
Bringing Web Principles to Services:
Ontology-Based Web Services

Muhammed J. Al-Muhammed,1,∗David W. Embley,1,∗ Stephen W. Liddle,2,†

and Yuri A. Tijerino3,‡
1
Department of Computer Science

2
Information Systems Department

Brigham Young University, Provo, Utah 84602, U.S.A.
3
Department of Applied Informatics, Web Science Lab

Kwansei Gakuin University, Sanda, Hyogo 699-1337, Japan

Abstract

Researchers are beginning to realize the potential of web
services that can use the web as a place for information
publication and access as opposed to the traditional web-
services paradigm that merely uses the web as a trans-
port medium. Traditional web services can be difficult to
discover, can have complex invocation APIs, and require
strong coupling between communicating applications. In
previous work, we presented ontology-based techniques in
which users make service requests using free-form, natural-
language-like specifications. This paper shows how we
can use these ontological techniques to automatically cre-
ate ontology-based web services that (1) are easy for soft-
ware agents to discover because they are created based on
machine-processable formalisms (ontologies), (2) have in-
vocation APIs requiring only simple read and write oper-
ations, and (3) require no a priori agreements regarding
types and data formats between communicating applica-
tions. Experiments with our prototype implementation in
several domains show that our approach can effectively cre-
ate web services with these characteristics.

1. Introduction

Despite the tremendous success of traditional web ser-
vices, researchers have recently realized that web services

∗Supported in part by the National Science Foundation under Grants
0083127 and 0414644.
†Supported in part by the Rollins Center for eBusiness at BYU un-

der Grant EB-05046 and by the National Science Foundation under Grant
0083127.
‡Supported in part by the National Science Foundation under Grant

0414644.

can be even more successful if they are based on the more
fundamental resource publication and access principles of
the web [6, 9]. To use a traditional web service, a service
requester must discover a service of interest and synchro-
nously communicate with it. A requester must also com-
ply with service-specified data formats and data-exchange
protocols. In contrast,web-principled services(those fun-
damentally based on web principles, which we describe in
this paper) have none of these requirements.

Figure 1 shows a traditional web service that returns a
weather report for a given place and time. Assuming a ser-
vice requester has located this service, the requester would
provide a latitude, a longitude, and a date, and may choose
the number of days for the forecast and whether the results
should be returned in 12-hour or 24-hour increments. The
latitude and longitude must be real numbers, not, say, de-
grees and minutes. Also, rather than specifying “East” or
“West”, negative values indicate West longitudes. The date
must be in the formatyyyy-mm-dd, not in any of many other
possible formats. Further, after clicking on “Submit”, the
calling application must stay coupled with the service until
it returns a response. Figure 2, on the other hand, shows the
interface for a prototype for a web-principled service. With-
out needing to discover a service, a user posts a request. In
our example, the requester enters, “What is the weather go-
ing to be like tomorrow in Springfield, Illinois?” A service
that can appropriately respond observes the posting and re-
sponds. The response is twofold: (1) it highlights the part of
the query it “understands” (weather, tomorrow, andSpring-
field, Illinois in Figure 2) and (2) it answers the query (Max-
imumTemperature=70,MinimumTemperature=38, andPer-
centChanceOfPrecipitation=10 in Figure 2).

Web-principled services allow decoupling among com-
municating applications, but, as a result, require hetero-
geneity resolution.

1

Figure 1. A weather report web service.

Figure 2. A free-form weather report request with all recognized constraints and values highlighted
along with the web service response to the request.

• Decoupling among communicating applications. In
our vision of web-principled services, service re-
questers post their requests to the web without the
requesters having to reference any particular service.
Requesters, therefore, do not need to discover these
services nor to communicate directly with them. As
a result, a decoupling of services and requesters is
achieved. To negate the need for service discovery
and direct communication, however, web-principled
services must be able to read posted service requests,
process them, and return results to requesters.

• Heterogeneity resolution. For successful invocation of
a service, posted service requests must comply with
the service-specified data. Prior agreement between a
requester and a service on the data formats, types, and

mappings between values in a request and the respec-
tive input parameters of a service would enable com-
pliance. Decoupling, however, prevents prior agree-
ment. Therefore, web-principled services must make
requests comply with their internal data specification
by resolving heterogeneity.

