-value pairs for a table and

thus provides the interpretation. We now give the details about how we identify the proper label-

value pattern template (Section 5.1) and use it to generate the specific label-value-pair pattern for

the table (Section 5.2). We then explain how TISP uses the generated pattern to extract label-

value pairs from the table and how TISP produces an interpretation for the table (Section 5.3).

Combinations of basic patterns are also possible; we thus also explain how to generate and use

combination patterns (Section 5.4). Finally, we explain how TISP dynamically adjusts a pattern

to accommodate table variations it may encounter as it extracts label-value pairs from sibling

tables in the web site (Section 5.5).

5.1 Pattern Templates

We use regular expression to describe table structure pattern templates. If we traverse a DOM

tree, which is ordered and labeled, in a preorder traversal, we can layout the tree labels textually

and linearly. We can then use regular-expression like notation to represent the table structure

patterns (see Figure 6). In both templates and generated patterns we use standard notation: ?

(optional), + (one or more repetitions), and | (alternative). In templates, we augment the notation

as follows. A variable (e.g. n) or an expression (e.g. n-1) can replace a symbol to designate a

specific number of repetitions, which is unknown but fixed for the expression as it is applied. A

pair of braces { } indicates a leaf node. A capital letter L is a position holder for a label and a

capital letter V is a position holder for value. The part in a box is an atomic pattern which we

use for combinational structural patterns in Section 5.4.

9

Pattern 1:

< table > (< tbody >)? < tr > (< (td|th) > {L})n (< tr > (< (td|th) > {V })n)+

Pattern 2:

< table > (< tbody >)?(< tr >< (td|th) > {L}(< (td|th) > {V })n)+

Pattern 3:

< table > (< tbody >)? < tr > (< (td|th) > {L})n (< tr >< (td|th) > {L}(< (td|th) > {V })(n−1))+

Figure 6: Some Basic Pre-defined Pattern Templates.

Figure 6 shows three basic pre-defined pattern templates. Pattern 1 is for tables with n labels

in the first row and with n values in each of the rest of the rows. The association between labels

and values is column-wise; the label at the top of the column is the label for all the values in each

column. Pattern 2 is for tables with labels in the left-most column and values in the rest of the

columns. Each row has a label followed by n values. The label-value association is row-wise; each

label labels all values in the row. Pattern 3 is for two-dimensional tables with labels on both the

top and the left. Each value in this kind of table associates with both the row header label and

the column header label. We can define additional patterns, but these patterns and combinations

of these patterns constitute a large majority of HTML tables.

5.2 Pattern Generation

To check whether a table matches any pre-defined pattern template, TISP tests each template

until it finds a match. When we search for a matching template, we only consider leaf nodes

and seek matches for labels and mismatches for values. Variations, however, exist and we must

allow for them. In tables, labels or values are usually grouped. We are seeking for a structure

pattern instead of classifying individual cells. Sometimes we find a matched node, but all other

nodes in the group are mismatched nodes and agree with a certain pattern, TISP should ignore

the disagreement and assume the matched node is a mismatched node of values too. Specifically,

we calculate a template match percentage between a pre-defined pattern template and a matched

result, 100 times the number of leaf nodes that agree with a pattern template divided by total

number of leaf nodes in the tree. We calculate the template match percentage between a table

and each pre-defined structure template. A match must satisfy two conditions: (1) it must be

the highest match percentage, and (2) the match percentage must be greater than a threshold.

Similar to the way we determine thresholds for sibling table matches, we determine this template

match percentage threshold using active learning with boostrap selective sampling, with an initial

threshold of 80%.

Consider the mapped result in Figure 5 as an example. The highlighted nodes are matched

nodes in tree1. Comparing the template match percentage for this mapped result for the three

pattern templates in Figure 6, we obtain 93.3%, 53.3%, and 80% respectively. Pattern 1 has the

10

/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/tr[1]/td[2]
< table >< tr >
< td > Gene Model
< td > Status
< td > Nucleotides(coding/transcript)
< td > Protein
< td > Amino Acids
(< tr >
< td > VGene Model
< td > VStatus
< td > VNucleotides(coding/transcript)
< td > VProtein
< td > VAmino Acids)

+

Figure 7: Structure Pattern for Table 7 in Figure 4.

highest match percentage, and it is greater than the threshold. Therefore we choose Pattern 1.

We now impose the chosen pattern, ignoring matches and mismatches. Note that for tree1 in

Figure 5, the first branch matches the part in Pattern 1 in the first box, and the second and the

third branch each match the part in the second box, where n is five. For Pattern 1, when n=1,

we have a one-dimensional table; and when n>1, we have a two-dimensional table for which we

must generate record numbers.

After TISP matches a table with a pre-defined pattern template, it generates a specific struc-

ture pattern for the table by substituting the actual labels for each L and by substituting a

placeholder VL for each value. The subscript L for a value V designates the label for the label-

value pair for each record in a table. Figure 7 shows the specific structure pattern for Table 7 in

Figure 4.

5.3 Pattern Usage

With a structure pattern for a specific table, we can interpret the table and all its sibling tables.

The XPath gives the location of the table, and the generated pattern gives the label-value pairs.

The pattern must match exactly in the sense that each label string encountered must be identical

to the pattern’s corresponding label string. Any failure is reported to TISP. (In Section 5.5, we

explain how TISP reacts to a failure notification.)

When the pattern matches exactly, TISP can generate an interpretation for the table. For

our example, the chosen pattern is Pattern 1 with + (which allows for multiple rows of values in

the table). Thus, TISP needs to add another dimension and add row numbers. Since the table is

inside of other tables, TISP recursively searches for the tables in the upper levels of nesting and

collects all needed labels.

