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Abstract. Given a service request such as scheduling an appointment
or purchasing a product, it is possible that the invocation of the service
results in too many solutions that all satisfy the constraints of the request
or in no solution that satisfies all the constraints. When the invocation
results in too many solutions or no solution, a resolution process becomes
necessary for agreeing on one of the solutions or finding some agreeable
resolution. We address this problem by imposing an ordering over all so-
lutions and over all near solutions. This ordering provides a way to select
the best-m with dominated solutions or dominated near solutions elimi-
nated. Further, we provide an expectation-based resolution process that
can take the initiative and either elicit additional constraints or suggest
which constraints should be relaxed. Experiments with our prototype im-
plementation show that this resolution process correlates substantially
with human behavior and thus can be effective in helping users reach an
acceptable resolution for their service requests.
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1 Introduction

We described in a previous paper [AMEL05] a system that allows users to specify
service requests and invoke services. This approach is strongly based on concep-
tual modeling and supports a particular type of service whose invocation involves
establishing an agreed-upon relationship in the conceptual model. Examples of
these types of services include scheduling appointments, setting up meetings,
selling and purchasing products, making travel arrangements, and many more.1

� Supported in part by the National Science Foundation under grants 0083127 and
0414644.

1 We intend the word “service” to be thought of in accordance with its typical
meaning—“an act of assistance or benefit.” Technically, we define a very special
type of service (as described herein). We do not intend our services to be thought of
in other technical ways such as registering services with a broker so that they can be
found by expressing their functionality in terms of inputs, outputs, and capabilities.



It is possible that the invocation of service requests for any of these services
results in too many satisfying solutions or in no solution at all although there
may be near solutions.

In our approach users can specify services such as the following request for
scheduling an appointment with a dermatologist.

I want to see a dermatologist on the 20th, 1:00 PM or after. The der-
matologist should be within 5 miles from my home and must accept my
IHC insurance.

Our approach uses conceptual-model-based information extraction to map ser-
vice requests to a domain ontology. This mapping transforms the service request
into a formal representation, which consists of concepts along with relationships
among these concepts and constraints over the values of these concepts in a
domain ontology. Figure 1 shows the formal representation of the appointment
request as a conjunctive predicate calculus statement—we added some comments
prefixed with “//” to provide more readability and to correlate the request with
the predicate calculus statement. To resolve the appointment request, the sys-
tem tries to instantiate each variable in the formal representation with values
such that all the constraints are satisfied. The values come from a databases
associated with the domain ontology, or are extracted from the service request,
or are obtained interactively from users.2

//I want to see a dermatologist
Appointment(x0) is with Dermatologist(x1) ∧ Appointment(x0) is for Person(x2)

//on the 20th
∧ Appointment(x0) is on Date(“the 20th”)

//1:00 PM or after
∧ Appointment(x0) is at T ime(x3) ∧ T imeAtOrAfter(x3, “1:00”)

//within 5 miles from my home
∧ Dermatologist(x1) is atAddress(x4) ∧ Person(x2) is atAddress(x5)
∧ LessThanOrEqual(DistanceBetween(x4, x5), “5”)

//accept my IHC insurance
∧ Dermatologist(x1) accepts Insurance(“IHC”)

Fig. 1. The predicate calculus statement for the appointment request.

A solution for a request is an instantiation for all the variables that satisfies
all the constraints. A near solution is an instantiation for all the variables that
satisfies a proper subset (maybe empty) of the constraints and, in a way to be
made precise later, comes close to satisfying the constraints not (yet) satisfied.
Ideally, our system would find just one solution or would find a handful of so-
lutions from which a user could select a desired one. More typically, however,
our system may return no solution or too many solutions. When our system re-
turns no solution, the request is overconstrained, and when it returns too many
solutions, the request is underconstrained.
2 The details of producing formal representations and instantiating them are not the

focus of this paper and can be found elsewhere [AMEL05].



Date Time Distance

s1 the 21th 1:00 PM 6 miles
s2 the 22th 1:30 PM 8 miles
s3 the 20th 2:20 PM 20 miles

Fig. 2. Near solutions for the appointment request.

Make Price Year Mileage

s1 Dodge $13,999 2005 15,775 miles
s2 Dodge $13,999 2004 30,038 miles

Fig. 3. Solutions for the car purchase request.