In previous work [3, 1, 2], we have proposed an onto-
logical technique that allows service requesters to invoke
certain types of ontology-based services using free-form,
natural-language-like specifications. We explain in this pa-
per how these ontology-based services satisfy the decou-
pling and heterogeneity requirements and thus can enable
web-principled services. We call these servicesontology-
based web services(OBWSs). OBWSs interact asynchro-
nously with service requesters. OBWS invocation only re-

City

State

EndDate

StartDate

NumDays

Place

Longitude

ZipCode

Latitude

 ReportPeriod

MinimumTemperature

MaximumTemperaturePercentChanceOfPrecipitation

WeatherReport Format
has

is forstarts onis for

is for ->

produces

has has

has

identify

identifies

identify

determine

is in

City

State

EndDate

StartDate

NumDays

Place

Longitude

ZipCode

Latitude

 ReportPeriod

MinimumTemperature

MaximumTemperaturePercentChanceOfPrecipitation

WeatherReport Format
has

is forstarts onis for

is for ->

produces

has has

has

identify

identifies

identify

determine

is in

Figure 3. A semantic data model for a weather report service.

quires reading free-form service requests from some re-
source such as the web. Thus they satisfy the decoupling
requirement because they do not need to have a direct cou-
pling with the service requester. OBWSs require no prior
agreement on exchanged data. An OBWS recognizes values
in a service request such as the highlighted values in Fig-
ure 2 and binds them to its input variables. In order for this
binding to be successful, the OBWS (1) casts each recog-
nized value to a type of an input variable, (2) transforms
the format of each recognized value to an internal format
conforming to the format specified by its ontology, and (3)
assigns each recognized value to the respective input vari-
able. In addition, an OBWS identifies any missing values
necessary for the invocation and obtains them, seeking ad-
ditional information from the requester, if necessary. All
these capabilities of an OBWS in handling a service request
enable it to satisfy the heterogeneity requirement.

We give the details of our contributions to enabling web-
principled services via OBWSs as follows. Section 2 intro-
duces ontology-based web services. Section 3 presents the
OBWS architecture and shows how it meets the decoupling
requirement for web-principled services. Section 4 explains
how our approach can bring web principles to traditional
web services, emphasizing how our techniques provide a
way for invoking traditional web services. Section 5 com-
pares our approach to related work. In Section 6, we give
concluding remarks and directions for future work.

2. Ontology-Based Web Services

We now discuss the elemental components of ontology-
based web services. Section 2.1 introduces the semantic
data model that we use to represent ontologies, and Sec-

tion 2.2 introduces how we capture the semantics of the in-
stances of different concepts of the semantic data model.
Section 2.3 shows how OBWSs service requests and how
they meet the heterogeneity resolution requirement.

2.1. Semantic Data Model

A semantic data modelspecifies named sets of ob-
jects, which we callobject sets, named sets of relation-
ships among object sets, which we callrelationship sets,
and constraints over object and relationship sets. Figure 3
shows a domain ontology for providing a weather report.
The domain ontology consists of object-set concepts such
asStartDateandPlace that can be used to make requests
for weather reports. The semantic data model has two types
of object sets, those that are lexical (enclosed in dashed rec-
tangles) and those that are nonlexical (enclosed in solid rec-
tangles). An object set islexical if its instances are indistin-
guishable from their representations.StartDateis an exam-
ple of a lexical object set because its instances (e.g. “May
7, 2007”) represent themselves. An object set isnonlexical
if its instances are object identifiers, which represent real-
world objects.Place is an example of a nonlexical object
set because its instances are identifiers such as, say, “P1”,
which represents a particular place in the real world.

We designate the main object set in a domain ontology
by marking it with “–> •” in the upper right corner (e.g.
WeatherReportin Figure 3). This notation,“–> •”, denotes
that when an ontology is used to satisfy a service request,
the main object set becomes (“->”) an object (“•”). The
system satisfies a service request by instantiating the main
object set with a single value such that all applicable con-
straints are satisfied.

