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Abstract every few rows, in order to help a reader find the corre-
spondence between labels and data. Sometimes tables are
There are large and growing amount of biological data rearranged to fit the space available. Label-value pairs may
that reside in different online repositories. Many of these appear in multiple columns across the pages or in multi-
repositories represent their data in tables. In order to au- ple rows placed below on another down the page. Tables
tomatically understand these online pages, a system thatmay themselves contain nested tables as does the table in
can interpret tables is desired. However, the longstand- Figure 1. These complexities make automatic table inter-
ing problem of automatic table interpretation still illudes pretation a challenging task.
us [12]. We offer a solution for the common special case in
which so-called sibling pages are available. Sibling pages, 2 Table Interpretation
which are the pages commonly generated by underlying
web databases, are compared to identify and connect non- To interpret a table is to properly associate table category
varying components (category labels) and varying compo- labels with table data values. Using Figure 1 as an exam-
nents (data values). We tested our solution on 862 HTML ple, we see thaldentification Location andFunctionare
tables. Experimental results show that the system can suciabels for the large rectangular table. Inside the right cell of
cessfully identify sibling tables, generate structure patterns, the first row is another table with headébs, NCBI KOGs
interpret different tables using the generated patterns, and Speciesetc. Nested inside of this cell are two tables with
automatically adjust the structure patterns as needed. labelsCGC name, Sequences name, Version andGene
Keywords:Bioinformatics, table interpretation Model, Status..., andAmino Acids The rest of the infor-
mation in these tables are data values. Once category labels
and data values are found, we want to properly associate
them. For example, for the valug 8H3 5, its associated
label should be the sequences of laddentification IDs,
andSequence nam#&\Ve associate one or more sequences of
Catalyzed by world-wide research communities produc- labels with each data value in a table (more, when the table
ing publicly available data, the volume of biological data is multi-dimensional). Borrowing notation from Wang [10],
is increasing at a rapid pace. Many online biological data the representation of a label-value pair is look likeéenti-
repositories present their information in tables. Tables fication.IDs.Sequence name F8H; 5. The left hand side
present information in a simplified and compact way in of the arrow is a sequence of one or more table labels, and
rows and columns. Data in one row/column usually belongs the right hand side of the arrow is a data value.
to the same category or provides values for the same con- Recent surveys [4, 12] describe the vast amount of re-
cept. The labels of a row/column describe this category or search that has been done in table processing and illustrate
concept. the challenges of the table interpretation problem. We fo-
Although a table with a simple row and column structure cus in this paper, however, only HTML tables. A num-
is common, tables can be much more complex. Figure 1ber of HTML table extraction systems use machine learn-
shows an example. The position of table category labelsing to recognize tables in web pages (e.g. [3, 11]). Draw-
may vary in different tables. Labels commonly appear on backs of machine learning approaches, however, are that
the top or left. Occasionally, table designers position labelsthey need training data, and they need to be retrained for ta-
on the right side of a table. In long tables, labels some- bles from different web sites. Other table interpretation sys-
times appear at the end of a table or in the middle of a table,tems work based on some simple assumptions and heuris-

1 Introduction
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Gene Summary for cdk-4

Specify a gene using a gene name (unc-26), a predicted gene id (R1245.9), or a protein ID (CE02711%: WEGeneUDDDMDB

identification] [location] [function] [gene ontology] [reactome knowledgehase] [alleles] [similarities] [reagents] [bibliography]

Identification | [ps. [ Sequence | I l |
‘ CGEC name ‘ 3 ‘ Other name(s) ‘ WEB Gene ID IVersinn;
R name I |
cdk-4 - (Cycfm-De_pe.)sdent Kinase fanily) (via person FIRH35 WM 077855 (inferred autor.natlcally) HO1386 (inferred B Cene00000406 1
Michael Krause) e autornatically)
NCBIKOGs*: Protein kinase PCTATRE and related kinases [KOG0594]
Species: Cagnorhabdiiis elegans
Other AF083878 (Caenothabditis elegans cyclin-dependent knase CDE-4 (cdk-4) mENA, complete cds.)
sequence(s):
NCRBI: [Entrez Genes: 15718266] [AceView: 2{O136]
Gene model(s): | Gene Model | Status | Nucleotides (coding/transcript) | Protein | Amino Acids |
[E18H3521,2 [ponfirmed by cDNA(S) | 102973051 bp | WPCEIB608 |  342aa |
[F18H256 1,2, 3 pattially confirmed by cDNA(S) i 122141704 bp | WPCE2s018 || 406 aa |
Putative Caenorhabditiz briggsae  CBG07433 [syntenic alignment] (Btein LD et al best reciprocal blastp match-seg-off)
ortholog(s):
Location | Genetic Position: X:12.69 +/- 0.000 cM [mapping data]
Genomic Position: 3013518825 13515773 by
Function | Mutant Phenotype: [Eranse 2] cdke-4 iz a cyclin dependent kinase related to cdk-4 and cdk-6 from other organims. Homozygous cdk-4(gv3) animals usually arrestin L2
due to no, or limited, proliferation of the post-embryonic blast cells. About 3% of animals malke it to a late stage of development.
Definthons of abbrewations used m the text
RIVAi Phenotype(s): Lwl Pl Une [For details see: Parke 1 06 Cet 1999]