A resolution for overconstrained requests is to offer the best-m near solutions.
Figure 2 shows three near solutions for our appointment request. Both s1 and
s2 violate the date and distance constraints at different degrees in the sense
that s1 is closer to the 20th and violates the distance constraint less than s2.
Consequently, it is reasonable to impose a greater penalty on s2 than on s1.
Further, the penalty provides a way to recognize dominated near solutions. Near
solution s1 dominates near solution s2 because s1 has less of a penalty for each
violated constraint. Penalties provide a way to offer the best-m near solutions by
ordering the near solutions based on their penalties and discarding the dominated
ones. Additionally, suggesting constraints for users to relax provides another way
to offer the best-m near solutions. For instance, if prior appointment requests
reveal that users are more likely to impose constraints on date and time than on
distance, it makes sense to suggest that users relax constraints on distance. Thus,
for example, the resolution process can suggest the relaxation of the constraint
on distance and possibly offer s3 as the best near solution in Figure 2.

A resolution for underconstrained requests is to offer the best-m solutions.
Consider, for example, the following request for a car purchase.

I want to buy a Dodge, a 2002 or newer. The mileage should be less than
80,000, and the price should not be more than $15,000.

For this request, www.cars.com offered 168 solutions when probed in November
2005, two of which are in Figure 3. Presenting all the solutions or m arbitrarily
chosen ones to users is not likely to be very helpful. A way to reduce the number
of solutions and offer the best-m solutions is to elicit additional constraints. If
prior car purchase requests reveal that users often impose constraints on the car
model, for example, it makes sense that a resolution process elicits a constraint on
the model of the car. In addition, some solutions satisfy constraints better than
others. As Figure 3 shows, s1 better satisfies the year constraint than s2 because
the car in s1 is newer. Therefore, we can grant s1 a reward for better satisfying the
request. Further, the reward can provide a way to recognize dominated solutions.
As Figure 3 shows, the solution s2 is dominated by s1 because the car in s1 is
newer and has less mileage although both have the same price. Rewards provide
a way to offer the best-m solutions by ordering the solutions in a decreasing
order based on their rewards and discarding the dominated ones.



This paper offers ways to handle underconstrained and overconstrained ser-
vice requests. First, the paper offers an expectation-based process for eliciting
additional constraints for underconstrained requests and for suggesting some
constraints for users to relax for overconstrained requests. Second, the paper
offers an ordering over solutions and an ordering over near solutions, and a se-
lection mechanism based on Pareto optimality [Par97,Fel80], developed in the
late 1800’s, to choose the best-m, with dominated solutions or dominated near
solutions discarded.

We present these contributions as follows. Section 2 discusses an extension
to constraints that allows for ordering solutions based on the degree of satisfia-
bility and for ordering near solutions based on how close they are to satisfying
the constraints. For underconstrained requests, Section 3 introduces expectation
declarations as domain knowledge and proposes an expectation-based process to
select concepts for which to elicit constraints. In addition, we define an order-
ing of solutions based on the extension to constraint satisfaction introduced in
Section 2 and use it along with Pareto optimality to select the best-m solutions.
For overconstrained requests, Section 4 shows how to define an ordering over
near solutions and use it along with Pareto optimality to select the best-m near
solutions. It also introduces an expectation-based process to suggest constraints
for users to relax. We evaluate our proposed techniques in Section 5, and give
concluding remarks and directions for future work in Section 6.

2 Constraints

A constraint is an n-place predicate, which for a tuple t of n values evaluates to
either true or false depending on whether t satisfies or violates the constraint.
This true-false binary view of a constraint allows us to only differentiate tuples
based on whether they satisfy or violate a constraint. Researchers have extended
this view to differentiate between tuples that violate a constraint by assigning
to these tuples increasing positive real numbers that represent different degrees
of violation [LHL97,Arn02]. Although this extension allows for distinguishing
between tuples that violate a constraint, it does not allow for distinguishing
between tuples that satisfy a constraint because this extension lacks the notion
of degree of satisfiability. A constraint evaluates to zero for all tuples that satisfy
that constraint, which means all the tuples necessarily have the same degree of
satisfiability. We, therefore, further extend the binary view to not only consider
degree of violation, but also to consider degree of satisfiability by granting tuples
increasing rewards based on how well they satisfy a constraint.