Figure 3 also shows relationship sets among object sets,
represented by connecting lines, such asStartDate and End-
Date determine NumDays. The arrow connections represent
functional relationship sets, from domain to range, and non-
arrow connections represent many-many relationship sets.
For example,StartDate and EndDate determine NumDays
is functional from the pairStartDateandEndDateto Num-
Days, andWeatherReport produces ReportPeriodis many-
many. A small circle near the connection between an object
setO and a relationship setR represents an optional partic-
ipation, so that an instance ofO need not participate in a
relationship inR. For example, the small circle on thePlace
side of the relationship setZipCode identifies Placestates
that an instance ofPlacemay or may not relate to an in-
stance ofZipCode.

2.2. Data Frames

Each object set in a semantic data model has an associ-
ated data frame [5], which describes instances for the object
set. Data frames capture the information about object-set
instances in terms of internal and external representations,
context keywords or phrases that may indicate their pres-
ence, operations that convert between internal and external
representations, and other manipulation operations that can
apply to instances of the object set along with context key-
words or phrases that indicate the applicability of an oper-
ation and operands in an operation. Figure 4 shows sample
(partial) data frames for several object sets in Figure 3.

The internal representation specifies the data type for
the instances of an object set. TheStartDate instances,
for example, are of typedate, which must be of the form
yyyy-mm-dd. We use regular expressions to capture exter-
nal textual representations. TheStartDatedata frame, for
example, captures date instances such as “July 6, 2007”.
The regular expression can also have lexicon references.
For instance, “{stateName}” in the Statedata frame refers
to a lexicon of state names. A data frame’s context key-
words/phrases are also regular expressions. For example,
the ZipCodedata frame in Figure 4 includes context key-
words such as “zip code” or “zip”. In the context of one
of these keywords, if a 5-digit number appears, it is likely
that this number is a zip code. A nonlexical object set such
as WeatherReporthas only context keywords or phrases.
Figure 4 shows that theWeatherReportdata frame includes
keywords and phrases that could indicate the presence of an
instance of aWeatherReport.

Operations in data frames manipulate object-set in-
stances. For example, the operationgetLatitude(x: Zip-
Code) computes the latitude for a given zip-code ar-
gument x, and the operationtoInternalRepresentation(x:
StartDate) transforms dates in various formats to the in-
ternal format. Context keywords/phrases for an opera-

tion indicate the possible applicability of the operation.
Context keywords/phrases are regular expressions that in-
clude keywords or phrases and possibly expandable expres-
sions represented by operand names enclosed in braces.
When context keywords/phrases for an operation match
substrings in a service request, the system can record
which values are for which operands. For instance, the
context keywords/phrases associated with the operation
NrDaysBetweenin Figure 4 has the regular expression
between\s+{x1}\s+and\s+{x2}, which includes the ex-
pandable expressions{x1} and{x2}. As Figure 4 shows,
the operands of these two expressions are of typeStartDate.
When this regular expression matches a substring in a re-
quest such as “What is the weather going to be in Chicago
between the 10th and the 15th,” the system can record that
the first date value (“the 10th”) is forx1and the second date
value (“the 15th”) is forx2.

2.3. Servicing Requests with Ontology-
Based Web Services

When an OBWS receives a service request, it applies
the recognizers in the data frames of its underlying on-
tology to the request to extract information necessary for
servicing the request. Consider the weather-report request
in Figure 2 and an OBWS whose underlying ontology is
in Figures 3 and 4. When applying the ontology in Fig-
ures 3 and 4 to the request in Figure 2, the OBWS ex-
tracts the strings “weather”, “tomorrow”, “Springfield”, and
“Illinois”—these strings appear highlighted in Figure 2.

The OBWS may, and often does, need to process the
extracted information to make it comply with the required
data as specified by the ontology. In our weather-request
example, some of the extracted values do not comply with
the data required by the OBWS. In this case, the request
provides a state (“Illinois”) and a city (“Springfield”), not
a latitude and longitude as required. The OBWS uses the
operationgetLatitude(“ Illinois”,“ Springfield”) to compute a
latitude and assigns the computed latitude value to the ob-
ject setLatitude (similarly for a longitude). Likewise, the
request provides “tomorrow” as a start date, which is not
in the required formatyyyy-mm-dd. Since the applicability
recognizers of the operationTomorrow() in the data frame
recognize “tomorrow” in the request, and this operation re-
turns a start date, the OBWS usesTomorrow() to transform
the recognized string “tomorrow” into a properly formatted
start date and assigns the transformed value to the object set
StartDate. Besides not being in the proper form, the infor-
mation in the request also is incomplete since the request
provides no values forFormatandNumDays. The OBWS,
nevertheless, can use its ontology to provide default val-
ues for object sets.1 For our example the OBWS provides