Figure 1. A sample page from [1].

tics (e.g. [2, 5, 8]). These simple assumptions (labels aresite, with the same table titl&Sene Summary faome par-
either the first row or the first column) are easily broken ticular gene), and a table that contains information about the
in complex tables. More sophisticated table interpretation gene. Corresponding tables in sibling pages are called
techniques have appeared in recent papers [6, 7, 9]. Nonding tables If we compare the two large tables in the main
of this research makes use of sibling tables, but is comple-part of the sibling pages, we can see that the first columns
mentary to our work and could potentially be used in con- of each table are exactly the same. If we look at the cells
junction with our work in future efforts to improve results under thddentificationlabel in the two tables, both contain

for certain cases. another table with two columns. In both cases, the first col-
umn contains identical labelBs, NCBI KOGs ..., Putative
3 Sibling Page Comparison ortholoy(s) Further, the tables undktentificationIDs also

have identical header rows. The data rows, however, vary
atu:onsiderably. General speaking, we can look for common-

If we have another page, such as the one in Figure 2, that™ .. . o .
pag g nﬁlhtles to find labels and look for variations to find values.

has the same structure as the one in Figure 1, the syste
maybe able to obtain enough information about the struc- Given that we can find most of the label and data cells
ture to make automatic interpretation possible. Molecular in this way, our next task is to infer the general structure
biology web resources usually generate output pages aftepattern of the web site and of the individual tables embed-
receiving a user query by placing the results into a prede-ded within pages of the web site. For each table, we first
fined page structure. Thus, pages from the same web sitdocate the positions of values and labels. For example, con-
are usually structured in the same way. We call pages thatsider the two nested tables in Figures 1 and 2 that start with
are from the same web site and have similar structsitess =~ CGC name The top rows of the tables on the two pages
ling pages The two pages in Figures 1 and 2 are a pair of are identical while the two second rows vary considerably.
sibling pages. They have the same basic structure, with theWe thus determine that the first row is a row of labels and
same top banners that appear in all the pages from this welthe second row is a row of values. Depends on the posi-
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Gene Summary for dyb-1

Specify a gene using a gene name (unc-26), a predicted gene id (R1345 %), or a protein ID (CEQ2711Y: |dvb-1
lidentification] [location] [function] [gene ontology] [reactome knowledgsebase] [alleles] [similarities] [reagents] [hihliography

Identification | TDg. Sequence |
‘ CGC name ‘ r:lame ‘ Other name(s) ‘ WEB Gene ID  Version
dyb-1 - (D¥straBrevin homaolog) (via person: Laurent F47G61 I 058458 (inferred automatically) 1BS63 (inferred ‘WBG&neOOOOl]lS 1
| Segalat) = automatically) |
Concise The dyb-1 gene encodes a homolog of mammalian alpha-dystrobrevin (DTHA; OWI601238), mutation of which can lead to left ventricular noncompaction with
Description: congenital heart defects. [details]
NCEBIKOGs*: Beta-dystrobrevin [KOG4301]
Species: Casnorhabdifis elegans
NCBI [Entrez Genes: 14670171] [AceView: 1B363]
Gene model(s): ‘ Gene Model Status ‘ Nucleotides (coding/transcript) ‘ Protein | Swissprot Amine Acids
Fa7G6.11,2 confirmed by cDIA(E 1 17737351 bp. ‘ WECE26812 i DTN1 CAEEL 580 aa
Putative Casnorkabditis briggsas: CBG22285 [syntenic alignment] (Stein LD et al ; best reciprocal blastp match-seg-off)
orthologis):
Location |Genetic Position: [-15.38 +/- 0.361 clM [mapping data
IGlanm'n.il: Position: 11433084, 1450474 bp
Function DMutant Phenotype: Definitions of abbreviations used in the tezt.
RINAi Phenotype(s): WT [For details see: Ahnnger JTA& 16 Nov 2000]

Figure 2. A second sample page from [1].