11

Figure 8: An Example for Pattern Combination from MutDB.

Example 1:
< table > (< tbody >)?
(< tr >< (td|th) >{L}(< (td|th) > {V })n)+< tr > (< (td|th) > {L})m(< tr > (< (td|th) > {V })m)+

Example 2:
< table > (< tbody >)?
(< tr >< (td|th) >{L}(< (td|th) > {V })n< (td|th) >{L}(< (td|th) > {V })m)+

Figure 9: Two Examples of Pattern Combinations.

5.4 Pattern Combinations

It is possible that TISP cannot match any pre-defined template. In this case, it looks for pattern

combinations. Using Figure 8 as an example, assume that TISP matches all cells in the first

and third column, but none in the second and forth column. Comparing the template match

percentage for this mapped result for the three pattern templates in Figure 6, we obtain 50%,

75%, and 68.8% respectively. None of them is greater than the threshold, 80%. The first two

columns, however, match Pattern 2 perfectly, as do the last two columns.

In many cases, tables can be more complicated. Most complex tables do not match to only

one pre-defined pattern template, but do match to a combination of several of them. Patterns

can be combined row-wise or column-wise. In a row-wise combination, one pattern template can

appear after another, but only the first pattern template has the header: < table > (< tbody >)?.

Therefore, a row-wise combined structure pattern has a few rows matching one template and

other rows matching another template. In a column-wise combination, we combine different

atomic patterns. If a pattern template has two atomic patterns, both patterns must appear in

the combined pattern, in the same order, but they can be interleaved with other atomic patterns.

If one atomic pattern appears after another atomic pattern from a different pattern template, the

< tr > tag at the beginning is removed. Figure 9 shows two examples of pattern combinations.

Example 1 combines Pattern 2 and Pattern 1 row-wise. Example 2 combines Pattern 2 with itself

column-wise. This second pattern matches the table in Figure 8, where n = m = 1, and the plus

(+) is 4.

The initial search for combinations is similar to the search for single patterns. TISP checks

patterns until it finds mismatches, it then checks to see whether the mismatched part matches with

some other pattern. TISP first searches row-wise for rows of labels and then uses these rows as

delimiters to divide the table into several groups. If it cannot find any row of labels, it repeats the

same process column-wise. TISP then tries to match each sub group with a pre-defined template.

12

This process repeats recursively until all sub-groups match with a template or the process fails to

finding any matching template.

For the example in Figure 8, TISP is unable to find any rows of labels, but finds two columns

of labels, the first and third column. It then divides the table into two groups using these two

columns and tries to match each group with a pre-defined template. It matches each group with

Pattern 2. Therefore, this table matches column-wise with Pattern 2 used twice.

5.5 Dynamic Pattern Adjustment

Given a structure pattern for a table, we know where the table is in the source document (its

XPath), the location of the labels and values, and the association between labels and values.

When TISP encounters a new sibling page, it tries to locate each sibling table following the

XPath, and then tries to interpret it by matching it with the sibling table structure pattern. If

the encountered table matches the structure pattern regular expression perfectly, we successfully

interpret this table. Otherwise, we might need to do some pattern adjustment. There are two

ways to adjust a structure pattern: (1) adjust the XPath to locate a table, and (2) adjust the

generated structure pattern regular expression.

Although sibling pages usually have the same base structure, some variations might exist. Some

sibling pages might have additional or missing tables. Thus, sometimes, following the XPath, we

cannot locate the sibling table for which we are looking. In this case, TISP searches for tables at

the same level of nesting, looking for one that matches the pattern. If TISP finds one, it obtains

the XPath and adds it as an alternative. Thus, for future sibling pages, TISP can (in fact, always

does) check all alternative XPaths before searching for another alternative XPath. If TISP finds

no matching table, it simply continues its processing with the next table.

We adjust a table pattern when we encounter a variation of an existing table. There might

be additional or missing labels in the encountered variation. In this case, we need to adjust the

structure pattern regular expression, to add the new optional label or to mark the missing label as

optional. Consider the table that starts with Gene Model in Figure 3 (the sibling table of Table 7

in Figure 4) as an example. The table matches the pattern in Figure 7 until we encounter the label

Swissprot. If we skip Swissprot, the next label Amino Acids matches the structure pattern. In

this case, we treat Swissprot as an additional label, and we add it as an optional label as Figure 10

shows.

6 Experimental Results

We tested TISP using source pages from commercial data, scientific data, and geopolitical data.

We picked pages from each field: car advertisements for commercial data, molecular biology for

scientific data, and interesting information about US states and about countries for geopolitical

13

< table >< tr >< td >Gene Model< td >Status < td >Nucleotides(coding/transcript)
< td >Protein (< td >Swissprot)? < td >Amino Acids
(< tr > < td > VGene Model< td > VStatus < td > VNucleotides(coding/transcript)
< td > VProtein(< td > VSwissprot)? < td > VAmino Acids)

+

Figure 10: Structure Pattern for the Table in Figure 3.

data. Most of the source pages were collected from popular and well-known web sites such as

cars.com, NCBI database, Wormbase, MTB (Mouse Tumor Biology Database), CIA’s World

Factbook, and U.S. Geological Survey (usgs.gov). We tested more than 2,000 tables found in 275

sibling pages in 35 web sites. Most pages from the molecular biology domain and the geopolitical

domain have relatively complicated structures. Seven out of ten sites in the geopolitical domain

and eight out of ten sites in the molecular biology domain contained multiple data tables per

page. Two of the geopolitical sites and eight of the molecular biology sites contained nested

HTML tables.