1When there are no default values for required information, the ontol-

StartDate
internal representation: date -- format: yyyy-mm-dd
text representation: {monthName}\s+([0]?[1-9]|[12]\d|3[01])(\s * \,)?\s+\d{4}|

(the\s+)?([0]?[1-9]|[12]\d|3[01])\s * (th|nd|rd|st)|...
toInternalRepresentation(x: StartDate) returns (StartDate) -- format: yyyy-mm-dd
Tomorrow() returns (StartDate) -- next day with respect to today

context keywords/phrases: tomorrow|next\s * day|...
NrDaysBetween(x1: StartDate, x2: EndDate) returns (NumDays)

context keywords/phrases: between\s+{x1}\s+and\s+{x2}|...
getDefaultStartDate() returns (StartDate) -- today’s date
...

State
internal representation: string
text representation: {stateName}|{statePostalCode}|{stateAbbreviations}
...

ZipCode
...
text representation: [1-9]\d{4}
context keywords/phrase: zip\s * code|zip

Latitude
internal representation: real -- positive
getLatitude(x1: State, x2: City) returns (Latitude)
getLatitude(x: ZipCode) returns (Latitude)
toInternalRepresentation(x: Latitude) returns (Latitude) -- positive real number
...

Longitude
internal representation: real -- negative
getLongitude(x1: State, x2: City) returns (Longitude)
...

NumDays
internal representation: integer
getDefaultNumDays() returns (NumDays) -- 1
...

WeatherReport
internal representation: object ID
context keywords/phrases: (want\s+a\s+)?weather\s+report|weather|forecast|...
...

Figure 4. Some sample data frames (partial).

the default value “24 Hourly” forFormat and the default
value“1” for NumDays. Thus, the OBWS can instantiate
all the required dataLatitude, Longitude, StartDate, Num-
Days, andFormat, either by computing or transforming, if
necessary, given values or by providing default values.

To service a request, an OBWS must instantiate its out-
put data instances by retriving them from its database or by
computing them from other available data instances. For
our example, the OBWS retrieves from its database values
for MaximumTemperature, MinimumTemperature, andPer-
centChanceOfPrecipitation. Using a process that is beyond
the scope of this paper and is fully described elsewhere [3],
the OBWS generates a database query, executes this query,
and returns the query result values.

Observe that OBWSs resolve data heterogeneity. An
OBWS extracts values from a request and assigns them to
respective object sets of its ontology independently of how
these values appear in the request. An OBWS uses the data

ogy lets the system know precisely which values are needed. The OBWS
can request these values from the user.

frames operations to compute required values from given
values and to transform recognized values to internal rep-
resentations when necessary. An OBWS also uses default
values defined by its ontology to add missing information
to service requests.

3. Request-Oriented Architecture

Fensel [6] proposes triple-spaced computing as a means
to provide seamless interoperability between web services
in a web-principled manner. In this section we introduce a
request-oriented architecture, inspired by the feed syndica-
tion architecture of XML- or RDF-based RSS and ATOM
feeds, that meets these additional interoperability require-
ments. This architecture provides a mechanism todynami-
callymatch service requests with OBWSs capable of servic-
ing those requests. Fundamentally, this architecture is based
on a centralized brokerage mechanism that enables OBWSs
to subscribe to service-specific ontology feeds to which new
service requests are posted. The brokerage mechanism’s

main functions are to match requests against available on-
tologies and to update service-specific ontology feeds with
service requests so that OBWSs that subscribe to the feed
can receive and service relevant service requests.

In the request-oriented architecture, service requesters
make free-form service requests such as the weather request
in Figure 2. The broker matches a request with the available
ontologies. For each ontology, the broker applies all the
recognizers in the data frames to the request and ranks the
ontology according to the number of matches the ontology
has with the request. (More details about request-ontology
matching and ranking can be found elsewhere [2].) The
broker then selects the ontologies with the highest rank as a
means to find OBWSs that can service the request.