Definition 1. Let C be an n-place constraint and let Di be the domain of the
ith place of C, 1 ≤ i ≤ n. A constraint is a function C : D1× ...×Dn −→ R that
maps a tuple t = 〈v1, ..., vn〉 ∈ D1× ...×Dn to a real number in R. An evaluation
of the constraint C on a tuple t is defined as C(t) = α, where α ∈ R+ ∪ {0},
which is a positive real number R+ or zero, is the value of the evaluation if t
satisfies C, and C(t) = β, where β ∈ R−, which is a negative real number R−,
is the value of the evaluation if t violates C.



The value α in Definition 1 represents the reward granted to a tuple t for satis-
fying a constraint C. A higher value for the reward α denotes greater satisfac-
tion. The value β represents the penalty imposed on a tuple t for violating the
constraint. A lower negative value for α denotes a greater degree of violation.
Observe that in Definition 1, we try to capture the intuitive idea behind a reward
and a penalty by letting the reward be a non-negative real number (rewards are
positive) and the penalty be a negative real number (penalties are negative).

Designers should make domain decisions about the amount of a reward α
and a penalty β. For instance, in a car purchase domain, designers may give a
greater reward for newer cars. Therefore, they may define the evaluation for a
constraint on a year in which a car was made such as “a 2000 or later” as ≥(y,
2000) = y − 2000. Observe that a 2001 car has a reward of 1 and a 2002 car has
a reward of 2, which means that a 2002 car has a greater satisfiability degree
according to this evaluation. Also observe that a 1999 car has a penalty of −1
and a 1980 car has a penalty of −20, which means that a 1999 car has much less
of a penalty than a 1980 car.

An evaluation function can also impose a fixed penalty when ordering be-
tween values is not obvious. As an example, a constraint of the form “Brand =
Canon” on digital camera brands can be defined as

BrandEqual(x, “Canon”) =
{

0, if x = “Canon”;
−1, otherwise

We imposed a fixed penalty for any brand other than “Cannon”, as Arnal sug-
gested [Arn02], because it is not obvious how we can order penalties between
brands other than “Cannon”.

For equality constraints over which a penalty ordering is possible, designers
can declare penalties. For instance, a designer may choose the evaluation for
EqualAppointmentTime(t, 10:00 AM) to be −(f(t) − f(10:00 AM ))2, where f
is a function that converts a time to a unitless number. For example, the time
2:15 PM, which is the military time 14:15, could be converted to the integer
1415. For illustration purposes, we have assumed that the designer has chosen
to square the difference to give proportionally less of a penalty to times close to
10:00 AM.

3 Underconstrained Service Requests

Underconstrained service requests admit too many solutions. In this section, we
discuss two ways to provide users with the best-m solutions out of n solutions.
First, we propose an expectation-based elicitation process to elicit additional
constraints and apply them to solutions. Applying additional constraints to so-
lutions may reduce the number of solutions and may also make the resulting
solutions more desirable [SL01,FPTV04]. Second, we propose an ordering over
solutions based on our extension for constraints in Definition 1 along with Pareto
optimality based on this ordering to select the best-m solutions.



3.1 Constraint Elicitation Using Expectations

We associate expectations with concepts of a domain ontology. An expectation
is the probability that value(s) for a concept appear in a service request. The
expectation is, therefore, a number in the interval [0, 1], where the low and high
extremes of the interval mean, respectively, that a value for the concept is not
and is certainly expected to appear in a service request. Values in the open
interval (0, 1) represent varying degrees of expectations.

Domain ontology designers estimate the expectations associated with con-
cepts. Although there may be several ways to estimate the expectations, we
suggest two general ways. First, designers can estimate the expectation using
their knowledge of the domain. Second, designers can analyze service requests in
the domain of the ontology and count the frequency of appearance for each con-
cept in the domain ontology. Further, this latter method leads to the possibility
that the expectations can be adjusted as the system runs.

Unlike other approaches to constraint elicitation (e.g. [LHL97,SL01,PFK03]),
which are built on an assumption that users can impose additional constraints
if they review some examples of solutions, we let the resolution process take the
initiative and suggest the concepts on which to impose constraints according to
the associated expectations with these concepts. The intuitive idea is that the
resolution process can order the concepts based on their associated expectations
and make reasonable suggestions to users to constrain concept values, starting
from the concept associated with the highest expectation for which there is, as
of yet, no constraint.

