Some answers to questions about ontology from the DEG point of view

By Yuri Tijerino

1. Tell us what an ontology is (exactly)
Common Definitions
(1) In philosophy, it means theory of existence. It tries to explain what is “being” and how the world is configured by introducing a system of critical categories to account things and their intrinsic relations.

(2) From AI point of view, an ontology is defined as “explicit specification of a conceptualization” [Gruber], a definition that is widely accepted in AI community. “Conceptualization” here should be interpreted as intensional” rather than “extensional” conceptualization contrary to that defined in [Genesereth 87].

(3) From knowledge-based systems point of view, Mizoguchi [Mizoguchi 95] defines it as “a theory (system) of concepts/ vocabulary used as building blocks of an information processing system”. In a context of problem solving, ontologies are divided into two types: Task ontology for problem solving process and domain ontology for the domain where the task is performed.

(4) Another definition given by Gruber [Gruber] states that ontologies are agreements about shared conceptualizations. Shared conceptualizations include conceptual frameworks for modeling domain knowledge; content-specific protocols for communication among inter-operating agents; and agreements about the representation of particular domain theories. In the knowledge sharing context, ontologies are specified in the form of definitions of representational vocabulary. A very simple case would be a type hierarchy, specifying classes and their subsumption relationships. Relational database schemata also serve as ontologies by specifying the relationships that can exist in some shared database and the integrity constraints that must hold for them.

(5) A widely accepted compositional definition is that an ontology consists of concepts, hierarchical (is-a) organization of concepts, relations among concepts and (in addition to is-a and part-of) axioms to formalize other definitions and relations.
(6) Although at the BYU Data Extraction Group we subscribe to Gruber’s definitions given above [Gruber], our ontologies have a stronger extensional connotation similar to Genesereth [Genesereth 87]. We define ontologies from the data extraction point of view and thus refer to them as data extraction ontologies. Data extraction ontologies emphasize the role of extensional semantics in addition to intensional semantics as a means to declaratively direct information extraction. A data extraction ontology specifies named sets of objects, which we call object sets or concepts, and named sets of relationships among object sets, which we call relationship sets. The extraction ontology has two types of concepts: lexical concepts and nonlexical concepts. A concept is lexical if its instances are indistinguishable from their representations. A concept is nonlexical if its instances are object identifiers, which represent real-world objects. Since lexical concepts have an intensional role, while nonlexical concepts are extensional in nature. Nonlexical concepts are paramount for data extraction ontologies since they bridge the gap between the intensional semantics of the ontology and objects in target data extraction sources. We claim that our data extraction ontologies fit all of the widely accepted definitions provided above from the intensional point of view, but what sets them is their explicit extensional semantics, which link (recognize, classify, map or align?) objects in target data extraction sources to the intensional semantics of the ontology itself. It is possible that Mizoguchi’s definition of two types of ontologies also fit this paradigm in the sense that task ontologies also have an intensional semantics component represented by processes and relationships about processes, and an extensional semantics component represented by problem-solving building blocks which translate to code [Tijerino et al 93]
Accepted Exclusions
It is difficult to define exactly what an ontology is because of this let’s first define what an ontology is not. In short, an ontology is not just a conceptual hierarchy of terms, which seems to be the most commonly used definition. If an ontology was nothing more than a conceptual hierarchy, then there would be no merit to ontological engineering or ontological science. In order to define ontologies properly, let us discuss what an ontology is not.

(a) An ontology is not just a set of terms

While an ontology provides us with a common vocabulary, a vocabulary, which is just a set of terms, cannot be said to be an ontology as it is. An ontology needs to consists of at least an is-a hierarchy of concepts. This is partly because it reveals the proper classification of concepts that show the inherent structure of the target world. The reason why an is-a hierarchy of concepts is indispensable is discussed later. Furthermore, there should be a clear distinction between terms/words and concepts. The former are nothing but “names” of the latter, while an ontology is a theory about concepts rather about terms or words. An ontology does not care about how the concept is called but rather what they mean and how they are related to other concepts. Ontologies need to label concepts with appropriate names or words so that the concepts can be readily understood by people, but it is the formal definition that needs to be understood by machines what really matters. Therefore, although an ontology must have at least an is-a hierarchy, just because it does doesn’t mean that it is an ontology unless other conditions as described below.
(b) An ontology is not just a simple hierarchy of concepts