The service brokerage mechanism takes a two-tiered ap-
proach to broker requests and responses between services
requesters and OBWSs. The first tier consists of mapping
a service requester with potential OBWSs associated with
the ontology that the broker determined to be most relevant
to the service request. In this tier, the request is published
as an update to the ontology feed. Then the OBWSs that
subscribe to the feed may choose to respond to the broker
based on their availability and other individual criteria. The
brokerage mechanism then presents the OBWS response
proposals to the service requester as links. In the second
tier of brokerage, the service requester selects a response
proposal from the list provided by the brokerage mecha-
nism which indicates to the brokerage mechanism the ac-
ceptance of the proposed service response. At this point,
the brokerage mechanism performs the last step of the bro-
kerage process by establishing a direct link between the ser-
vice requester and the selected OBWS. This step consists of
sending the complete service request to the selected OBWS
along with the service requester’s URL, the web session ID,
and other relevant parameters in the POST request neces-
sary for the OBWS to interact directly with the service re-
quester. After the direct link between the service requester
and the OBWS is successfully established, the OBWS then
provides the complete response to the service requester and
opens the door for further direct interactions.

Observe that the proposed OBWS architecture decouples
service requesters and OBWSs. Requesters do not have
to discover OBWSs that are capable of servicing their re-
quests; the broker selects the capable OBWSs via request-
ontology matching. In addition, requesters do not have to
reference and establish communication links with the OB-
WSs; the broker references and dynamically establishes the
communication links.

The broker scales up to a reasonable size. The average
size of the ontologies with which we have been experiment-
ing is 18KB. Therefore, for 10,000 ontologies, the required
space is about 180MB, which is relatively small for recent
machines. Based on [12], forr regular expressions with av-

erage length of̄n characters, a text of lengtht characters, a
machine of a clock speeds, the time to process the text us-
ing the regular expressions isrn̄t/s. Since our ontologies
have an average of 90 regular expressions with an average of
60 characters, processing a request of 70 characters, like the
one in Figure 2, on a machine with a clock speed of 1.8GH
would take about 0.20 milliseconds. Thus, for 10,000 on-
tologies the time is about 2 seconds. We add to this the time
for applying lexicons, which each can be done in (log2L)
time, whereL is the length of the lexicon. In any case, the
time complexity is still manageable and can be greatly im-
proved by using techniques such as parallel processing, du-
plicate regular-expression removal, and indexing.

4. Web-Principled Traditional Web Services

This section describes how to turn a traditional web ser-
vice into an OBWS, not only so that it can be invoked via
the OBWS architecture, but, perhaps more importantly, so
that it can also exploit the decoupling and data heterogene-
ity resolution capabilities of the OBWS approach.

To create an OBWS from a traditional web service, we
must provide an ontology that describes the service, and we
must specify mappings between the ontology and the ser-
vice I/O requirements. A developer can reuse an ontology,
if there is one, or create a new ontology. No change to the
actual interface and the internal implementation of the ser-
vice is required. The information required to create an onto-
logical description for a traditional web service includes (1)
the name of the service, (2) the names of the input and out-
put parameters along with their types, and (3) the accepted
formats for the values of the input parameters. Figures 3 and
4 show the ontology that describes the weather web service
example in Figure 1.The semantic model in Figure 3 en-
codes the input parameters of the service in terms of the ob-
ject setsLatitude, Longitude, StartDate, NumDays, andFor-
mat. The semantic model also encodes the output parame-
ters of the service in terms of the object setsMaximumTem-
perature, MinimumTemperature, andPercentChanceOfPre-
cipitation. We define the name of the operation as the main
object set (marked with “−>•”) in Figure 3.

The data frames in Figure 4 define the semantics of the
possible instances of the object sets. The types of the object
sets must comply with the types of the input and output pa-
rameters required by the service. As an example, the WSDL
document that describes the interface for the weather ser-
vice in Figure 1 defines the input parameterstartDate
to be of typedate (as defined in XML Schema). There-
fore, Figure 4 defines the type of the object setStartDateto
be of typedate .

The ontology creator may also define extensions to the
input of the original service in Figure 1. It declares ad-
ditional object setsState, City, andZipCode. With these

WeatherRequest(
getLatitude("Illinois","Springfield"),
getLongitude("Illinois","Springfield"),
Tomorrow(),
getDefaultNumDays(),
getDefaultFormat()
)

(a) An instantiated service request.

<?xml version="1.0" ?>
<dwml ...>
...