For each web site, we randomly chose two sibling pages for initial pattern generation. For

the initial two sibling pages, we tested (1) whether TISP was able to recognize HTML data

tables and discard HTML tables used only for layout, (2) whether it was able to pair all sibling

tables correctly, and (3) whether it was able to recognize the correct pattern template or pattern

combination. For the rest of sibling pages from the same web site, we tested (1) whether TISP was

able to interpret tables using the recognized structure patterns, (2) whether it correctly detected

the need for dynamic adjustment, and (3) whether it recognized new structure patterns correctly.

We collected 75 sibling pages from 15 different web sites in the car-advertisements domain

for a total of 780 HTML tables.3 TISP correctly discarded all uses of tables for layout and

successfully paired all sibling tables. There were no nested tables in this domain. Most of the web

sites contained only one table pattern, except for one site that had three different patterns. Two

web sites contained tables with structure combinations. Of the 17 pairs of sibling tables, TISP

recognized 16 correctly. The one pattern TISP failed to recognize correctly contained too many

value cells that included the same value (values such as unknown, general car, auto, dealer, and

empty spaces). TISP considered them as labels, and thus could not match the table with any

pre-defined pattern template or detect any pattern combination. TISP successfully interpreted all

tables from the generated patterns. No adjustment were needed, neither for any path nor for any

label.

For the geopolitical information domain, we tested 100 sibling pages from 10 different web sites

with 884 HTML tables. TISP correctly paired 100% of all data tables and correctly discarded all

layout tables. For initial pattern generation, TISP was able to recognize all 22 structure patterns
3The sibling pages in this domain are usually very regular. Indeed, we found no table variations in any of the

sites we considered. We, therefore, only tested five pages per site.

14

(a)

Crime in New York by Year

(b)

Figure 11: Two Partially Misinterpreted Tables.

successfully. As TISP processed additional sibling pages, it found one additional sibling table and

correctly interpreted it. There were no path adjustments, but there were 22 label adjustments

— all of them correct. For two sets of sibling tables, TISP recognized the correct patterns, but

failed to recognize some implicit information that affects the meaning of the tables. Therefore

it interpreted these tables only partially correctly. Figure 11 shows these two cases. There are

actually two HTML tables in Figure 11a. The header Geography Mongolia is in one HTML table,

and the rest of information is in another HTML table. Because it separated tables using HTML

tags, TISP was not able to determine the relationship between these two HTML tables. TISP

correctly interpreted Figure 11b as Pattern 3. It, however, did not recognize the relationship

between Murders and per 100,000 and between Rapes and per 100,000.

We collected 100 sibling pages from 10 different web sites in the molecular biology domain for a

total of 862 HTML tables. Among these tables, TISP falsely classified three pairs of layout tables

as data tables. TISP, however, successfully eliminated these false sibling pairs during pattern

generation because it was unable to find a matching pattern. No false patterns were generated.

TISP was able to recognized 28 of 29 structure patterns. TISP missed one pattern because the

table contained too many empty cells. If it had considered empty cells as mismatches, TISP

would have correctly recognize this pattern. As TISP processed additional sibling pages, it found

5 additional sibling tables and correctly interpreted all but one of them. The failure was caused by

15

labels that varied across sibling tables causing them, in some cases, to look like values. There were

5 path adjustments and 12 label adjustments — all of them correct. One table was interpreted

only partially correctly because TISP considered the irrelevant information To Top as a header.

For measuring the overall accuracy of TISP, we computed precision (P), recall (R), and an

F-measure (F = 2PR/(P+R)). In its table recognition step, TISP correctly discarded 155 of

158 layout tables and discarded no data tables. It therefore achieved an F-measure of 99.0%

(98.1% recall and 100% precision). TISP later discarded these three layout tables in its pattern

generation step, but it also rejected two data tables, being unable to find any pattern for them. It

thus achieved an F-measure of 99.4% (100% recall and 98.8% precision). For table interpretation,

TISP correctly recognized 69 of 74 structure patterns. It therefore achieved a recall of 93.2%. Of

the 72 structure patterns it detected, 69 were correct. It therefore achieved a precision of 95.8%.

Overall the F-measure for table interpretation was 94.5% for the sites we tested.

We discuss the time performance of TISP in two phases: (1) initial pattern generation from a

pair of sibling pages and (2) interpretation of the tables in the rest of the sibling pages. The time

for the pattern generation given a pair of sibling pages consists of: (1) the time to read and parse

the two pages and locate all the HTML tables, (2) the time for sibling table comparisons, and (3)

the time to select from pre-defined structure templates and generate a pattern. The complexity

of parsing and locating HTML tables is O(n), where n is the number of HTML tags. The simple

tree matching algorithm has time complexity O(m1m2), where m1 and m2 are the numbers of

nodes of the two sibling trees. To find the best match for each HTML table, we need to compare

each table with all the HTML tables in its sibling page. The time complexity is O(km1m2), where

k is the number of HTML tables in the sibling page. The time complexity for finding the correct

pattern for each matched sibling table is O(pl), where p is the number of pattern templates

and l is the number of leaf nodes in the HTML table. If pattern combinations are involved,

the complexity of template discovery increases multiplicatively since for each subgroup we must

consider every template and find the best match. We conducted the experiment on a Pentium 4

computer running at 3.2 GHz. The typical actual time needed for the pattern generation for a

pair of sibling pages was below or about one second. The actual time reached a maximum of 15

seconds for a complicated web site where pages had more than 20 tables.