An ontology may include an is-a taxonomy of concepts, but not all is-a taxonomies can be considered ontologies. For example a simple classification of vehicles which includes concepts such as ground vehicle, car, motor bike, ship and air craft does nothing to explain or to define what a vehicle is. In order to clearly understand what a vehicle is, you need to know more concepts such as what function it has, what attribute it has, what machinery it has, how it works in what social environment, etc. Without these concepts, you cannot build a vehicle world. A simple hierarchy of such concepts can be transformed into an ontology by providing descriptions of such concepts. In order to provide a better description, it is important to introduce the part-of relationship among concepts, which plays a crucial role in defining the meaning of specific concepts based, not only from the hierarchical point of view, but also from the compositional point of view. An ontology also requires attributes or properties that serve to describe specific characteristics associated to its conceptual definitions. These part-of relationships and attributes could be inherent in the ontology representation language or provided later through axiomatic descriptions of the concepts contained therein.
(c) An ontology is not just a collection of axioms

Although an ontology may require the use of axioms to specify conceptualizations, axioms alone are not enough to construct an ontology. An ontology requires that axioms refer to specific concepts found in the ontology. Because all attributes, properties and relations including is-a and part-of can be described through axioms, it follows that a simple collection of attributes, properties and relations cannot be considered an ontology either.

(d) A knowledge representation does not constitute an ontology

There is a persistent misconception that ontology representation languages are ontologies themselves. This cannot be further from the truth. For instance, although an ontology can have characteristics from both semantic networks (concepts linked through explicit relationships) and frame system (slots, properties and attributes), an ontology is neither just a semantic network nor is it just a frame system. Neither is a semantic network representation language or frame system an ontology. Although an ontology inherently includes an is-a hierarchy of concepts, it does not matter whether it is represented by semantic network or frame. In other words, whether a certain thing is an ontology or not is independent of how it is represented. This is true also for commonly used ontology representation languages such as RDF, RDFS, OWL or OWLS. Tools such as Protégé or ontoligua are not ontologies either.

(e) An ontology is not a conceptual schema for a database

While databases organize heterogeneous data for easy storage and retrieval in a centralized repository under a common and rigid conceptual schema not easily shareable by other databases, an ontology describes a decentralized conceptual specification of distributed information sources. Furthermore, while a conceptual schema may be in some cases shared across applications and organizations, it is not a requirement that its conceptual descriptions be given rigid explicit specifications that can be share or used in other databases. It is also not a requirement, nor is it possible that conceptual schemas be defined in terms of other conceptual schemas. The explicitness of a schema object is given by the contents of objects sets, while the explicitness of a concept in an ontology, which can be shared by other ontologies, defines what characteristics must be present in the object set.
(f) An ontology is really not an ontology if it is a closed ontology

A close ontology is one that “does not make reference to or is referred by” other ontologies. If an ontology is a closed ontology its concepts, relationships, attributes and axioms are stand alone and it does not meet the basic definition of a “explicit specification of a conceptualization” because its explicitness is confined to a close world. The explicitness of the specifications becomes more so as the ontology is open and includes explicit specifications which are based on other well-accepted ontologies.
In order to accomplish this explicitness, it is important that the ontology consists of carefully chosen explicit specifications based on top-level ontologies which are reliable enough to explain lower-level concepts. If an ontology is just a closed ontology, then it is more of a conceptual schema for a database than an ontology.
Commonly accepted roles of ontologies
In furthering the discussion about ontologies, it is also important to describe them from the point of view of the role they play. The following are some roles commonly attributed to ontologies:
(a) A common vocabulary for agents involved
The description of the target world needs a vocabulary agreed by people involved. While a vocabulary itself does not constitute an ontology, it is true that one of the fundamental roles of an ontology is to provide a common vocabulary and common understand of the vocabulary among the agents who will use the ontology, whether the agents are people or software artifacts.
(b) A data structure useful for information description and exchange

 An ontology is to information what a conceptual schema is to data in a database. In this sense, an ontology provides us with a data structure appropriate for information description and exchange. While databases organize heterogeneous data for easy storage and retrieval in a centralized repository under a common and rigid conceptual schema not easily shareable by other databases, an ontology describes a decentralized conceptual specification of distributed information sources.
(c) Explication of what is left implicit.