<temperature ...>
<name>Maximum Temperature</name>
<value>70</value>

</temperature>
<temperature ...>

<name>Minimum Temperature</name>
<value>38</value>

</temperature>
<probability-of-precipitation ...>

<name>Probability of
Precipitation</name>

<value>10</value>
</probability-of-precipitation>

...
</dwml>

(b) The service response for the request in Figure 5(a) (partial).

Figure 5. An instantiated request and the ser-
vice’s response to this request.

added object sets, a requester can invoke the service in Fig-
ure 1 not only using a latitude and a longitude, but also using
a zip code, a city, or both a city and a state. It also declares
EndDate, which provides an alternative way to specify the
number of days for the forecast.

To map the request to the input requirements of the ser-
vice, the developer must specify which input parameter map
to which object set of the ontology. In our ontologies we do
this mapping through the data frames by making each input
parameter name a synonym for the respective object set in
the ontology. In this way, the OBWS can pass the internal
representation of an extracted value to the respective input
parameter. Figure 5(a) shows the results of the mapping for
our example. The developer must also map the service re-
sponse to the ontology. Typically web service responses are
XML documents embedded in SOAP messages. The devel-
oper therefore must specify which XML tag corresponding
to which object set. Then, the developer can use XSLT or
XML parsers to extract values and assign these values to ap-
propriate object sets. Figure 5(b) shows an example of the
output from the service, which the developer must map to
the ontology for our service.

5. Related Work

There are several existing projects related to our work.
Some frameworks, such as the Semantic Web Service
Framework (SWSF) [13], OWL-S [10], and WSMX [8],
can be used to develop web services from scratch by de-
scribing their internal representation with semantic data
models (e.g. SWSF uses Semantic Web Service Ontology
and a Semantic Web Service Language for this purpose).
Others, such as the Semantic Annotation for the Web Ser-
vices Description Language (SAWSDL), provide a means
to create an annotation of an existing web service’s inter-
face, while not being constrained to any ontology in partic-
ular. Perhaps most similar to our approach are those that
allow for both internal and external semantic modeling of
the web service. These include the Web Service Modeling
Framework (WSMF) [7] and IRS-II [11].

WSMF provides decoupling among applications through
an ontology modeling language and an ontology. However,
this decoupling is partial because mapping between ontolo-
gies and the service data needs to be done manually. In con-
trast, our approach uses data frames to automate the map-
ping process. In addition, the WSMF is a framework that
provides no web service implementation capabilities, while
OBWS does.

Approaches [8] and [11] build upon the WSMF by let-
ting service developers describe their services using the
Web Service Modeling Ontology (WSMO) and register
these descriptions on the server. Requesters can specify
their requests, called goals, also using WSMO. The server
then matches goals with WSMO service descriptions and
returns matches to users, who choose and invoke the de-
sired service. Both of these approaches differ from OBWS
in that they do not handle strong data heterogeneity as our
approach does. They do, however, resolve mismatches be-
tween the request ontology and the service description on-
tology using prespecfied mapping rules that must be created
manually. Further, our approach allows users to make free-
form requests rather than using the formal WSMO ontology.

WSMF, IRS-II, and WSMX are service-oriented ap-
proaches that partially accomplishdecouplingandhetero-
geneityrequirements through the conceptual modeling ca-
pabilities of ontologies and logic-based languages used to
either describe the interface or define the inner workings of
the web services. The OBWS approach described in this
paper, on the other hand, is an request-oriented approach,
which allows requests to be profiled with a extensional on-
tology and posted on an ontology feed, so that services sub-
scribed to the feed can service the request. Neither the re-
quester nor the servicer need to worry about each other’s
data representation, transport protocols, internal or external
representation, or other idiosyncrasies in order to commu-
nicate.

6. Conclusions and Future Work

We have presented an ontology-based approach to enable
web-principled services via ontology-based web services
(OBWSs). Web-principled services use the web as a place
for information publication and access. They communicate
asynchronously (and thus resolve coupling problems), and
they exchange data without requiring requesters to comply
with strict data format specifications (and thus resolve het-
erogeneity problems). In addition, we have proposed an ar-
chitecture for OBWS. Instead of a passive mechanism such
as that embodied in UDDI-based brokerage services that re-
quires the service requester to find, adapt, and request, our
proposed mechanism allows requests to be advertised in a
manner that an OBWS can understand them and then pro-
pose to service those requests. Instead of a reactive mecha-
nism that depends on human developers to make the neces-
sary adjustments to the interacting requester and responder,
the proposed mechanism provides proactive mapping be-
tween requests and responses through its relevant ontology-
based feeds. As a spin-off of the basic OBWS framework,
we have also described how to turn a traditional web service
into an OBWS. It suffices to describe a traditional web ser-
vice with an ontology; it requires no changes to the interface
and implementation of the service.