The elicitation process terminates when one of the following three conditions
holds. First, the most recent elicited constraint is unsatisfiable in which case
the service request becomes overconstrained and the resolution process uses the
techniques in Section 4 to handle this situation. Second, the solution space is
reduced to m or fewer solutions, in which case the system offers these solutions
to users to evaluate and choose one. Third, there is no other concept in the
ordering of concepts associated with an expectation that exceeds a prespecified
threshold.

To demonstrate the idea of constraint elicitation using expectations, note
that the car purchase request in Section 1 does not specify a constraint on the
model of the car. Assuming that the expectation associated with Model, say 0.6,
is the highest among the unconstrained concepts and is above the threshold, say
0.5, the resolution process suggests that the user could impose a constraint on
the model. If a user wishes to constrain Model to be “Stratus” the resolution
process can restrict the solutions to Dodge Stratuses.

3.2 Selecting the Best-m Solutions

Our extension to the binary view of constraints (Definition 1) provides a way to
impose an ordering over solutions based on rewards granted to each solution for
satisfying the service request constraints. Let S ={s1, ..., sn} be a set of solutions
each of which satisfies every constraint in the set of constraints C = {C1, ..., Ck},



which are imposed on a service request. The evaluation of the set of constraints
C for a solution si ∈ S returns a set of real numbers {C1(si), ..., Ck(si)}, which
are the rewards granted to si for satisfying the constraints.

Before computing an aggregate reward for a solution si over all constraints in
C, we first divide each reward Cj(si), 1 ≤ j ≤ k, by max

1≤i≤n
Cj(si), the maximum

reward value over all solutions for constraint Cj . This normalizes the rewards
to the interval [0, 1]. The purpose of the normalization is to discard the relative
effects of large magnitude rewards across different constraints and thus to make it
unnecessary to correlate values across different constraints. Let us denote the set
{C1(si), ..., Ck(si)} after doing the normalization by C∗ = {C∗

1 (si), ..., C∗
k(si)}.

Researchers have suggested several ways to compute combined evaluations (see
[MA04] for a thorough survey). We linearly combine rewards in C∗ yielding a
combined reward ρ for a solution si as follows:

ρ
C∗ (si) =

∑k
j=1 C∗

j (si); for i = 1, ..., n.

Definition 2. Let si and sj be two solutions and C = {C1, ..., Ck} be a set of
constraints. We say that si is better than or equivalent to sj, si �ρ sj, with
respect to C if ρ

C∗ (si) ≥ ρ
C∗ (sj).

To demonstrate the idea of reward-based ordering, let us suppose that we
have a set of constraints C = {≤(mileage, “30,000 miles”), ≤(price, “$20,000”)}
and two solutions s1 = {mileage = “29,000 miles”, price = “$19,000”} and s2

= {mileage = “29,900 miles”, price = “$18,000”}, then designers might decide
to grant a reward of 1000 for s1 and of 100 for s2 for satisfying the mileage
constraint, and a reward of 1000 for s1 and a reward of 2000 for s2 for satisfying
the price constraint. Given these rewards, we can normalize them to [0, 1] by
dividing the mileage rewards by 1000 and the price rewards by 2000, yielding the
normalized rewards 1 and 0.1 for s1 and s2 respectively for satisfying the mileage
constraint and the normalized rewards 0.5 and 1 for s1 and s2 respectively for
satisfying the price constraint. Based on Definition 2, s1 �ρ s2 because ρ

C∗ (s1)
= 1.5 and ρ

C∗ (s2) = 1.1.
The ordering �

ρ
sorts the solutions according to their combined rewards from

the solution with the highest combined reward to the lowest. (Any solutions with
identical rewards appear in a random order within their own equality group.)
Although this ordering does sort the solutions, it does not necessarily imply that
the first m solutions are the best-m solutions. The sorting procedure considers
only the combined rewards, but does not consider the rewards granted to the
solutions for satisfying each individual constraint. The rewards of the individual
constraints, C1, ..., Ck, in C provide additional knowledge to differentiate among
solutions based on Pareto optimality, which divides solutions into dominating
and dominated solutions based a dominance relation.