The time for table interpretation for a single sibling web page when no adjustment is necessary

consists of: (1) the time for locating each table and (2) the time for processing the table with a

pattern. The complexity of locating a table is O(p), where p is the number of path possibilities

leading to the table. Each path possibility is itself logarithmic with respect to the number of nodes

in the DOM tree for the pages. The complexity of matching a located table with the corresponding

pattern is O(el), where e is the number of pattern entries (an entry could be either a pattern label

or a pattern value) of the pattern and l is the number of leaf nodes in the HTML table’s DOM

16

tree. The time to do adjustments ranges from the time to do a simple label adjustment, which is

constant, to the time required to re-evaluate all sibling tables, which is the same as the time for

initial pattern generation. Overall, the typical actual time needed for interpreting tables in one

page was below one second. The actual time reached a maximum of 19 seconds for a complicated

web page with several tables and several adjustments.

7 Semantic Ontology Generation

After we obtain the structure pattern for a web site, we can conceptualize the information present

in the tables by generating an ontology according to the structure pattern. TISP++ uses a

structure pattern to generate OWL classes, properties, and constraints according to the structure

pattern. It then uses Jena [3], a semantic web framework for Java, to output the OWL ontology.

For each web site, we choose a name. This name provides an anchor to which we attach

ontological concepts. For example, we call the WormBase gene repository “WormBaseGene”.

TISP++ generates the class “WormBaseGene” for the Worm Base gene repository. Line 5 in

Figure 12 shows the OWL class “WormBaseGene”.

For each label, TISP++ either generates an OWL class or a data type property. If a label is

paired with a nested table such as are the labels Identification and Gene model(s) in Figures 1

and 3, TISP++ generates an OWL class for the label as Lines 9 and 11 in Figure 12 show. If

a label is paired with an actual value such as are the labels Gene Model and Amino Acids in

Figure 1 and 3, TISP++ generates an OWL data type property for this label, as Lines 25, 29,

and 34 in Figure 12 show.

The generated ontology also represents the relationships among the labels. TISP++ interprets

tables according to the structure patterns in Figure 6. For patterns such as Pattern 1 and Pattern

2 that only involve binary relationships, relationship generation is straightforward. For the rela-

tionship between a label A defined by an OWL class and a label B defined by an OWL data type

property (such as the relationship between Gene Model(s) and Gene Model in Figure 1), TISP++

defines A as the domain and B as the range with string as its type by default. As Figure 12, Lines

21-24 show, we define the DatatypeProperty GeneModel as a string whose domain is the already

defined class Genemodels. If the data type property is optional, as is Swissprot in Figure 10,

we add a minCardinality declaration allowing zero occurrences. Line 26 in Figure 12 shows this

minCardinality declaration for Swissprot. For the relationships between two classes A and B,

TISP++ generates an OWL object property: A- -B and its inverse B- -A. For the property A- -B,

TISP++ defines A as the domain and B as the range. For example, Lines 9–15 in Figure 12 show

the OWL object property for WormBaseGene- -Identification.

For patterns such as Pattern 3 that involve n-ary relationships, relationship generation requires

a preparatory transformation. Since OWL ontologies only allow us to declare binary relationships,

17

1. <rdf:RDF...
2. xmlns:owl=“http://www.w3.org/2002/07/owl#”
3. xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”
4. xmlns:base =“http://dithers.cs.byu.edu/owl/ontologies/wormbase#”... >

...
5. <owl:Ontology rdf:about=“”>
6. <rdfs:comment>OWL Ontology for WormBase </rdfs:comment>
7. <rdfs:label>WormBase Ontology</rdfs:label>
8. </owl:Ontology>
9. <owl:Class rdf:ID=“WormBaseGene”/>
10. <owl:Class rdf:ID=“Identification”/>
11. <owl:Class rdf:ID=“Genemodels”/>
12. ...
13. <owl:ObjectProperty rdf:ID=“WormBaseGene- -Identification”>
14. <owl:inverseOf>
15. <owl:ObjectProperty rdf:ID=“Identification- -WormBaseGene”>
16. </owl:inverseOf>
17. <rdfs:range rdf:resource=“#Identification”/>
18. <rdfs:domain rdf:resource=“#WormBaseGene”/>
19. </owl:ObjectProperty>
20. ...
21. <owl:ObjectProperty rdf:ID=“Identification- -IDs”>
22. ...
23. <owl:ObjectProperty rdf:ID=“Identification- -Genemodels”>
24. ...
25. <owl:DatatypeProperty rdf:ID=“GeneModel”>
26. <rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#string”/>
27. <rdfs:domain rdf:resource=“#Genemodels”/>
28. </owl:DatatypeProperty>

...
29. <owl:DatatypeProperty rdf:ID=“Swissprot”>
30. <owl:minCardinality>0</owl:minCardinality>
31. <rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#string”/>
32. <rdfs:domain rdf:resource=“#Genemodels”/>
33. </owl:DatatypeProperty>
34. <owl:DatatypeProperty rdf:ID=“AminoAcids”>
35. <rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#string”/>
36. <rdfs:domain rdf:resource=“#Genemodels”/>
37. </owl:DatatypeProperty>
38. ...
39. </rdf:RDF>

Figure 12: Partial OWL Ontology for WormBase.

18

we transform Pattern 3 in Figure 6 by considering the label L in the third line “(< tr >< (td|th) >

{L}(< (td|th) > {V }(n−1))+” as a value V. Then it becomes “(< tr >< (td|th) >{V}(< (td|th) >

{V }(n−1))+” and can be further simplified to “(< tr > (< (td|th) > {V })n)+”, which is the same

as Pattern 1. Therefore TISP++ can transform n-ary relationships to binary relationships and

then translate them as binary relationships to OWL.

8 Semantic Annotation and Querying

After TISP++ generates an ontology according to the structure pattern of a web repository, it

automatically annotates the pages from this repository with respect to the generated ontology.