In all of the human activities, we find presuppositions/assumptions which are left implicit. Typical examples include definitions of common and basic terms, relations and constraints among them, and viewpoints for interpreting the phenomena and target structure common to the tasks they are usually engaged in. Any knowledge base built is based on a conceptualization possessed by the builder and is usually left implicit. An ontology is an explication of such implicit knowledge. An explicit representation of such assumptions and conceptualization is more than a simple explication. Although it might be hard to be properly appreciated by people who have no experience in such representation, its contribution to knowledge reuse and sharing is more than expectation considering that the implicitness has been one of the crucial causes of preventing knowledge sharing and reuse.

(d) Semantic interoperability
Metadata used in semantic web is built on the basis of an ontology which constrains and partially defines the meaning of each tags and values. Interpretation and translation of the metadata can be done via ontologies. Ontologies thus play the role of glue which guarantees semantic interoperability among metadata.

(e) Explication of design rationale
An ontology contributes to explication of assumptions, implicit preconditions required by the problems to solve as well as the conceptualization of the target object which reflects those assumptions. In diagnostic systems, for instance, fault classes diagnosed and range of the diagnostic inference are typical examples.

(f) Systematization of knowledge

Knowledge systematization requires well-established vocabulary/concepts in terms of which people describe phenomena, theories and target things under consideration. An ontology thus contributes to providing backbone of systematization of knowledge.

(g) Meta-model function

A model is usually built in the computer as an abstraction of the real-world target. And, an ontology provides us with concepts and relations among them which are used as building blocks of the model. Thus, an ontology specifies the models to build by giving guidelines and constraints which should be satisfied.

(h) Theory of content

An ontology provides us with “a theory of content” that enables to create content rich in semantic representation. The use of shared ontologies for creation and annotation of content would help us avoid common ad-hoc methodologies which result in non-interoperable representations such as those widely used in the Web today. If this theory of content is widely accepted an implemented key-word based search engines would play a less important role.
Why upper ontologies are so important
Philosophers have tackled what is being for about two thousands years. The portion of their work includes higher level categories which explain what exist in the world, which is called upper ontology. Aristotle’s ten categories such as matter, quantity, quality, relation, location, time, etc. and C. S. Peirce’s [Sowa 95] firstness which can be defined without assuming any other things like human, iron, etc., the secondness which has to be defined depending necessarily on other things like mother, teacher, etc., and thirdness which provides an environment or context where the secondness works like motherhood, school, etc. are typical examples. Especially, the latter has been advocated by J. Sowa and has influenced ontology science and engineering to great extent.
Sowa introduced four important concepts, continuant, occurrent, concrete and abstract in addition to Peirce’s three basic categories and obtains 12 top level categories by combining seven primitive properties [Sowa 95]. Guarino’s upper ontology more extensively incorporates philosophical considerations. It is designed based on mereology (theory of parts), theory of identity, and theory of dependency. His ontology consists of two worlds: An ontology of Particulars such as things which exist in the world and Universals which include concepts we need when we describe Particulars [Guarino 97, 98].

Some ontology practitioners show negative attitude to generic ontologies such as an upper ontology because they believe no use-independent ontology is useful. In the case of building an ontology for a large scale knowledge base, however, the validity of the knowledge base needs to be justified in terms of its stability and applicability to wider rage of tasks, that is, it needs to show its generality rather than task-specific utility. Compliance of their ontologies with a principled upper ontology provides a good justification and an upper ontology provides useful guidelines on how to organize domain knowledge.

A standard upper ontology (SUO) has been being developed at IEEE P1600.1[SUO]. This is one of the most comprehensive ontologies among those in the ontology community. The working group has collectively considered what an identity is, how 3D (3D space without time) and 4D (including time as the 4th dimension) modeling are different/compatible, the implications of multiple ontologies versus monolithic ontologies, etc. The problem is that it is very hard to come to an agreement on any of these problems. Recently, SUMO(Suggested Upper Merged Ontology) [SUMO] and Cyc upper ontology[OpenCyc] have been proposed as a candidate of SUO. The committee is considering two possibilities: To have one SUO recommendation or to have a lattice of multiple upper ontologies.