Definition 3. Let C = {C1, ..., Ck} be a set of constraints and S = {s1, s2, ..., sn}
be a set of solutions. Let si, sj ∈ S be any two distinct solutions, we say that si

dominates sj if ∀p∈{1, ..., k}(Cp(si) ≥ Cp(sj)) and ∃q∈{1, ..., k}(Cq(si) > Cq(sj)).



Definition 3 says that the solution si, which dominates sj , has rewards from
all the constraints that are at least equal to the rewards for sj and for at least
one of the constraints si has a strictly higher reward. Observe the that Defini-
tion 3 does not explicitly consider the combined reward ρ

C∗ (sk). However, the
combined reward is implicit in this definition in the sense that a solution can
never dominate another solution with a higher combined reward.

Definition 3 provides the basis for our variation of Pareto optimality, a con-
cept which Pareto defined over a century ago [Par97].

Definition 4. Let S = {s1, s2, ..., sn} be a set of solutions for a service request.
A solution si ∈ S is said to be Pareto optimal if there does not exist an sj ∈ S
such that sj dominates si.

The key idea in Definition 4 is that a solution cannot be Pareto optimal if it is
dominated by another solution.

3.3 Resolution of Underconstrained Requests

To demonstrate our resolution procedure, consider our request for a Dodge (in
the introduction). The system first uses expectations to elicit additional con-
straints to reduce the number of solutions. Since the request does not constrain
the model of the car and the expectation associated with the model is the highest
among all the unconstrained concepts, the system suggests that the user con-
strains the model. Adding the constraint that the model be a “Stratus” drops
the number of solutions to 53, which is still too many. Since there are no more
concepts with an expectation higher than the threshold, 0.5, the system uses
the ordering �

ρ
and Pareto optimality to return the best-m solutions. Figure 4

shows the top 12 solutions ordered in ascending order based on their combined
rewards ρ

C∗ (si). The rightmost column in Figure 4 shows whether a solution is
Pareto optimal (�) or not (×). For instance, the solution s3 is not Pareto opti-
mal because s1 dominates it—s1 is cheaper and has a lower mileage, although
both have the same year. Since we have chosen m = 5, the system returns the
first five Pareto optimal solutions, s1, s2, s5, s7, and s12.

4 Overconstrained Service Requests

Overconstrained service requests admit no solution. As in Section 3, we discuss
two ways to provide the best-m near solutions. First, we propose an ordering
over near solutions and use it along with Pareto optimality to offer the best-m
near solutions. Second, we propose an expectation-based relaxation process that
suggests unsatisfied constraints for a user to relax.

4.1 Ordering Near Solutions

We combine the penalties and rewards, if any, of each near solution, and order the
near solutions according to their combined penalties and rewards. Let S ={s1, ...,



Solution Make Model Price Year Mileage ρ
C∗ (si) Pareto Optimal

s1 Dodge Stratus 13,999.00 2005 15,775 2.499 �

s2 Dodge Stratus 11,998.00 2004 23,404 2.497 �

s3 Dodge Stratus 14,200.00 2005 16,008 2.476 ×
s4 Dodge Stratus 14,557.00 2005 16,954 2.431 ×
s5 Dodge Stratus 10,590.00 2003 38,608 2.360 �

s6 Dodge Stratus 14,253.00 2004 17,457 2.332 ×
s7 Dodge Stratus 10,987.00 2004 56,377 2.267 �

s8 Dodge Stratus 13,999.00 2004 30,038 2.230 ×
s9 Dodge Stratus 12,995.00 2004 40,477 2.226 ×
s10 Dodge Stratus 12,577.00 2003 33,163 2.216 ×
s11 Dodge Stratus 14,620.00 2004 32,406 2.149 ×
s12 Dodge Stratus 8,975.00 2003 75,689 2.140 �

Fig. 4. Solutions for the car purchase request.

sn} be a set of near solutions each of which violates one or more constraints from
a set of constraints C = {C1, ..., Ck}. The evaluation of a set of constraints C for a
near solution si ∈ S returns a set of real numbers {C1(si), ..., Ck(si)}, where each
Ck(si) is either a reward or a penalty. We divide these real numbers Cj(si), 1 ≤
j ≤ k by max

1≤i≤n
|Cj(si)|, the maximum absolute reward or penalty value over

all near solutions for constraint Cj . This normalizes the rewards and penalties to
the interval [-1, 1]. Let us denote the set {C1(si), ..., Ck(si)} after normalization
by C∗ = {C∗

1 (si), ..., C∗
k(si)}. We combine each C∗

j (si) in C∗ linearly, as before,
yielding a combined penalty/reward φ for each near solution si as follows:

φ
C∗ (si) =

∑k
j=1 C∗

j (si); for i = 1, ..., n.