Figure 13 shows a partial graphical view of the annotated RDF triples for the page in Figure 1.

An oval with a solid border represents an OWL class. A dashed oval represents a URI instance.

A rounded rectangle represents a value. A line represents an OWL property, and the text on

the line indicates the name space and the name of the property. For example, the URI instance

#WormBaseGene, which refers to the whole table, is a URI instance for the WormBaseGene

class in the wormbase ontology in Figure 12. The URI instance #Identification, which refers

to the value of the label Identification in Table 4 in Figure 4, is a URI instance of the class

Identification in the wormbase ontology. Since Table 7 in Figure 4 has two data rows, TISP++

declares URI instances: #Genemodels1 and #Genemodels2, one for each row. TISP++ also

declares the relationship between two URI instances. For example, TISP++ declares relation-

ships WormBaseGene- -Identification and its reverse Identification- -WormBaseGene. TISP++

also declares relationships between instances and values. For example, the Protein value for

#Genemodels1 is “WP:CE18608”.

Figure 13: Graphical View of the RDF Annotation of Figure 1 for the Ontology in Figure 12.

19

1. <rdf:RDF ...
2. xmlns:wormbase=“http://www.deg.byu.edu/ontology/wormbase#”
3. xmlns:ann=“http://www.deg.byu.edu/ontology/annotationSpecification#”
4. xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

...
5. <wormbase:WormBaseGene rdf:about=“http://localhost/wormbase.html#WormBaseGene”>
6. <wormbase:WormBaseGene- -Identification

rdf:resource=”http://localhost/wormbase.html#Identification”>
7. </wormbase:WormBaseGene>
8. <wormbase:Identification rdf:about=”http://localhost/wormbase.html#Identification”>
9. <wormbase:Identification- -WormBase> ...
10. <wormbase:Identification- -Genemodels>
11. <wormbase:Genemodels rdf:about=“http://localhost/wormbase.html#Genemodels1”>

...
12. <wormbase:Protein>WP:CE18608</wormbase:Protein>
13. <wormbase:AminoAcids>342 aa</wormbase:AminoAcids>
14. <ann:Path>/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/

tr[1]/td[2]/table/tr[2]</wormbase:Path>
15. <wormbase:Genemodels rdf:about=“http://localhost/wormbase.html#Genemodels2”>

...
16. <wormbase:Protein>WP:CE28918</wormbase:Protein>
17. <wormbase:AminoAcids>406 aa</wormbase:AminoAcids>

...
...

18. </rdf:RDF>

Figure 14: Annotation for Figure 1 for the Ontology in Figure 12.

Figure 14 shows a portion of the corresponding RDF file for the RDF graph in Figure 13. In an

RDF annotation file, we first declare the name spaces of referenced ontologies. Line 2 in Figure 14

refers to the wormbase ontology in Figure 12, and Lines 3 and 4 declare additional name spaces.

Annotated values appear as themselves, tagged with their appropriate labels. For example, the

protein value “WP:CE18608” is in Line 12. To identify the annotated string in the original page,

TISP++ keeps track of the original position where the values are located by recording the XPath

to the node in the DOM tree of the cached page, a local copy of the original page, containing the

values. Line 14 in Figure 14, for example, shows where we can locate the first row of values for

Table 7 in Figure 4.

With the annotated data properly stored in an RDF file (e.g. Figure 12), we are now ready

to query the annotated data using SPARQL [4]. We adapt Twinkle [5] as our SPARQL query

interface. A simple query illustrates how it works. Suppose we want to find the protein and the

animo-acids information for gene “cdk-4”, then we can write the SPARQL query in Figure 15.

Figure 15, which is a screen shot of our adaption of Twinkle, also shows the query and the result

of this query. The SPARQL query first finds the URI instance #IDs whose wormbase:CGCname

contains “cdk-4” as specified in the first and last two lines of the WHERE clause. It then finds the

URI instance #Identification through the wormbase:IDs- -Identification relationship and then URI

instances #Genemodels1 and #Genemodels2 through the wormbase:Identification- -Genemodels

20

relationship. Finally it can locate the results by finding the Protein and AminoAcids values

respectively through the relationships wormbase:Protein and wormbase:AminoAcids.

Figure 15: A Sample SPARQL Query and the Results for the Annotation in Figure 13

We now make hidden web data present in HTML tables completely accessible by a standard

query system. In addition, it also semantically annotates the data with respect to the generated

OWL ontology, so that the data becomes machine-understandable and automatically manipulat-

able by by computer agents.

9 Related Work

9.1 Sibling Page Comparison

Other researchers have also tried to take advantage of sibling pages. RoadRunner [13] compares

two HTML pages from one web site and analyzes the similarities and dissimilarities between

them in order to generate extraction wrappers. It discovers data fields by string mismatches and

discovers iterators and optionals by tag mismatches. EXALG [7] uses equivalence classes (sets of

items that occur with the same frequency in sibling pages) and differentiating roles to generate

extraction templates for the sibling pages. DEPTA [50] compares different records in a page

instead of sibling pages and tries to find the extraction template for the record. This approach

first tries to find individual data records by using a few heuristics. It then uses a tree edit distance

algorithm to compare different data records and tries to find the extraction region. The approach

in [30] compares sibling pages to filter out general headers and footers and other constant non-data

21

areas of a page. It then makes various comparisons among main pages and linked pages to find

record segmentations.

TISP fundamentally differs from these approaches. The first three [7, 13, 50] focus on finding

data fields, and the technique in [30] focuses on record segmentation. They do not discover labels

or try to associate data and labels. TISP focuses on table interpretation. It looks for a table

pattern in addition to data fields. Furthermore, TISP also tries to find the general structure

pattern for the entire web site. It dynamically adjusts the structure pattern as it encounters new,

yet-unseen structures.