There are two important directions left for future work.
First,we need to provide a mechanism for the broker to be
able to choose the best service for a request when there
are many relevant service providers that match the request.
Others such as [4] have suggested criteria for selecting a
service from among potential services according to non-
functional aspects such as reliability, service cost, and avail-
ability. We can adapt these criteria to our approach or use
any other appropriate techniques. Second, we want to ex-
tend our approach to handle composite services whose sat-
isfaction requires an instantiation of multiple main object
sets. For instance, a vacation planning web service should
book an air ticket, reserve a hotel, and rent a car. Handling
this type of a service, however, is not just a matter of inde-
pendently instantiating the main objects. There are clearly
cross constraints that need to be satisfied in order for vaca-
tion planning requests to be correctly handled. For instance,
the date of the car rental cannot be later than the return date
of the air ticket.

References

[1] M. J. Al-Muhammed and D. W. Embley. Resolving Un-
derconstrained and Overconstrained Systems of Conjunctive
Constraints for Service Requests. InProceedings of the 18th
International Conference on Advanced Information Systems
Engineering (CAiSE06), pages 223–238, Luxembourg, June
2006.

[2] M. J. Al-Muhammed and D. W. Embley. Ontology-Based
Constraint Recognition for Free-Form Service Requests. In
Proceedings of the 23rd International Conference on Data
Engineering (ICDE 2007), pages 366–375, Istanbul, Turkey,
April 2007.

[3] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Con-
ceptual Model Based Semantic Web Services. InProceed-
ings of the 24th International Conference on Conceptual
Modeling (ER 2005), pages 288–303, Klagenfurt, Austria,
October 2005.

[4] D. Claro, P. Albers, and J. Hao. Selecting Web Services for
Optimal Composition. InProceedings of the 2nd Interna-
tional Workshop on Semantic and Dynamic Web Processes
(SDWP 2005), pages 32–44, Orlando, Florida, July 2005.

[5] D. W. Embley. Programming with Data Frames for Every-
day Items. In D. Medley and E. Marie, editors,Proceedings
of AFIPS Conference, pages 301–305, Anheim, California,
May 1980.

[6] D. Fensel. Triple-Space Computing: Semantic Web Services
Based on Persistent Publication of Information. InPro-
ceedings of IFIP International Conference on Intelligence in
Communication Systems, pages 43–53, Bangkok, Thailand,
November 2004.

[7] D. Fensel and C. Bussler. The Web Service Modeling
Framework WSMF.Electronic Commerce Research and Ap-
plications, 1(2):113–137, 2002.

[8] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bus-
sler. WSMX - A Semantic Service-Oriented Architecture.
In Proceedings of IEEE International Conference on Web
Services (ICWS 2005), pages 321–328, Orlando, FL, July
2005.

[9] R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and
D. Fensel. WWW or What Is Wrong with Web Services. In
Proceedings of the 3rd European Conference on Web Ser-
vices (ECOWS 2005), pages 235–243, V̈axjö, Sweden, No-
vember 2005.

[10] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. Mc-
Dermott, D. McGuinness, B. Parsia, T. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. Sycara. Bringing Seman-
tics to Web Services: The OWL-S Approach. InProceed-
ings of the 1st International Workshop on Semantic Web Ser-
vices and Web Process Composition (SWSWPC 2004), San
Diego, California, July 2004.

[11] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II:
A Framework and Infrastructure for Semantic Web Services.
In Proceedings of the 2nd International Semantic Web Con-
ference (ISWC 2003), pages 306–318, Sanibel Island, FL,
October 2003.

[12] R. Sidhu and V. K. Prasanna. Fast Regular Expression
Matching Using FPGAs. InProceedings of the the 9th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2001), pages 227–238, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[13] W3C. Semantic Web Services Framework. Website, 2005.
http://www.w3.org/Submission/SWSF.