Greater values of φ
C∗ (si) indicate lower penalties on si and (possibly) higher

rewards. Thus, a high value of φ
C∗ (si) denotes a better near solution si.

Definition 5. Let si and sj be two distinct near solutions and C = {C1, ..., Ck}
be a set of constraints. We say that si is better than or equivalent to sj, si �φ

sj,
with respect to C if φ

C∗ (si) ≥ φ
C∗ (sj).

We define a dominance relation and Pareto optimality based on the ordering �
φ

in Definition 5 in the same way as we defined them in Definitions 3 and 4.

4.2 Constraint Relaxation Using Expectations

For constraint relaxation we use the same expectation values for constraints as
discussed in Subsection 3.1, but consider the lowest expectation values, rather
than the highest, to be the candidates for relaxation. In addition, we consider
the violation degree when we suggest constraints for relaxation. For instance,
it is likely to be better to suggest relaxing a time constraint violated by 10
minutes than to suggest relaxing a distance constraint violated by 50 miles even
though a distance constraint is likely to be associated with a lower expectation



value. Further, since we should not badger the user with questions, the number
of suggested unsatisfied constraints should not exceed a prespecified threshold.
Taking all these ideas into consideration, the system selects the constraints to
suggest for relaxation based on the following procedure.

1. To avoid overloading the user with suggestions, select only near solutions
that violate fewer constraints than a prespecified threshold.

2. To take the expectation values into account, compute the cost of the re-
laxation for each near solution based on the expectation using the equation
r(si) =

∑
k ekC∗

k (si), where ek is the expectation value associated with the
constraint Ck and C∗

k(si) is the normalized penalty imposed on si for Ck.
3. To take the overall degree of violation into account, select the near solution

si with the lowest absolute value of r(si) and suggest relaxing the constraints
that si violates only to the degree necessary to satisfy the constraints of si.

We give an example in the next subsection.

4.3 Resolution of Overconstrained Requests

To demonstrate our resolution procedure, consider our request for an appoint-
ment (in the introduction). Figure 5 shows 8 near solutions for the request or-
dered in ascending order based on the combined penalty/reward φ

C∗ (si), which
appears in the second column from the right. The system tries first to suggest
some constraints to relax using the expectations associated with the constraints.
Figure 6 shows the constraints along with their associated expectation values and
their rewards/penalties for each near solution. The rightmost column in Figure 6
shows the computed relaxation cost r(si) for each near solution. Based on our
relaxation procedure, the system could consider the near solution s4 for suggest-
ing relaxation because it has the lowest relaxation cost r(si). The system does
not, however, because s4 violates three constraints, which exceeds the threshold
we set, namely fewer than three constraints. The near solution s3 satisfies our
procedure requirements in the sense that s3 violates two constraints and has the
next lowest relaxation cost r(si). The system therefore suggests letting the time
be 12:40 PM instead of 1:00 PM and letting the date be the 19th instead of the
20th. If the user accepts these relaxed constraints, the system can offer s3 as the
best solution.

For the sake of further discussing the possibilities, we assume that the user
does not accept the suggestion to relax the time and date constraints. To compute
the best-m near solutions, the system sorts the near solutions based on the
combined penalty/reward φ

C∗ (si) and discards the dominated near solutions
using the rewards and penalties information in Figure 6, i.e. φ

C∗ (s1) = −0.160
= −0.076 + 0.167 − 0.250; φ

C∗ (s2) = −0.180 = −0.090 + 0.160 − 0.250; and
so forth. The rightmost column in Figure 5 shows whether a near solution si

is Pareto optimal (�) or not (×). Since m = 5, the system returns the first 5
Pareto optimal near solutions, which in our example are s1, s3, s4, s6, and s8.