9.2 Table Interpretation

Automated table processing is typically done in two steps: (1) table recognition — find the data

table, and (2) table interpretation — find and associate labels and values. Recent surveys [20, 49]

describe the vast amount of research that has been done in table processing and illustrate the

challenges of automated table processing. Most of this work is about tables in imaged documents,

but some is about HTML tables. Since we focus in this paper only on HTML tables, we limit the

related work we discuss to only HTML table processing.

Several researches have tried to differentiate data tables from tables for layout [9, 12, 24, 46].

They have tried to use machine learning methods [12, 46], visual level features [24, 25], and

linguistic features [9]. TISP provides a unique way to do this task when sibling pages are available.

By considering the match percentage among potential sibling tables, we were able to filter out all

the layout tables in the car and geopolitical domain and only failed to filter out three pairs of tables

out of more than 800 HTML tables from the molecular biology domain (These three false positives

were also filtered out during the process of pattern generation). The approaches [9, 12, 24, 46]

were able to achieve F-measures of 86.5% [9], 95.5% [12], 90.0% [24], and 87.6% [46]. By way of

comparison, TISP was able to achieve an F-measure of 99.4%. TISP techniques, of course, only

work when sibling pages and tables are available.

Several papers have discussed the HTML table interpretation problem. Some table interpre-

tation systems work based on simple assumptions and heuristics (e.g. [9, 21, 22, 27, 31]). These

simple assumptions (labels are either the first few rows or the first few columns) are easily broken

in complex tables such as nested tables (e.g. Figure 1) or tables with combination structures (e.g.

Figure 8). The approach in [35] presents a table interpretation system for automatic generation

of F-logic frames for tables. It considers many linguistic features in a table such as alphabetic

features, numeric features, number ranges, and data formats. It calculates differences among dif-

ferent regions of a table to detect the orientation of a table and to locate label cells and value

cells. The average F-measure of this approach is around 50%. The technique in [41] learns lexical

variants from training examples and uses a vector space model to deal with non-exact matches

22

among labels. It also uses a few heuristics to find the association among labels and values. It

achieves an F-measure of 91.4%. The approach in [25] uses visual boxes instead of HTML tags

to interpret HTML tables. It achieves an F-measure of 52.1% (the precision value was 57% and

the recall value was 48%). By way of comparison, TISP is able to achieve an F-measure of 94.5%.

Of course, TISP techniques only work when HTML sibling tables are available. On the other

hand, when applicable, TISP has the advantage over machine learning because it is unsupervised

and document and web-site independent. TISP has no need for training data and works for all

domains and web sites where sibling pages with sibling tables are available.

9.3 Ontology Generation

In recent years, many researches have tried to facilitate ontology generation. Manual editing

tools such as Protégé [33] and OntoWeb [37] have been developed to help users create and edit

ontologies. It is not trivial, however, to learn ontology modeling languages and complex tools in

order to manually create ontological description for information repositories.

Because of the difficulties involved in manual creation, researchers have developed semi-

automatic ontology generation tools. Most efforts so far have been devoted to automatic gen-

eration of ontologies from text files. Tools such as OntoLT [8], Text2Onto [11], OntoLearn [32],

and KASO [47] use machine learning methods to generate an ontology from arbitrary text files.

These tools usually require a large training corpus and use various natural language processing al-

gorithms to derive features to learn ontologies. The results, however, are not very satisfactory [34].

Tools such as SIH [40], TANGO [43], and the one developed by Pivk [34] use structured

information (HTML tables) as a source for learning ontologies. Structured information makes it

easier to interpret new items and relations. The approach in [34] tries to discover semantic labels

for table regions and generate an ontology based on a table’s structure. But how this process

is done and what format the generated ontologies have is not discussed in the paper. SIH [40]

and TANGO [43] are two ongoing projects we are currently working on. SIH tries to generate

user-specified ontologies depending on user-generated forms. TANGO generates ontologies by

analyzing related tables in a specific domain, generating an ontology according to each table, and

then merging these ontologies to a general ontology for the domain. TISP++ can generate OWL

ontologies fully automatically. It, however, only generates an ontology for a single set of sibling

pages. It does not merge ontologies generated from different web sites, nor does it provide for

user-specified ontologies. In addition, TISP++ generates ontologies in only one simple way, while

TANGO aims at generating more sophisticated ontologies.

23

9.4 Semantic Annotation

Existing semantic annotation systems can be classified into pattern-based systems and machine

learning-based systems. Pattern-based systems such PANKOW [10] and Armadillo [17] find

entities by discovering patterns. The pattern are either discovered manually or induced semi-

automatically with a set of initial manually tagged seed patterns. Systems such as SemTag [14],

AeroDAML [29], and KIM [36] use a set of pre-defined rules to locate the information of interest.

OWL-AA [15, 16] uses a domain-specified extraction ontology to locate semantic entities. Sys-

tems such as S-CREAM [26] and MnM [44] use machine learning algorithms and natural language

processing methods to locate semantic entities. All of these approaches require some pre-defined

information. Pattern-based approaches need a set of initial seed patterns. Rule-based approaches

need a set of pre-defined rules. Extraction-ontology-based approaches need domain ontologies.

And machine learning-based approaches need a training corpus. TISP++, however, does not

require predefined information of any kind and still works well when sibling pages are available.

10 Conclusion and Future Work

In this paper we introduced TISP, an approach to automatically interpret tables in hidden-web

pages — pages which are almost always sibling pages. By comparing data tables in sibling pages,

TISP is able to find the location of table labels and data entries and pair them to infer the

general pattern for all sibling tables from the same site. Our experiments using source pages from

three different domains — car advertisements, molecular biology, and geopolitical information —

indicate that TISP can succeed in properly interpreting tables in sibling pages. TISP achieved an

F-measure for sibling table interpretation of 94.5%.