tion of labels and values, we try to match the table with a does not match with the pattern, we check for the tables in
pre-defined structure pattern templates or a combination ofthe neighbor positions and see if we could find a match. If
several pattern templates. Once we found a match, we genso, we add the new position in the pattern as an alternative
erated a structure pattern for the set of sibling tables, whichlocation where we could possibly locate the sibling table in
records the location of the table in each sibling page, thea new encountered sibling page. (2) adjust the information
position of labels and values, and how the labels and valuesof labels. If there is an additional or missing label, the sys-
associate to each other. tem can change the pattern by either adding the new label

Although we look for commonalities to find labels and @nd marking it optional or marking the missing label op-
look for variations to find data values, we must be careful tional. For example, if we had not seen the eXBissprot
about being too strict. Sometimes there are additional orcolumn in our initial pair of sibling pages, the system can
missing label-value pairs. The two tables beginning with addSwissprotas a new label and mark it as optional.

Gene ModeFigures 1 and 2 do not share exactly the same

structure. The table in Figure 1 has five columns and three4  Experimental Results

rows, while the table in Figure 2 has six columns and two

rows. Although they are not exactly the same, we can still  \ve collected 100 sibling pages from 10 different web
identify the structure pattern by comparing them. The top sjtes in the molecular biology domain for a total of 862
rows in the two tableS are Very Similar. Observe that the HTML tables. Among these tab'esi the System fa'se'y clas-
table in Figure 2 only has an additior@Wissprotcolumn  sjfied three pairs of layout tables as data tables. The system,

inserted between tHeroteinandAmino Acidsolumns. Al- - however, successfully eliminated these false sibling pairs
though the labels for the two tables are not |dent|Ca|, we Canduring pattern generation because it was unable to find a
still tell that they are table headers. matching pattern. No false patterns were generated. The

In addition to discovering the structure pattern for a web system was able to recognized 28 of 29 structure patterns.
site, we can also dynamically adjust the pattern if the sys- The system missed one pattern because the table contained
tem encounters a table that varies from the pattern. Thereoo many empty cells. If we had considered empty cells as
are two ways to adjust a structure pattern: (1) adjust the lo-mismatches, the system would have correctly recognize this
cation to locate a table. If the table in the recorded location pattern. As the system processed additional sibling pages,



it found 5 additional sibling tables and correctly interpreted
all but one of them. The failure was caused by labels that
varied across sibling tables causing them in some cases to
look like values. There were 5 location adjustments and
12 label adjustments—all of them correct. One table was [4]
interpreted only partially correctly because the system con-
sidered the irrelevant informatiofo Topas a header.

The time for the pattern generation given a pair of sib-
ling pages consists of three parts: (1) the time to read and 5]
parse the two pages and locate all the HTML tables, (2) the
time for sibling table comparisons, and (3) the time to select
from pre-defined structure templates and generate the pat-
tern. The complexity of parsing and locating HTML tables

HTML documents. InProceedings of the Interna-
tional World Wide Web Conference (WWW’02ages
232-241, Honolulu, Hawaii, May 2002.

D. W. Embley, M. Hurst, D. Lopresti, and G. Nagy.
Table processing paradigms: A research surhregr-
national Journal of Document Analysis and Recogni-
tion, 8(2), 2006.

D.W. Embley, C. Tao, and S.W. Liddle. Automating
the extraction of data from html tables with unknown
structure Data and Knowledge Engineering4(1):3—
28, July 2005.

is O(n), wheren is the number of HTML tags. The sim-  [6] W. Gatterbauer and P. Bohunsky. Table extraction us-

ple tree matching algorithm has time complexityn@j,
wherem is the number of nodes in each tree. To find the
best match for each HTML table, the time complexity is
O(k(m)?), wherek is the number of HTML tables in one
sibling page. The time complexity for finding the correct
pattern for each matched sibling table isp(wherep is

the number of pattern templates drid the number of leaf
nodes (cells) in the HTML table. If there is pattern com-
bination involved, this complexity increase multiply. The
time needed for the initial pattern generation for a pair of
sibling pages is on average below or about one second, but
reached a maximum of 15 seconds for a complicated web g
site where pages have more than with more than 20 tables
on a Pentium 4 computer running at 3.2 GHz.

5 Conclusion

Many online biological repositories present their infor-  [9]
mation in tables with complicated structures. In this pa-
per, we introduced a system that can successfully interpret
these tables automatically. Our system works based on sib-
ling page comparison. By comparing sibling pages from
the same site, we are able to find the location of table head-
ers and data entries, and further we are be able to infer thd10]
general pattern for all pages from the same site.
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