A closer look at the results in Figures 5 and 6 reveals that the returned near
solutions are better than the ones filtered out. For instance, comparing the near



Near Solution Insurance Distance Time Date φC∗(si) Pareto Optimal

s1 IHC 16 1:00 PM the 19th −0.160 �

s2 IHC 18 1:10 PM the 19th −0.180 ×
s3 IHC 4 12:40 PM the 19th −0.257 �

s4 IHC 6 12:50 PM the 19th −0.264 �

s5 IHC 20 3:00 PM the 19th −0.271 ×
s6 IHC 8 1:40 PM the 18th −0.382 �

s7 IHC 18 2:20 PM the 22nd −0.479 ×
s8 IHC 3 11:30 AM the 16th −1.049 �

Fig. 5. Near solutions for the appointment request.

Insurance=“IHC” Distance≤ 5 Time≥(“1:00 PM”) Date=“the 20th” r(si)
Expectation=0.4 Expectation=0.3 Expectation=0.8 Expectation=0.9

s1 0.000 −0.076 0.167 −0.250 −0.248

s2 0.000 −0.090 0.160 −0.250 −0.252

s3 0.000 0.007 −0.014 −0.250 −0.236

s4 0.000 −0.007 −0.007 −0.250 −0.233

s5 0.000 −0.102 0.083 −0.250 −0.256

s6 0.000 −0.021 0.139 −0.500 −0.456

s7 0.000 −0.090 0.111 −0.500 −0.477

s8 0.000 0.014 −0.062 −1.000 −0.950

Fig. 6. Rewards and penalties for the near solutions.

solution s1 to the discarded near solution s2, we find that although both violate
the date constraint to the same degree and satisfy the time constraint, s1 violates
the distance constraint less than s2 and is closer to the requested time, 1:00 PM.
Therefore, from the Pareto-optimality’s viewpoint, given s1 as a possibility, no
user is likely to accept the near solution s2.

5 Performance Analysis

To evaluate the performance of our system, we conducted a user study. The
goal was to test whether there is a statistically significant difference between
human choices and system choices. The subjects in our study were from both
genders and from different academic disciplines and education levels—professors,
graduate students, and undergraduate students at Brigham Young University.
We gave every subject a request from a car purchase domain along with 32 cars
that each satisfies all the constraints of the request, and another request from an
appointment scheduling domain along with 19 near solutions that each satisfies
some but not all the constraints of the appointment request. All the solutions
and near solutions were randomly shuffled so as not to provide the subjects with
any ordering information. We asked each subject to select and order the best-5
solutions out of 32 solutions for cars and the best-5 near solutions out of 19 near
solutions for appointments.
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Fig. 7. Human solution selection compared to system solution selection. 
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Fig. 8. Human near solution selection compared to system near solution selection.

To visualize the degree of agreement between system choices and human
choices, we counted the number of times each solution was chosen by the 16
subjects for the car experiment and the number of times each near solution was
chosen by the 15 subjects for the appointment experiment.3 Figures 7 and 8
show the percentage of human subjects who chose each solution or near solution
respectively. The first five solutions and near solutions are the ordered best-5
Pareto optimal solutions and near solutions. The remaining solutions and near
solutions are ordered by decreasing percentage of selection by human subjects.
As the figures show there is a high degree of agreement between the system’s
choices and the human subjects’ choices. As Figure 7 shows, over 87% of the
subjects chose solutions 1 and 2, and over 81% of the subjects chose solution 3.
3 One of the subjects did not make choices for the appointment experiment.



 
                           System 
Human 

The best-5  
solutions 

Not the best-5  
solutions 

Total 

The best-5 solutions 56 24 80 
Not the best-5 solutions 24 408 432 
Total 80 432 512 

 
Fig. 9. Human versus system choices for the car experiment.

                                     System 
Human 

The best-5 near  
solutions 

Not the best-5  near  
solutions 

Total 

The best-5  near solutions 61 14 75 
Not the best-5  near solutions 14 196 210 
Total 75 210 285 

 
Fig. 10. Human versus system choices for the appointment experiment.