We also extended TISP to TISP++. TISP++ uses TISP results to semantically annotate web

pages, turning their embedded facts into externally accessible facts. Given an interpreted table,

TISP++ automatically generates an OWL ontology depending on the table’s structure and then

semantically annotates the data in the table with respect to this generated ontology. By doing so,

all the data present in the sibling tables becomes accessible through a standard query interface.

Several directions remain to be pursued. For TISP and table interpretation, we would like

to do the following. (1) We assumed that information in one table cell is either a table label or

a table value. There could be structured information within a cell, however, such as the label

via person and the value Michael Krause in Figure 1. As a future work on table interpretation,

we would like to analyze cell content to find structured information within cells. (2) Some web

pages use lists as tables; we would like to consider them too. (3) We would also like to interpret

non-HTML tables such as tables in plain text. (4) We would also like to be able to deal with the

case in Figure 11a, where we need to join adjacent HTML tables to form a single table, and we

24

would like to improve TISP so that it can interpret tables with factored labels such as those in

Figure 11b.

For TISP++ and semantic ontology generation and semantic annotation, we would like to do

the following. (1) Average web users need a more user-friendly query system, so that they can

find data of interest without knowing SPARQL. We plan to provide our users wirh a natural-

language-based query interface (e.g. like [6]) and a form-based query interface (e.g. like [19]). (2)

We plan to generate ontologies according to a user’s personalized view. Our users would have

the option to choose which data in a table they want include in the generated ontology and how

this data should be organized. (3) We would like to generate more sophisticated ontologies that

cover more complicated situations such as n-ary relationships, generalization/specialization, and

aggregation.

References

[1] Worm base! http://www.wormbase.org, 2005.

[2] XML Path Language (XPath). http://www.w3.org/TR/xpath, 2006.

[3] Jena — A Semantic Web Framework for Java. http://jena.sourceforge.net/, 2008.

[4] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/, 2008.

[5] Twinkle: A SPARQL Query Tool. http://www.ldodds.com/projects/twinkle/, 2008.

[6] M.J. Al-Muhammed. Ontology Aware Software Service Agents: Meeting Ordinary User Needs

on the Semantic Web. PhD thesis, Brigham Young University, 2007.

[7] A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In Proceedings of

the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03),

pages 337–348, San Diego, California, 2003.

[8] P. Buitelaar, D. Olejnik, and M. Sintek. Ontolt: A Protégé plug-in for ontology extraction

from text based on linguistic analysis. In Proceedings of the First European Semantic Web

Symposium (ESWS’04), pages 31–44, Heraklion, Greece, May 2004.

[9] H. Chen, S. Tsai, and J. Tsai. Mining tables from large scale HTML texts. In Proceedings of

the 18th International Conference on Computational Linguistics (COLING’00), pages 166–

172, Saarbrücken, Germany, July–August 2000.

[10] P. Cimiano, S. Handschuh, and S. Staab. Towards the self-annotating web. In Proceedings

of the 13th International Conference on World Wide Web (WWW’04), pages 462–471, New

York, New York, May 2004.

25

[11] P. Cimiano and J. Völker. Text2Onto—a framework for ontology learning and data-driven

change discovery. In Proceedings of the 10th International Conference on Applications of

Natural Language to Information Systems (NLDB’05), pages 227–238, Alicante, Spain, June

2005.

[12] W.W. Cohen, M. Hurst, and L.S. Jensen. A flexible learning system for wrapping tables

and lists in HTML documents. In Proceedings of the 11th International World Wide Web

Conference (WWW’02), pages 232–241, Honolulu, Hawaii, May 2002.

[13] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic data extraction

from large web sites. In Proceedings of the 27th International Conference on Very Large Data

Bases (VLDB’01), pages 109–118, Rome, Italy, September 2001.

[14] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S. Mccurley,

S. Rajagopalan, and A. Tomkins. A case for automated large-scale semantic annotation.

Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 1(1):115–

132, December 2003.

[15] Y. Ding, D.W. Embley, and S.W. Liddle. Automatic creation and simplified querying of se-

mantic web content: An approach based on information-extraction ontologies. In Proceedings

of the First Asian Semantic Web Conference (ASWC’06), pages 400–414, Beijing, China,

September 2006.

[16] Y. Ding, D.W. Embley, and S.W. Liddle. Enriching OWL with instance recognition semantics

for automated semantic annotation. In Proceedings of the First International Workship on

Ontologies and Information Systems for the Semantic Web (ONISW’2007), Auckland, New

Zealand, November 2007.

[17] A. Dingli, F. Ciravegna, and Y. Wilks. Automatic semantic annotation using unsupervised

information extraction and integration. In Proceedings of the Third International Confer-

ence on Knowledge Capture (K-CAP’03), Workshop on Knowledge Markup and Semantic

Annotation, Sanibel Island, Florida, October 2003.

[18] The W3C architecture domain. http://www.w3.org/dom/, 2005.

[19] D.W. Embley. NFQL: the natural forms query language. ACM Transactions on Database

Systems, 14(2):168–211, 1989.

[20] D.W. Embley, M. Hurst, D. Lopresti, and G. Nagy. Table processing paradigms: A research

survey. International Journal of Document Analysis and Recognition, 8(2-3):66–86, June

2006.

26

[21] D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting ontologically specified

data from HTML tables with unknown structure. In Proceedings of the 21st International

Conference on Conceptual Modeling (ER’02), pages 322–327, Tampere, Finland, October

2002.