An interesting view on task versus domain ontologies
A view attributed by Mizoguchi and Tijerino is that roughly speaking, ontology consists of task ontology [Mizoguchi 95, Tijerino 90] which characterizes the computational architecture of a system which performs a given task and domain ontology which characterizes knowledge of the domain where the task is performed. By a task, we mean a problem solving process like diagnosis, monitoring, scheduling, design, and so on. The idea of task ontology which serves as a system of the vocabulary/concepts used as building blocks for knowledge-based systems might provide us with an effective methodology and vocabulary for both analyzing and synthesizing knowledge-based systems.

Task ontology is useful for describing inherent problem solving structure of the existing tasks domain-independently. It is obtained by analyzing task structures of real world problems. Task ontologies were originally proposed in order to overcome the shortcomings of generic tasks [Chandra 86] while preserving their basic philosophies. It does not cover the control structure but it covers components or primitives of inferential units present during performing tasks. The ultimate goal of task ontology research is to provide a theory of all the vocabulary/concepts necessary for building a model of human problem solving processes independent of any given domain.
The determination of the abstraction level of task ontology requires a close consideration on granularity and generality of the unit of problem solving action. These observations suggest task ontology consists of the following four kinds of concepts:

1. Task roles reflecting the roles played by the domain objects in the problem solving process

2. Task actions representing unit activities appearing in the problem solving process,

3. States of the objects, and

4. Other concepts specific to the task and not the domain.
Before task ontology were proposed, people tended to understand an ontology was often closed and use-dependent and therefore resulting ontologies had the same shortcoming of present in existing knowledge bases of expert systems, that is, little reusability because of its task-specificity. The idea of task ontology contributes to the resolution of such problems. The reason why an ontology looks task-specific is that the ontology mixes up task ontology and domain ontology. Task ontology specifies the roles which are played by the domain objects. Therefore, if a domain ontology is designed after task ontology has been developed, one can succeed to come up with a domain ontology independent at least of the particular task because all the task-specific concepts are detached from the domain concepts to form task-specific roles in the task ontology. A task ontology thus helps develop an open and use-neutral domain ontology.
More to come…
2. How does it differ from data dictionaries, knowledge bases, WordNet, -Kosmos, Cyc, …

(1) How does an ontology differ from a dictionary or vocabulary?

Let me cite a phrase found in the email archive of ontology:

Date: Wed, 26 Feb 1997 12:49:09 -0800 (PST)

From: Adam Farquhar axf@HPP.Stanford.EDU

………

① Does it express the consensus knowledge of a community of people?

② Do people use it as a reference of precisely defined terms?

③ Does it express the consensus knowledge of a community of agents?

④ Is the language used expressive enough for people to say what they want to say?
⑤ Can it be reused for multiple problem solving episodes?

⑥ Is it stable?

⑦ Can it be used to solve a variety of different sorts of problems?

⑧ Can it be used as a starting point to construct multiple (sorts of) applications including: a new knowledge base, a database schema, an object-oriented program? The stronger the 'yes' answer is to these questions, the more 'ontological' it is.

The above opinion is based on that there is no clear boundary between ontology and knowledge. It is a reasonable understanding when we think of Cyc[OpenCyc] whose upper part is definitely an ontology and the whole seems to be a knowledge base. The above opinion is somewhat misleading, though many of ontology researchers tend to accept this description, because it does not try to capture an essential property of an ontology which is something related to concepts rather than vocabulary and is something related to what exists in the target world of interest. Another answer to the question is that we need to introduce a concept of relativity when we understand an ontology. I mean, a clear differentiation of an ontology from a knowledge base should come from its role, that is, an ontology gives you a system of concepts which underlie the knowledge base and hence an ontology can be a specification of the KB builder’s conceptualization of the target world and is a meta-thing of a conventional knowledge base.