Figure 8 shows an even higher degree of agreement. All the subjects chose near
solutions 1 and 2, and over 96% of them chose near solution 3. The solutions
and near solutions that were not chosen by the system as being among the best-
5 were also selected less often by our human subjects, with the exception of
solution 6 in Figure 7, which was selected by 43% of the human subjects, and
the near solutions 6 and 7, which were chosen by the 33% and 26% of the human
subjects. Interestingly, the system chose both solution 6 and near solution 6 as
the 6th Pareto optimal solution and near solution. Near solution 7, however, is
not Pareto optimal. All the other solutions and near solutions were chosen by
20% or fewer of the subjects. Figures 7 and 8 reveal a definite pattern: human
subjects chose a high percentage of the best-5 choices and a low percentage for
choices not among the best-5 system choices.

To statistically measure the degree of agreement between system choices and
human subjects choices, we ran an inter-observer agreement test [LK77] using
the MINITAB 14 software package [min05]. The inter-observer agreement per ob-
server pair (system and human) was determined with respect to the dichotomy:
the best-5 solutions or the best-5 near solutions and not the best-5. Figures 9 and
10 show the distribution of agreement and disagreement between the system and
our human subjects. We disregarded the order in which each subject ordered the
best-5 solutions or near solutions, and tallied the number of solutions and near
solutions chosen by subjects that belong to the best-5 solutions and the best-5
near solutions selected by the system. We also tallied the number of solutions
and near solutions that were not chosen by the system and the subjects as the
best-5. For instance, the 16 subjects for the car experiment made 80 choices of
which 56 belong to the best-5 system choices and 24 do not. Further, of the
432 solutions not chosen, 24 were among the best-5 system choices while 408
were also not chosen by the system. Figure 11 shows the statistical summary for
the car and appointment experiments. The overall agreement, Po, and the agree-
ment due to chance, Pe, for the car experiment are 0.91 and 0.73 respectively
with a Cohen kappa κ value of 0.67, and for the appointment experiment are



Agreement Type of Car Appointment
index agreement experiment experiment

Po overall 0.91 0.90
Ppos the best-5 0.70 0.81
Pneg not the best-5 0.94 0.93
Pe due to chance 0.73 0.61
Cohen kappa κ chance corrected 0.67 0.74
95% Confidence interval for κ [0.58, 0.76] [0.65, 0.83]

Fig. 11. Statistical summary.

0.90 and 0.61 with a κ value of 0.74. Based on the Landis-Koch interpretation
for κ values [LK77], the two κ values indicate “substantial” agreement between
the system and the subjects. The 95% confidence intervals for κ in Figure 11,
however, indicate that the agreement may range from “moderate” (0.58) to “sub-
stantial” (0.76) for the car experiment and from “substantial” (0.65) to “almost
perfect” (0.83) for the appointment experiment. It is useful also, as suggested
in [CF90], to compute two more indices, namely the positive agreement Ppos on
the best-5 and the negative agreement Pneg on those not among the best-5. The
positive agreement, Ppos, for the car experiment and for the appointment experi-
ment were respectively 0.70 and 0.81 whereas the negative agreement, Pneg, were
respectively 0.94 and 0.93. All these numbers show a high agreement between
the system and human subjects on both the best-5 and not among the best-5
(near) solutions. We next considered how the system and each subject ordered
the best-5 solutions and near solutions. The κ values for the car experiment
was 0.43 and for the appointment experiment was 0.61, indicating respectively
“moderate” and “substantial” agreement between system ordering and subject
ordering for the best-5 solutions and the best-5 near solutions.

6 Conclusions and Future Work

We proposed techniques to handle underconstrained and overconstrained sys-
tems of conjunctive constraints for service requests. These techniques depend on
defining an ordering over the solutions or near solutions along with Pareto opti-
mality to discard dominated solutions or near solutions. From among the ordered
Pareto optimal solutions or near solutions, we select the best-m. We also intro-
duced expectation values as domain knowledge and proposed an expectation-
based process to elicit or relax constraints respectively for underconstrained and
overconstrained requests. We conducted experiments to test our proposed order-
ing and Pareto optimality techniques and found substantial agreement between
the system and human behavior.

Although still preliminary, the results are promising. As future work, we plan
to do more user studies on additional domains with a larger number of subjects.
In addition, we need to develop a dialog generation system for user interaction
and to conduct a field test for the generated dialog. Finally, we should integrate



our resolution techniques into a service request architecture, such as the semantic
web.
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