[22] D.W. Embley, C. Tao, and S.W. Liddle. Automating the extraction of data from HTML

tables with unknown structure. Data & Knowledge Engineering, 54(1):3–28, July 2005.

[23] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American

Mathematics Monthly, 69(1):9–14, 1962.

[24] W. Gatterbauer and P. Bohunsky. Table extraction using spatial reasoning on the CSS2

visual box model. In Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI’06), pages 1313–1318, Boston, Massachusetts, July 2006.

[25] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak. Towards domain-

independent information extraction from web tables. In Proceedings of the 16th International

World Wide Web Conference (WWW’07), pages 71–80, Banff, Canada, May 2007.

[26] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM — Semi-automatic CREAtion of

Metadata. In Proceedings of the 13th International Conference on Knowledge Engineering

and Knowledge Management (EKAW’02), pages 358–372, Siguenza, Spain, October 2002.

[27] W. Holzinger, B. Krüpl, and M. Herzoge. Using ontologies for extracting product fea-

tures from web pages. In Proceedings of the Fifth International Semantic Web Conference

(ISWC’06), pages 286–299, Athens, Georgia, November 2006.

[28] P.G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and classify: categorizing hidden

web databases. In Proceedings of the 2001 ACM SIGMOD International Conference on

Management of Data (SIGMOD’01), pages 67–78, Santa Barbara, California, May 2001.

[29] P. Kogut and W. Holmes. AeroDAML: Applying information extraction to generate DAML

annotations from web pages. In Proceedings of the of the First International Conference on

Knowledge Capture (K-CAP’01) Workshop on Knowledge Markup and Semantic Annotation,

Victoria, British Columbia, 2001.

[30] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the structure of web sites for

automatic segmentation of tables. In Proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data (SIGMOD’04), pages 119–130, Paris, France, 2004.

27

[31] S. Lim and Y. Ng. An automated approach for retrieving heirarchical data from HTML

tables. In Proceedings of the Eighth International Conference on Informaiton and Knowledge

management (CIKM’99), pages 466–474, Kansas City, Missouri, November 1999.

[32] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri. Quantitative and qualitative evaluation of

the OntoLearn ontology learning system. In Proceedings of the 20th International Conference

on Computational Linguistics, pages 1043–1050, Geneva, Switzerland, August 2004.

[33] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson, and M. Musen. Creating se-

mantic web contents with Protègè-2000. IEEE Intelligent Systems, 16(2):60–71, March/April

2001.

[34] A. Pivk. Automatic ontology generation from web tabular structures. AI Communications,

19(1):83–85, 2006.

[35] A. Pivk, P. Cimiano, and Y. Sure. From tables to frames. In Proceedings of the Third Inter-

national Semantic Web Conference (ISWC’04), pages 166–181, Hiroshima, Japan, November

2004.

[36] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov. KIM — a semantic platform

for information extraction and retrieval. Natural Language Engineering, 10(3-4):375–392,

2004.

[37] P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and R. Meersman.

OntoWeb—a semantic web community portal. In Proceedings of the 5th International Con-

ference on Practical Aspects of Knowledge Management (PAKM’02), pages 189–200, Vienna,

Austria, December 2002.

[38] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM, 26(3):422–433, 1979.

[39] C. Tao and D.W. Embley. Automatic hidden-web table interpretation by sibling page compar-

ison. In Proceedings of the 26th International Conference on Conceptual Modeling (ER’07),

pages 560–581, Auckland, New Zealand, November 2007.

[40] C. Tao and D.W. Embley. Seed-based generation of personalized bio-ontologies for informa-

tion extraction. In Proceedings of the First International Workshop on Conceptual Modelling

for Life Sciences Applications (CMLSA’07), pages 74–84, Auckland, New Zealand, November

2007.

[41] A. Tengli, Y. Yang, and N.L. Ma. Learning table extraction from examples. In Proceedings the

20th International Conference on Computational Linguistics (COLING’04), pages 987–993,

Geneva, Switzerland, August 2004.

28

[42] C.A. Thompson, M.E. Califf, and R.J. Mooney. Active learning for natural language parsing

and information extraction. In Proceedings of 16th International Conference on Machine

Learning, pages 406–414, Bled, Slovenia, June 1999.

[43] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy. Toward ontology gener-

ation from tables. World Wide Web: Internet and Web Information Systems, 8(3):251–285,

September 2004.

[44] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna. MnM:

Ontology driven semi-automatic and automatic support for semantic markup. In Proceedings

of the 13th International Conference on Knowledge Engineering and Knowledge Management

(EKAW’02), pages 379–391, Siguenza, Spain, October 2002.

[45] X. Wang. Tabular Abstraction, Editing, and Formatting. PhD thesis, Univeristy of Waterloo,

1996.

[46] Y. Wang and J. Hu. A machine learning based approach for table detection on the web.

In Proceedings of the 11th International Conference on World Wide Web (WWW’02), pages

242–250, Honolulu, Hawaii, May 2002.

[47] Y. Wang, J. Völker, and P. Haase. Towards semi-automatic ontology building supported by

large-scale knowledge acquisition. In AAAI Fall Symposium On Semantic Web for Collab-

orative Knowledge Acquisition, volume FS-06-06, pages 70–77, Arlington, Virginia, October

2006.

[48] W. Yang. Identifying syntactic differences between two programs. Software Practice and

Experience, 21(7):739–755, 1991.

[49] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table recognition. International Journal

of Document Analysis and Recognition, 7(1):1–16, 2004.

[50] Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In Proceedings

of the 14th International Conference on World Wide Web (WWW’05), pages 76–85, Chiba,

Japan, May 2005.

29