(2) How an ontology is different from the class hierarchy in the object-oriented(OO) paradigm? They are similar. The developmental methodology of an ontology and that of an object hierarchy is also similar to each other in the upper stream. In the lower stream, however, the former concentrates on declarative aspects and the latter on performance-related aspects. Thus, the essential difference between the two lies in that the ontology research exploits declarative representation, while the OO paradigm is intrinsically procedural. In OO paradigm, the meaning of class, relations among classes, and methods are procedurally embedded and they are implicit. The ontology paradigm, on the other hand, descriptions are made declaratively in most cases to maintain formality and explicitness.

(3) What’s new? How is an ontology different from a taxonomy of concepts?

An ontology contains a taxonomy as its component. So, it partially implies a taxonomy. In general, a new term is rarely totally new. Rather, it is usually coined by extending existing terms. The term “ontology” is not an exception to this rule. It is a new term and concept including existing concepts such as “taxonomy”, “common vocabulary”, “upper model”, etc. by adding formality, richer relations, explicit representation of things usually left implicit. So while a taxonomy is an essential part of an ontology, as discussed above, an ontology requires more than just is-a relations provided by taxonomies.
(4) Do you force people to accept your ontology?

In essence, an ontology should be shared among many agents, including human and software agents. If it is not shared by a community, it loses its utility. However, this does not mean it is developed by one person who urges you to accept it. An ontology should be designed collaboratively with agreement on its development in a community. It is neither true that there exists a unique ontology for each domain nor that there exist as many ontologies as people in the community. The truth lies in between, hopefully, somewhere close to the former to enable an ontology to play its role. One of the reasons for this concern is an ontology is understood to be dependent on the perspective which differs according to each developer. At first glance, this concern seems to make sense. However, it is also true that the fact that an ontology is something which reflects the fundamental conceptual structure of a target world cannot allow so many varieties. Many of the diversities come from ignorance of what an ontology is and of how to design an ontology. Another cause for variations is that a domain ontology can be purpose-dependent. Because purposes are often dependent on task at hand, we can at least partially cope with such a case by employing the idea of task ontology which enables us to design a domain ontology independently of the problem solving tasks performed in the domain.

(5) Is it possible for you to come up with a stable and agreed ontology in this rapidly changing

society?

What rapidly changing are not ontologies but models built by instantiating concepts defined in the ontology. Models include objects and relations between them as well as some rules which do change as time goes. An ontology, however, is a long-lasting fundamental conceptual structure on top of which knowledge bases are built. Especially, an upper ontology rarely changes.
More to come…

References
[Chandra, 86] Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: High-level building blocks for expert system design, IEEE Expert, 1, No.3, pp.23-30, 1986.

[Genesereth, 87] Genesereth, M. and Nilsson, N. (1987) Foundation of Artificial Intelligence, 1987.

[Gruber] Gruber, T. http://www-ksl.stanford.edu/kst/ what-is-an-ontology.html.

[Guarino 97] Guarino N.,Some Organizing Principles for a Unified Top-Level Ontology. Revised version of a paper appeared at AAAI 1997 Spring Symposium on Ontological Engineering (LADSEB-CNR Int. Rep. 02/97)

[Guarino 98] Guarino, Nicola: Some Ontological Principles for Designing Upper Level Lexical Resources. Proc. of the First International Conference on Lexical Resources and Evaluation, Granada, Spain, 28-30 May 1998.

[Mizoguchi 95] Mizoguchi, R. et al. (1995) Task ontology for reuse of problem solving knowledge, Proc. KB&KS95, Enshede, The Netherland. Smith, B. & Welty, C. (2001) Proc. of the Second International Conference on Formal ontology and Information Systems: FOIS2001, ACM ISBN 1-58113-377-4 ACM Press

[OpenCyc] http://www.opencyc.org/

[Tijerino 93] Tijerino A.Y. et al., MULTIS II : Enabling End-Users to Design Problem-Solving Engines Via Two-Level Task Ontologies, Proc. of EKAW '93, pp. 340-359, (1993)

[Tijerino 90] Tijerino, A.Y. et al, (1990). A task analysis interview system that uses a problem solving model, Proc. of JKAW'90, pp.331-344
[Sowa 95] Sowa, J. (1995) Distinction, combination, and constraints, Proc. of IJCAI-95 Workshop on Basic Ontological Issues in Knowledge Sharing.

[SUMO] http://ontology.teknowledge.com/
[SUO] Standard Upper Ontology, http://suo.ieee.org/

